首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cleaning of lake sediment samples for diatom oxygen isotope analysis   总被引:1,自引:0,他引:1  
Detrital grain contamination in a diatom sample can considerably influence the δ18Odiatom signal. In order to obtain a meaningful signal, pure samples must be used. This can be achieved via a series of cleaning stages including organic and carbonate material removal, sieving, differential settling and heavy liquid separation. The method described here works best for sediments with >20% diatom content. Based on testing various clean-up methods, we propose a sequence of four clean-up stages to produce pure diatom samples from a range of lake sediments types starting with a few grams of sediment. The diatom content and the oxygen isotope composition of the samples at each stage were measured in order to assess the effect of differential amounts of contamination. Results show that a four stage clean-up is necessary to produce clean diatom samples and that contamination by silt and clay causes lower δ18O values.  相似文献   

2.
The oxygen isotope ratios of diatoms (δ18Odiatom), and the oxygen and hydrogen isotope ratios of lake water (δW) of lakes in south Alaska provide insight into past changes in atmospheric circulation. Lake water was collected from 31 lakes along an elevation transect and diatoms were isolated from lake sediment from one lake (Mica Lake) in south Alaska. In general, δW values from coastal lakes overlap the global meteoric water line (GMWL). δW values from interior lakes do not lie on the GMWL; they fall on a local evaporation line trajectory suggesting source isotopes are depleted with respect to maritime lakes. Sediment cores were recovered from 58 m depth in Mica Lake (60.96° N, 148.15° W; 100 m asl), an evaporation-insensitive lake in the western Prince William Sound. Thirteen calibrated 14C ages on terrestrial macrofossil samples were used to construct an age-depth model for core MC-2, which spans 9910 cal years. Diatoms from 46, 0.5-cm-thick samples were isolated and analyzed for their oxygen isotope ratios. The analyses employed a newly designed, stepwise fluorination technique, which uses a CO2 laser-ablation system, coupled to a mass spectrometer, and has an external reproducibility of ±0.2‰. δ18Odiatom values from Mica Lake sediment range between 25.2 and 29.8‰. δ18Odiatom values are relatively uniform between 9.6 and 2.6 ka, but exhibit a four-fold increase in variability since 2.6 ka. High-resolution sampling and analyses of the top 100 cm of our lake cores suggest large climate variability during the last 2000 years. The 20th century shows a +4.0‰ increase of δ18Odiatom values. Shifts of δ18Odiatom values are likely not related to changes in diatom taxa or dissolution effects. Late Holocene excursions to lower δ18Odiatom values suggest a reduction of south-to-north storm trajectories delivered by meridional flow, which likely corresponds to prolonged intervals when the Aleutian Low pressure system weakened. Comparisons with isotope records of precipitation (δP) from the region support the storm-track hypothesis, and add to evidence for variability in North Pacific atmospheric circulation during the Holocene.
Zachary SharpEmail:
  相似文献   

3.
The late glacial-Holocene transition from the Lago Chungará sedimentary record in northern Chilean Altiplano (18°S) is made up of laminated sediments composed of light-white and dark-green pluriannual couplets of diatomaceous ooze. Light-white sediment laminae accumulated during short-term extraordinary diatom blooms whereas dark-green sediment laminae represent the baseline limnological conditions during several years of deposition. Diatom oxygen isotope ratios (δ18Odiatom) from 40 consecutive dark-green laminae, ranging from 11,990 to 11,450 cal year BP, show that a series of decadal-to-centennial dry–wet oscillations occurred. Dry periods are marked by relatively high isotope values whereas wet episodes are indicated by lower values. This interpretation agrees with the reconstructions of terrigenous inputs and regional effective moisture availability carried out in the lake but there is a systematic temporal disagreement between them owing to the non-linear response of the lacustrine ecosystem to environmental forcings. Furthermore, the δ18Odiatom record tracks effective moisture changes at a centennial scale. Three major phases have been established (11,990–11,800, 11,800–11,550, and 11,550–11,450 cal year BP). Each phase is defined by an increasing isotope trend followed by a sudden depletion. In addition, several wet and dry events at a decadal scale are superimposed onto these major trends. Spectral analyses of the δ18Odiatom values suggest that cycles and events could have been triggered by both El Niño-Southern Oscillation (ENSO) and solar activity. Significant ENSO frequencies of 7–9 years and 15–17 years, and periodicities of the solar activity cycles such as 11 years (Schwabe), 23 years (Hale) and 35 years (Brückner) have been recognised in the oxygen isotope time series. Time–frequency analysis shows that although solar and ENSO forcing were present at the onset of the Holocene, they were more intense during the late glacial period. The early Holocene might have been mainly governed by La Niña-like conditions that correspond to wet conditions over the Andean Altiplano.  相似文献   

