首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 515 毫秒
1.
本文首次利用解析法有效快速估计了将来GRACE(Gravity Recovery and Climate Experiment) Follow-On地球重力场的精度. 第一,基于功率谱原理分别建立了新的GRACE Follow-On卫星激光干涉星间测量系统星间速度、GPS接收机轨道位置和轨道速度以及加速度计非保守力误差影响累计大地水准面的单独和联合解析误差模型. 第二,利用提出的GRACE卫星关键载荷匹配精度指标和美国喷气推进实验室(JPL)公布的GRACE Level 1B实测精度指标的一致性,以及估计的GRACE累计大地水准面精度和德国波兹坦地学研究中心(GFZ)公布的EIGEN-GRACE02S地球重力场模型实测精度的符合性,验证了本文建立的解析误差模型是可靠的. 第三,论证了GRACE Follow-On卫星不同关键载荷匹配精度指标和轨道高度对地球重力场精度的影响. 在360阶处,利用轨道高度250 km、星间距离50 km、星间速度误差1×10-9m/s、轨道位置误差3×10-5m、轨道速度误差3×10-8m/s和非保守力误差3×10-13m/s2,基于联合解析误差模型估计累计大地水准面的精度为1.231×10-1 m. 本文的研究不仅为当前GRACE和将来GRACE Follow-On地球重力场精度的有效快速确定提供了理论基础和计算保证,同时对国际将来GRAIL(Gravity Recovery and Interior Laboratory)月球卫星重力测量计划的成功实施具有重要的参考意义.  相似文献   

2.
首先对美国喷气推进实验室(JPL)公布的2007-06-01~2007-12-31时间段内的GRACE Level 1B卫星GPS轨道位置和速度、K波段系统星间速度、加速度计非保守力以及恒星敏感器姿态实测数据对应进行了轨道拼接、粗差探测、线性内插、重新标定、坐标转换、误差分析等有效处理;其次,基于改进的能量守恒法恢复了120阶GRACE地球重力场,在120阶处累计大地水准面精度为25.313 cm;最后,检验了本文地球重力场模型IGG-GRACE的可靠性,同时分析了IGG-GRACE解算精度在低频部分略优于德国波兹坦地学研究中心(GFZ)公布的EIGEN-GRACE02S地球重力场模型,而在中高频部分略低的原因.  相似文献   

3.
高精度高程基准重力位的确定往往依赖于高精度全球重力场模型,其对全球和区域高程基准的高精度统一非常关键,GRACE、GOCE卫星重力计划极大地提高了全球重力场模型中长波的精度.本文首先对GRACE/GOCE卫星重力场模型的内符合和外符合精度进行讨论分析,结果说明卫星重力模型的截断误差影响可达到分米级水平,在确定高程基准重力位时该影响不可忽略.利用EGM2008模型扩展GRACE/GOCE卫星重力场模型至2190阶,可有效减弱卫星重力模型的截断误差影响,但不同模型扩展时的最优拼接阶次不同,其中DIR-1、DIR-5模型对应的最优拼接阶次分别为180阶和220阶,以GPS水准数据检验,扩展模型在中国区域的精度均优于18cm.最后,基于最优拼接阶次获得的扩展重力场模型对我国1985高程基准重力位进行了估计,DIR-5和TIM-5模型对应数值分别为62636853.47m~2·s~(-2)和62636853.49m~2·s~(-2),精度均为1.51m~2·s~(-2);发现在中国区域模型大地水准面与GPS/水准数据的差值存在微弱的系统性倾斜,东西向倾斜约为9cm,南北向倾斜约为1.4cm,考虑倾斜改正后基于DIR-5和TIM-5模型估计我国1985高程基准重力位的精度提高了0.16m~2·s~(-2).  相似文献   

4.
基于GRACE卫星重力数据确定地球重力场模型WHU-GM-05   总被引:14,自引:3,他引:11       下载免费PDF全文
基于卫星轨道运动的能量积分方程,可导出利用卫星跟踪卫星数据求解地球重力场的实用公式.本文在Jekeli给出的公式基础上导出了基于能量守恒方程利用两颗低-低卫星跟踪的扰动位差求解重力位系数的严密关系式.基于两颗GRACE卫星的观测数据,采用本文导出的严密能量积分方法求解得到120阶的GRACE地球重力场模型,命名为WHU-GM-05;将WHU-GM-05模型与国际上同类重力场模型EIGEN-GRACE系列和GGM02S分别在阶方差和大地水准面高等方面作了比较,并与美国和中国的部分地区GPS水准观测值进行了精度分析.结果表明基于本文推导的严密双星能量守恒方程得到的WHU-GM-05重力场模型精度与国际上同类重力场模型的精度相当.  相似文献   