4.
There is increasing interest in the 18O/16O ratio of diatom silica, particularly for lakes where carbonates are absent. Here we compare the 18O/16O ratios preserved in diatom silica and authigenic calcite from an open, spring-fed, freshwater lake core from Turkey which spans marine oxygen isotope stage 3. The two sets of isotope data show contrasting trends in spite of their mutual dependence on the water 18O/16O ratio and lake-water temperature. The most likely explanation for this divergence is difference in seasonality of biological productivity mediated by the strongly continental climate of the Anatolian plateau. Diatom silica and authigenic calcite are precipitated from solutes in the lake-water at different times of the year. Diatom productivity follows a well-defined seasonal cycle, peaking first and most importantly in the spring and then in the autumn. The precipitation of calcite follows productivity by all forms of photosynthetic organisms that deplete CO2 but in most lakes this occurs during the summer months. The 18Ocalcite curve shows mean summer temperature maxima at ca. 30–35 and ca. 58 ka BP while the intervening data represent a period of relatively cool summers. The 18Odiatom curve shows bipolar results (15–20 and 29–33), which suggests that at least two discrete sources or processes contributed to the oxygen composition of the diatoms but probably involved a dilution mechanism to shift the isotopic values. The most likely source of depleted water is from snow entering the lake during the spring thaw. We infer that many authigenic calcite curves from regions with markedly seasonal climates may be temporally limited to a few summer months and that diatom silica provides complementary data on seasonally-specific water isotopic composition rather than a substitute for analyses based on carbonate.  相似文献   

5.
Walker Lake, a hydrologically closed, saline, alkaline lake located along the western margin of the Great Basin of western United States, has experienced a 77% reduction in volume and commitment drop in lake level as a result of anthropogenic perturbations and climatic fluctuations over the last century. The history of lake-level change in Walker Lake has been recorded instrumentally since 1860. A high-resolution multi-proxy sediment core record from Walker Lake has been generated through analysis of total inorganic carbon (TIC), total organic carbon (TOC), and oxygen and carbon isotope ratios (δ18O and δ13 C) of both downcore bulk TIC and ostracods over the last 200 yr. This allows us to examine how these sediment indices respond to actual changes in this lake’s hydrologic balance at interannual to decadal timescales. In Walker Lake sediments, changes in %TIC, %TOC, and δ13C and δ18O of TIC and ostracods are all associated to varying degrees with changes in the lake’s hydrologic balance, with δ18O of the TIC fraction (δ18OTIC) being the most highly correlated and the most effective hydrologic indicator in this closed-basin lake. The δ18OTIC record from Walker Lake nearly parallels the instrumental lake-level record back to 1860. However, comparison with sporadic lake-water δ18O and dissolved inorganic carbon δ13C (δ13CDIC) results spanning the last several decades suggests that the isotopic values of downcore carbonate sediments may not be readily translated into absolute or even relative values of corresponding lake-water δ18O and δ13CDIC. Changes in the lake’s hydrologic balance usually lead to changes in isotopic composition of lake waters and downcore sediments, but not all the variations in downcore isotopic composition are necessarily caused by hydrologic changes.  相似文献   

6.
The analysis of oxygen isotope ratios (δ18O) in biogenic silica (e.g. diatoms, sponge spicules, phytoliths) is an increasingly utilised palaeoclimatic proxy for lakes and oceans, providing an alternative to carbonate δ18O. Currently, the problems associated with the cleaning and extraction of pure diatom silica, especially from lake sediments, may compromise the precision associated with δ18Odiatom records. This is because, despite improvements in cleaning techniques, it is still difficult to remove silica-containing contaminants (e.g. tephra, silts and clays) from biogenic silica. Where it has proved difficult to remove all the silica bearing contaminants from a sample, mass balance calculations involving point counting have been used, but these are inherently inaccurate as they only consider the surface area of the contaminant, rather than volume. The new method described here assesses the volume of contamination in each sample of biogenic silica by using major and trace element geochemistry, allowing the δ18O of the contamination to be removed from the biogenic silica δ18O value by linear mass balance. In this case, diatom silica was contaminated with tephra, however the method should also be applicable to other contaminants such as silts and clays.  相似文献   

7.
Climate change at the monsoon/Westerly boundary in Northern Mexico   总被引:1,自引:0,他引:1  
Northern Mexico lies close to the present day boundary between mid-latitude (Westerly) and tropical (monsoonal) sources of moisture. Studies from the adjacent southwest USA have shown major changes in lake levels and vegetation distributions over the late Quaternary which have been interpreted in terms of significant variations in the relative strengths and positions of these climate systems. Palaeoclimatic data from this area have, however, left a number of unresolved questions which can only be answered by extending work into northern Mexico, closer to the major source of summer (monsoonal) rain, the Gulf of Mexico. Studies of palaeolake sediments from a series of hydrologically closed lake basins across a range of altitudes (1280 to 2200 m a.s.l.) in northern Chihuahua are in progress using geochemical, mineral magnetic, diatom and plant microfossil analyses. Preliminary results are presented from the Alta Babícora and Encinillas basins. The sites provide records of lacustrine deposition between >11000 and about 2500 yr BP. The diatom record from Babíora provides clear evidence for a deep water lake in this basin in the late glacial which persisted into the early Holocene. A dry episode coinciding with the timing of the Younger Dryas is recorded in Alta Babícora. Conditions wetter than present are indicated up to at least 7000 yr BP.  相似文献   

8.
One thousand years of mining of sulfurous ores at the Falun copper mine, central Sweden, and the resulting atmospheric emissions of metals and sulfur dioxide, gives a unique opportunity to study long-term responses to acid deposition. Copper production peaked in the 17th century, when Falun supplied 2/3 of the world's copper production. Thereafter production and associated emissions have declined, and the mine was closed in the 1990's. Sediment cores from 14 lakes situated between 3-27 km from the mine have been analyzed for Cu, Pb, Zn, Cd, S and 206Pb/207Pb isotope ratios to study the historical and geographical distribution of airborne pollutants. Diatoms have been analyzed to infer past lake acidity and to assess whether lake acidification has occurred and, if so, whether any recovery from acidification has occurred following the reduction in sulfur emissions. Eight of the fourteen lakes have acidified, beginning as early as the late 17th century, when the estimated annual emissions of SO2 amounted to 40,000 tons. This is perhaps the earliest known record of anthropogenic lake acidification. Despite the large historical deposition of sulfur, the pH has only decreased by 0.4–0.8 units, with the lowest diatom-inferred pH being 5.8. Effects of agriculture and forestry following the expanding mining industry may have counteracted acidification. Despite the 300 yrs of lowered emissions the diatom record shows no recovery in pH. There are still large amounts of sulfur accumulated in the soils in the area that may delay recovery from lake acidification. Afforestation in the area over the last 100 yrs may also play an important role in delaying the recovery process.  相似文献   