5.
基于新型残余星间速度法(RIRM)反演了120阶GRACE Follow-On地球重力场. 第一,由于GPS定轨精度相对较低,通过将激光干涉测距仪的高精度残余星间速度(测量精度10-7 m·s-1)引入残余轨道速度差分矢量的视线分量构建了新型RIRM观测方程. 第二,基于2点、4点、6点和8点RIRM公式对比论证了最优的插值点数. 如果相关系数和采样间隔一定,随着插值点数的增加,卫星观测值的信号量被有效加强,而卫星观测值的误差量也同时增加. 因此,6点RIRM公式是提高下一代地球重力场精度的较优选择. 第三,相关系数对地球重力场精度的影响在不同频段表现为不同特性. 随着相关系数的逐渐增大,地球长波重力场精度逐渐降低,而地球中长波重力场精度逐渐升高. 第四,基于6点RIRM公式,通过30天观测数据和采样间隔5 s,分别利用星间速度和残余星间速度观测值,在120阶次处反演下一代GRACE Follow-On累计大地水准面精度为1.638×10-3 m和1.396×10-3 m. 研究结果表明:(1)残余星间速度观测量较星间速度对地球重力场反演精度更敏感;(2)GRACE Follow-On地球重力场精度较GRACE至少高10倍.  相似文献   

6.
本文基于新型能量插值法,利用美国喷气推进实验室(JPL)公布的2008年的GRACE-Level-1B实测数据,反演了120阶GRACE地球重力场.首先,由于GPS轨道测量精度相对较低,通过将K波段测距仪高精度的星间距离观测量插值引入双星动能差中,进而建立了新型能量插值卫星观测方程.其次,详细对比分析了2点、4点、6点和8点能量插值观测方程对地球重力场反演精度的影响.研究结果表明:基于最优的信噪比,6点能量插值公式有利于提高120阶GRACE地球重力场的反演精度.最后,基于美国、欧洲和澳大利亚的GPS/水准观测数据检验了本文新建立的WHIGG-GEGM03S地球重力场模型的正确性和有效性.  相似文献   

7.
海潮对卫星重力场恢复的影响   总被引:9,自引:2,他引:7       下载免费PDF全文
本文讨论了海潮对卫星重力测量的影响问题. 首先介绍了海潮对卫星重力测量影响的基本理论;采用FES02和TPXO6海潮模型计算了海潮负荷对卫星重力结果前60阶的影响;并用两个模型之间的差异作为海潮模型精度的估计量,据此计算了海潮模型误差对卫星重力结果的影响. 与GRACE恢复的重力场精度的比较说明:海潮对重力场40阶以下的影响都超过了目前重力场恢复精度;尽管由于卫星测高技术的发展,海潮模型的精度有了很大的提高,但目前的全球海潮模型用于GRACE重力场恢复的前12阶的改正还是不够精确. 另外,我们也利用中国东海和南海潮汐资料以及FES02海潮模型讨论了中国近海潮汐效应对GRACE观测的影响. 结果说明该影响与海潮模型的误差相当. 这反映了当前海潮模型的不确定度,因此通过结合全球验潮站资料有望提高海潮对卫星重力测量的改正精度.  相似文献   

8.
由于GRACE Follow-On双星系统等效于基线长为星间距离的一维水平重力梯度仪,因此本文基于GRACE Follow-On卫星重力梯度法开展了精确和快速反演下一代地球重力场的可行性论证研究. 研究结果表明:第一,基于GRACE Follow-On卫星重力梯度法(GFO-SGGM),利用卫星轨道参数(轨道高度250 km、星间距离50 km、轨道倾角89°、轨道离心率0.001)、关键载荷测量精度(星间距离10-6 m、星间速度10-7 m·s-1、星间加速度10-10 m·s-2、轨道位置10-3 m、轨道速度10-6 m·s-1、非保守力10-11 m·s-2)、观测时间30天和采样间隔10 s反演了120阶地球重力场,在120阶处累计大地水准面精度为9.331×10-4 m. 第二,在120阶内,利用将来GRACE Follow-On双星反演地球重力场精度较现有GRACE双星平均提高61倍,因此GRACE Follow-On卫星重力梯度法是进一步提高地球重力场反演精度的优选方法. 第三,下一代GRACE Follow-On计划较当前GRACE计划的优点如下:轨道高度更低(200~300 km)、载荷精度更高(10-7 ~10-9 m·s-1)和星间距离更短(50~100 km).  相似文献   