9.
A late Holocene palaeolimnological record for central Mexico has been obtained from Lake Pátzcuaro, using recent and fossil ostracods. Lake Pátzcuaro, Michoacán, is a closed-basin lake which responds rapidly to changes in the ratio of precipitation/evaporation in the region. The record from a single lake-sediment core, dated by AMS radiocarbon method, covers the last ~3,530 yrs, and is based on ostracod faunal palaeoecology coupled with analysis of the stable-isotope (18O/16O and 13C/12C) composition of ostracod valves. The faunal distribution is determined by the presence or absence of aquatic vegetation and, to a lesser extent, salinity. The 18O/16O and 13C/12C ratios in ostracod calcite show good agreement with palaeolimnological inferences from the faunal assemblages, principally recording changing precipitation/evaporation and primary-productivity levels, respectively. Wetter conditions existed in central Mexico between approximately ~3,600 and ~2,390 yr BP, between ~1,330 to ~1,120 yr BP, and from ~220 yr BP to present, characterised by fluctuating lake levels. A dilution of the sediment load in the lake reduced turbidity levels allowing for a marked increase in productivity. During these phases, the combination of a deeper lake and increased macrophyte cover reduced the degree of mixing of the waterbody. In the earliest of these phases there was sufficient stratification of the waterbody for methanogenesis to occur in the sediment interstices. The wet phases were separated by prolonged dry periods, during which time the climatic conditions were relatively stable. Good agreement was found between the findings of this study and others from the central Mexican/Caribbean region suggesting that abrupt climate changes occurred at least at a regional scale.  相似文献   

10.
Comparisons between climate proxies and instrumental records through the last two centuries are often used to understand better the controls on palaeoarchives and to find relationships that can be used to quantify changes in pre-instrumental climate. Here we compare an 80-year-long annually resolved oxygen isotope record from Nar Gölü, Turkey, a varved lake sequence, with instrumental records of temperature, precipitation, wind speed, relative humidity and calculated values of evaporation, all of which are known to be possible controls on lake oxygen isotope systems. Significant relationships are found between the isotope record and summer temperatures and evaporation suggesting these are dominant controls on the isotope hydrology of this non-outlet lake. Modelling the stable isotope hydrology of the lake system allows these relationships to be tested independently. We show that the isotope record follows the same trends in the temperature and evaporation records but that, even when combined, these two climatic factors cannot fully explain the magnitude of change observed in the isotope record. The models show the lake system is much less sensitive to changes in evaporation and temperature than the climate calibration suggests. Additional factors, including changes in the amount of precipitation, are required to amplify the isotope change. It is concluded that proxy-climate calibrations may incorrectly estimate the amplitude of past changes in individual climate parameters, unless validated independently.  相似文献   

11.
We report oxygen isotope data from a 108-yr (1885–1993) sequence with annual laminae of bio-induced authigenic calcite in a frozen core from Baldeggersee, a small lake in Central Switzerland. These isotope results provide proxy data on the isotopic composition of past precipitation in the Baldeggersee catchment region and are quantitatively compared with instrumental climate data (i.e. mean annual air temperature and atmospheric circulation pattern indices) to evaluate climatic controls on oxygen isotopes in precipitation.Monitoring the isotope hydrology of Baldeggersee demonstrates that the oxygen isotopic composition of the lake water is controlled by the isotopic composition of local atmospheric precipitation (18Op) and that the isotopic signal of precipitation is preserved, albeit damped, in the lake calcite oxygen isotope record (18Oc). Comparison of the calcite oxygen isotope proxy for 18Op in the catchment with historical mean annual air temperature measurements from Bern, Switzerland confirms that authigenic calcite reliably records past annual air temperature in the region. This 18Oc/temperature relationship is calculated to be 0.39/°C for the period 1900–1960, based on an isotope mass-balance model for Baldeggersee. An exception is a 0.8 anomalous negative shift in calcite 18O values since the 1960s. Possible explanations for this recent 18Oc shift, as it is not related to mean annual air temperature, include changes in 18Op due to synoptic circulation patterns. In particular, the 0.8 negative shift coincides with a trend towards a more dominant North Atlantic Oscillation (NAO) index. This circulation pattern would tend to bring more isotopically more negative winter precipitation to the region and could account for the 0.8 offset in 18Oc data.  相似文献   