9.
基于新型残余星间速度法(RIRM)反演了120阶GRACE Follow-On地球重力场.第一,由于GPS定轨精度相对较低,通过将激光干涉测距仪的高精度残余星间速度(测量精度10-7 m·s-1)引入残余轨道速度差分矢量的视线分量构建了新型RIRM观测方程.第二,基于2点、4点、6点和8点RIRM公式对比论证了最优的插值点数.如果相关系数和采样间隔一定,随着插值点数的增加,卫星观测值的信号量被有效加强,而卫星观测值的误差量也同时增加.因此,6点RIRM公式是提高下一代地球重力场精度的较优选择.第三,相关系数对地球重力场精度的影响在不同频段表现为不同特性.随着相关系数的逐渐增大,地球长波重力场精度逐渐降低,而地球中长波重力场精度逐渐升高.第四,基于6点RIRM公式,通过30天观测数据和采样间隔5s,分别利用星间速度和残余星间速度观测值,在120阶次处反演下一代GRACE Follow-On累计大地水准面精度为1.638×10-3 m和1.396×10-3 m.研究结果表明:(1)残余星间速度观测量较星间速度对地球重力场反演精度更敏感;(2)GRACE FollowOn地球重力场精度较GRACE至少高10倍.  相似文献   

10.
本文详细介绍了海潮负荷效应对卫星重力测量影响的基本理论,并采用不同分辨率的FES2004、TPXO7.2和GOT00全球海潮模型计算了海潮负荷对卫星重力结果前60阶的影响;并用各个模型之间的差异作为海潮模型精度的估计量,计算了海潮模型误差对卫星重力结果的影响,与GRACE恢复的重力场精度的比较说明:海潮负荷效应主要影响卫星重力观测结果的低阶系数,35阶以下的影响都超过了目前重力场恢复精度;尽管由于卫星测高技术的发展,全球海潮模型的分辨率及精度均得到很大提高,但目前的全球海潮模型用于GRACE重力场恢复的前12阶的改正还是不够精确.受近海地区特殊海岸线及复杂海底地形的影响,整体精度仍得不到提高,利用高精度高分辨率的中国近海模型对不同分辨率全球海潮模型进行局部精化,进一步提高了全球海潮模型的整体精度,同时改善了卫星重力场恢复中的海潮负荷改正效果.  相似文献   

11.
本文利用改进的能量守恒法开展了GRACE星体和星载加速度计检验质量的不同质心调整精度影响地球重力场精度的模拟研究论证. 结果表明:第一,在120阶处,当质心调整精度设计为0 m,恢复累计大地水准面精度为17.616 cm;当质心调整精度分别设计为5×10-5 m、1×10-4 m和5×10-4 m时,恢复精度各自降低至18.106 cm、19.033 cm和27.329 cm. 第二,以德国GFZ公布的EIGEN-GRACE02S地球重力场模型的实测累计大地水准面精度为标准,当质心调整精度设计为(5~10)×10-5 m时,其和K波段星间测量系统、GPS接收机、SuperSTAR加速度计、恒星敏感器等GRACE核心载荷的精度指标相匹配,对地球重力场恢复精度的影响较小,因此建议我国将来研制的首颗重力卫星的星体和星载加速度计检验质量的质心调整精度设计为(5~10)×10-5 m较优.  相似文献   

12.
第一,由于重力卫星编队轨道的稳定性设计是建立下一代高精度和高空间分辨率地球重力场模型的关键,因此为保证下一代四星转轮式编队系统的稳定性,轨道根数的最优设计如下:(1)轨道半长轴a、轨道偏心率e、轨道倾角i和升交点赤经Ω保持不变;(2)每对卫星的近地点幅角ω和平近点角M分别相差180°;(3)初始近地点辐角ω设置于赤道处,初始平近点角M设计于极点处;(4)卫星编队系统椭圆轨道的半长轴和半短轴之比为2:1. 第二,基于下一代四星转轮式编队系统,利用星间速度插值法,通过相关系数(激光干涉测量系统的星间速度0.85、GPS接收机的轨道位置和轨道速度0.95、星载加速度计的非保守力0.90)、观测时间30天和采样间隔10 s,反演了120阶FSCF-1/2/3/4(Four-Satellite Cartwheel Formation)地球重力场,在120阶处累计大地水准面精度为1.162×10-4 m,较目前GRACE地球重力场精度至少提高一个数量级. 第三,下一代四星转轮式编队系统具有低轨道高度、高精度测量、全张量观测、弱混频效应和强时变信号的优点.  相似文献   