12.
We present results from multiple stable isotope analyses (δ18O of chironomid larval head capsules, chironomid adult thoraxes and other insect remains and δD, δ13C, δ15N of total organic matter—TOM) of a lake sediment core (04-SVID-03) taken from Stora Vidarvatn in northeastern Iceland to reconstruct past environmental, limnological and δ18O of past lake water changes during the Holocene. Core 04-SVID-03 represents a ∼12,000 cal. yrs BP to present record. Large magnitude changes in δ18O occurred during the Holocene at the site. Downcore shifts in δ18O of chironomids did not correlate with measurements of the δ13C and δ15N of chironomid head capsules, implying that the δ18O changes were not primarily driven by changes in chironomid diet during the Holocene. The δD of TOM provided a proxy of relative lake-water δD changes at the site and also showed large magnitude changes during the record. This approach was supported by analyses of a modern training set where δDTOM analyses were conducted using surface sediments from a suite of freshwater lakes over a large latitudinal gradient. The magnitude of changes in both the δ18O and δD and the relatively negative δ18O values throughout much of the core suggest that the proxies represent more paleoenvironmental information than solely temperature. Additional possible influences on lake-water isotopic composition are discussed, including changes in the seasonality of precipitation, in the patterns of air masses supplying precipitation to Iceland and in the dominant mode of the North Atlantic Oscillation.  相似文献   

13.
Environmental change in many tropical, alpine habitats remains poorly resolved due to an absence of proximate and sustained observations. In the Rwenzori Mountains of East Africa, glaciers have receded rapidly over the last century, and here we assess the impact of this recession through palaeolimnological analyses of a 45 cm sediment core (Buju3) from Lake Bujuku which is closest to the ice-fields and partly supplied by melt water in-flows. 210Pb and 137Cs suggest that Buju3 has an average sedimentation rate of 2.9 mm year−1 and the base of the core can be dated to 1864 ± 20 years. Contemporary diatom taxa found in the lake are dominated by Tabellaria flocculosa and Synedra spp., but also include Achnanthes minutissima and Fragilaria pinnata. However, the diatom flora for Buju3 is less diverse and dominated by small, tychoplanktonic species of Fragilaria. Over the period associated with glacial recession, organic carbon isotope analysis (δ13C) suggests a small but distinct increase in within-lake productivity, which increases in rate since the mid 1970s up to the present day, in line with a shift towards increased algal productivity (as highlighted by C/N ratios). However, the diatom and pollen records appear rather insensitive to changes in glacier recession since the late 19th century.  相似文献   

14.
Climate records during the last millennium are essential in placing recent anthropogenic-induced climate change into the context of natural climatic variability. However, detailed records are still sparse in Alaska, and these records would help elucidate climate patterns and possible forcing mechanisms. Here we present a multiple-proxy sedimentary record from Kepler Lake in south-central Alaska to reconstruct climatic and environmental changes over the last 800?years. Two short cores (85 and 101?cm long) from this groundwater-fed marl lake provide a detailed stable isotope and sediment lithological record with chronology based on four AMS 14C dates on terrestrial macrofossils and 210Pb analysis. The ??18O values of inorganic calcite (CaCO3) range from ?17.0 to ?15.7???, with the highest values during the period of 1450?C1850 AD, coeval with the well-documented Little Ice Age (LIA) cold interval in Alaska. The high ??18O values during the cold LIA are interpreted as reflecting shifts in atmospheric circulation. A weakening of the wintertime Aleutian low pressure system residing over the Gulf of Alaska during the LIA would have resulted in 18O-enriched winter precipitation as well as a colder and possibly drier winter climate in south-central Alaska. Also, elevated calcite contents of >80?% during the LIA reflect a lowering of lake level and/or enhanced seasonality (warmer summer and colder winter), as calcite precipitation in freshwater lakes is primarily a function of peak summer temperature and water depth. This interpretation is also supported by high ??13C values, likely reflecting high aquatic productivity or increased residence times of the lake water during lower lake levels. The lower lake levels and warmer summers would have increased evaporative enrichment in 18O, also contributing to the high ??18O values during the LIA. Our results indicate that changes in atmospheric circulation were an important component of climate change during the last millennium, exerting strong influence on regional climate in Alaska and the Arctic.  相似文献   

15.
The Konya plain in south central Anatolia, Turkey, which is now largely dry, was occupied around the time of the Last Glacial Maximum by a fresh-oligosaline lake covering more than 4000 km2. Sediment cores from three residual water bodies (Pinarbai, Akgöl and Süleymanhaci) within the larger Pleistocene lake basin, have been analysed using a multidisciplinary approach. The sediment sequences are dated as spanning the last 50 Ka years, although breaks in sedimentation mean that there is only partial chronological overlap between them. Carbon and oxygen isotope analyses on lacustrine carbonate from the three cores give contrasting isotope profiles which reflect the different ages and independent hydrological behaviour of different sub-basins through the late Quaternary. Distinguishing changes that are regional from local effects is aided by modern isotope hydrology studies and by comparing the carbonate 13C and 18O values to diatom and other analyses undertaken on the same cores.  相似文献   