13.
本文利用改进的能量守恒法开展了GRACE星载加速度计与K波段星间测速仪及GPS接收机精度指标之间的匹配模拟论证. 结果表明:(1)采用GRACE公布的其他载荷精度指标,当加速度计分辨率指标设计为ACCX=(1~10)×10-9m/s2, ACCY,Z=(1~10)×10-10m/s2时,在120阶处恢复累计大地水准面的精度为19~80 cm,恢复1.5°×1.5°累计重力异常的精度为0.3~1.3 mGal;(2)建议我国将来卫星重力测量计划中星载加速度计三轴分辨率指标设计为ACCX=(1~5)×1010-9m/s2,ACCY,Z=(1~5)×10-10m/s2较合适,与GRACE其他载荷精度指标基本匹配.  相似文献   

14.
为了研究卫星重力梯度技术对中高频地球重力场反演精度的影响,本文基于时空域混合法,利用Kaula正则化反演了250阶GOCE地球重力场.模拟结果表明:第一,时空域混合法是精确和快速求解高阶地球重力场的有效方法;第二,Kaula正则化是降低正规阵病态性的重要方法;第三,基于改进的预处理共轭梯度迭代法可快速求解大型线性方程组...  相似文献   

15.
基于卫星轨道扰动理论的重力反演算法   总被引:1,自引:0,他引:1       下载免费PDF全文
为了更充分利用低轨重力卫星的高精度观测数据,根据卫星轨道的扰动理论,导出了应用卫星轨道与星间距离观测值联合反演地球重力场模型的算法.该算法的实质是将牛顿运动方程在卫星轨道处进行展开,转化为第二类Volterra积分方程,并采用基于移动窗口的9次多项式内插公式进行数值求解.给出了该算法的观测方程,用QR分解法消去局部参数矩阵,最后采用预条件共轭梯度法求解法方程.利用GRACE卫星2008-01-01~2008-08-01时间段内的轨道及星间距离观测数据,解算了120阶次的地球重力场模型SWJTU-GRACE01S,该模型在120阶处的阶方差为1.58×10-8,大地水准面差距累计误差为22.29 cm,与美国GPS水准网比较的标准差为0.793 m,结果表明:SWJTU-GRACE01S模型精度介于EIGEN-GRACE01S与EIGEN-GRACE02S模型之间,从而验证了该算法的有效性.  相似文献   

16.
由于当前GRACE(Gravity Recovery and Climate Experiment)串行式编队存在"南北向条带误差"等缺陷,因此本文基于星间速度插值法开展了利用下一代三向车轮双星编队ACR(Along-Cross-Radial)-Cartwheel提高地球重力场空间分辨率的可行性研究论证.第一,采用GRACE卫星轨道参数和关键载荷精度,利用三向车轮双星编队ACR-Cartwheel-A/B反演了120阶地球重力场.结果表明:基于ACR-Cartwheel-A/B双星编队反演地球重力场的模拟精度较德国波茨坦地学研究中心(GFZ)公布的EIGEN-GRACE02S地球重力场模型的实测精度平均提高2.6倍,从而检验了基于下一代三向车轮双星编队ACR-Cartwheel-A/B反演地球重力场精度优于当前GRACE串行式双星编队的可行性.第二,通过星间速度插值法,采用卫星轨道参数(初始轨道高度350km、平均星间距离100km、初始轨道倾角89°、初始轨道离心率0.0046)、卫星关键载荷精度指标(星间速度10-7 m·s-1、轨道位置10-3 m、轨道速度10-6 m·s-1、非保守力10-11 m·s-2)、观测时间30天和采样间隔10s,基于经向车轮双星编队Lo-AR(Longitudinal-Along-Radial)-Cartwheel-A/B、纬向车轮双星编队La-AR(Latitudinal-Along-Radial)-Cartwheel-A/B和三向车轮双星编队ACR-Cartwheel-A/B,分别反演了120阶地球重力场;在120阶处,累计大地水准面精度分别为5.115×10-4 m、4.923×10-4 m和3.488×10-4 m.结果表明:(1)由于La-AR-Cartwheel-A/B编队的轨道稳定性优于Lo-AR-Cartwheel-A/B编队,因此基于La-AR-Cartwheel-A/B编队反演重力场精度高于Lo-AR-CartwheelA/B编队;(2)由于ACR-Cartwheel-A/B编队可以同时获得轨向、垂向和径向的重力场信息,卫星观测数据具有各向同性优点,因此ACR-Cartwheel-A/B编队是建立下一代高精度和高空间分辨地球重力场模型的优化选择.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号