16.
Saline lake deposits are arguably the best source of mid- to low-latitude terrestrial paleoclimate data. Alternating clastic sediments and evaporites of different chemical composition have long been recognized as sensitive records of changes in inflow and aridity related to a variety of climate parameters. Several sources of paleotemperature information from a halite-bearing saline lake deposit are described here – pseudomorphs of a cold-temperature evaporite mineral, homogenization temperatures of fluid inclusions in halite, and stable-isotope compositions of fluid inclusions in halite. Examples of these paleoclimate data come from analysis of the lower half of a 185-m core drilled in Pleistocene saline lake deposits at Death Valley, California. Daily and seasonal temperature variations in saline lake waters create conditions for the appearance and disappearance of temperature-dependent mineral phases. In the Death Valley core, hexagonal-shaped halite crystals, probable pseudomorphs of the cold-temperature hydrous mineral, hydrohalite (NaCl2H2O), provide evidence of brine temperatures below about 0 °C. Homogenization temperatures of fluid inclusions in primary halite offer an actual (not proxy) record of surface-brine temperatures. Samples with primary fluid-inclusion textures are carefully selected and handled, and data are collected from single-phase aqueous-brine inclusions chilled to nucleate vapor bubbles. Temperature variations are observable at scales of individual halite crystals (hours to days), single halite beds (weeks to months or years), and multiples of beds to entire facies (hundreds to tens of thousands of years). A 18O/D stable isotope record from the minute quantities of brines in fluid inclusions in halite is accessible using a method recently developed at the University of Calgary. The stable isotope record from the Death Valley core, a complex response to climate variables including temperature, humidity, storm patterns or seasons, and inflow sources, compliments and expands the interpretation emerging from the stratigraphy and homogenization temperatures.  相似文献   

17.
Carbon and oxygen isotope ratios of bone apatite were measured in 14 endothermic and ectothermic vertebrates native to the Chihuahuan Desert and collected in June and July of 1999 and 2000. The δ8O values of most reptiles were very high, up to 44‰ (standard mean ocean water (SMOW), some of the highestδ18 O values ever measured for an animal. The δ18O values of rodents and birds were lower (32±5‰ vSMOW), and the earless lizard Holbrookia maculata were the lowest of all species analysed (25‰). Omnivorous grasshopper mice (Onychomys torridus) had lower δ18O values than granivorous rodents. Results from oxygen analysis likely reflect variation in diet and body water flux differences between endotherms and ectotherms. Carbon isotope analysis revealed a dramatic shift in diet from C3 plants in 1999 to C4 plants in 2000 in most rodents and birds. Kangaroo rats and reptiles did not change, having a constantδ13 C value indicative of a C3-based diet in both years. This suggests reliance on winter annual plant seed caches for kangaroo rats, but not other rodents. The carbon isotope data can be explained in terms of seasonal differences within and between years in the timing and intensity of the seasonal rainfall events, and the productivity of summer and winter annual plants. This study illustrates that stable isotope analysis is a powerful method for tracking dietary change and feeding behavior in desert vertebrates.  相似文献   

18.
Stratigraphic shifts in the oxygen isotopic (18O) and trace element (Mg and Sr) composition of biogenic carbonate from tropical lake sediment cores are often interpreted as a proxy record of the changing relation between evaporation and precipitation (E/P). Holocene 18O and Mg and Sr records from Lakes Salpetén and Petén Itzá, Guatemala were apparently affected by drainage basin vegetation changes that influenced watershed hydrology, thereby confounding paleoclimatic interpretations. Oxygen isotope values and trace element concentrations in the two lowland lakes were greatest between ~ 9000 and 6800 14C-yr BP, suggesting relatively high E/P, but pollen data indicate moist conditions and extensive forest cover in the early Holocene. The discrepancy between pollen- and geochemically-inferred climate conditions may be reconciled if the high early Holocene 18O and trace element values were controlled principally by low surface runoff and groundwater flow to the lake, rather than high E/P. Dense forest cover in the early Holocene would have increased evapotranspiration and soil moisture storage, thereby reducing delivery of meteoric water to the lakes. Carbonate 18O and Mg and Sr decreased between 7200 and 3500 14C-yr BP in Lake Salpetén and between 6800 and 5000 14C-yr BP in Lake Petén Itzá. This decline coincided with palynologically documented forest loss that may have led to increased surface and groundwater flow to the lakes. In Lake Salpetén, minimum 18O values (i.e., high lake levels) occurred between 3500 and 1800 14C-yr BP. Relatively high lake levels were confirmed by 14C-dated aquatic gastropods from subaerial soil profiles ~ 1.0–7.5 m above present lake stage. High lake levels were a consequence of lower E/P and/or greater surface runoff and groundwater inflow caused by human-induced deforestation.  相似文献   

19.
Oxygen- and carbon-isotopic signatures of benthic ostracodes from lake sediments from climate sensitive regions in the Alpine region, Central Europe, the north-central USA, the Chilean Altiplano and Patagonia, Argentina, are used to characterize lake system processes and to reconstruct climate patterns of the past 16,000 years. The case studies provide examples that highlight different aspects of the broad application of isotope stratigraphies, and provide keys for the interpretation of complex lacustrine records.The integration of stable-isotope stratigraphy, sedimentology, and ecological information from ostracode assemblages is a new tool that acquires climate information from the indirect views of climate series provided by lake sediments. This tool (1) identifies lake system characteristics, (2) confines which isotopic signatures are controlled by which processes in the lake system and/or in the catchment, and (3) defines which signatures are ultimately controlled by climate change. If sudden shifts in the isotopic composition occur concomitantly with changes between sedimentological units, then the isotopes reflect first of all changes in catchment hydrology that may be ultimately controlled by climate. Also, if ostracode 18O and 13C values show the same timing and direction of shifts, then this indicates a major change in the hydrological budget of the lake.The case studies presented here show that coupled isotopic signatures may be used to track hydrological changes related to meltwater and deglaciation, shifting rivers and ground water sources, and changes in precipitation mechanisms and patterns. Values of 18O from large lakes with short water residence time, low evaporation rates and homothermic bottom waters provide records of past temperatures of precipitation. The 13C values reflect changes in the ratio of C3:C4 plants in the catchment. They indicate shifts in modes of organic decay in the surface sediments that can be linked to a change in hydrodynamics within a lake. The 13C values also allow detection of the input of volcanically charged ground waters providing large quantities of 14C-free CO2 that hinders accurate 14C chronology. General climate trends for the sites in the Americas indicate a dry mid-Holocene punctuated by moist spells, and show a general increase in moisture during the past approximately 4000 years, interrupted by recurring droughts. This hints at an interhemispheric connection and a common driving mechanism.Environmental isotopes from high-resolution lake sediments thus provide an ideal tool to identify and characterize the regional impact and magnitude of global climate change. This tool contributes to a better understanding of regional climate change and its driving mechanisms and thus provides the type of information needed to improve climate models. Environmental isotopes provide more information than just moisture balance and airmass history if they are integrated with the detailed sedimentological and ostracode ecological evidence, and understanding for the component system. Thus environmental isotopes serve to a better understanding of the climate signal archived in lake records and represent an essential contribution to Global Change research and Earth System Science.  相似文献   

20.
We present a study of the spatial distribution of δ18O and δD values of lake and river waters from 144 locations in Ireland. Before we can gain a better understanding of paleoclimate records derived from lacustrine carbonate minerals we must understand mechanisms that produce variation in isotope values of modern surface waters. The focus of this study is to provide insight into the behavior of lakes and rivers in Ireland, including source, recycling and loss through evapotranspiration. The short duration of sampling in this project provides a snapshot of modern isotope variability to be applied towards long-term climate change in Ireland and provides a basis of comparison for other proxy records.Electronic supplementary material to this article is available at and accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号