首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
物理过程参数化方案对中尺度暴雨数值模拟影响的研究   总被引:43,自引:5,他引:43  
陈静  薛纪善  颜宏 《气象学报》2003,61(2):203-218
利用中尺度非静力MM 5模式和中国 2 0 0 1年 8月的 4个暴雨个例 ,研究了非绝热物理过程对中国暴雨动力和热力场预报的影响 ,深入分析了对流参数化方案在中尺度暴雨预报中的作用 ,讨论了利用模式扰动方法开展中国暴雨集合预报的可行性。结果表明 ,在短期数值预报中 ,非绝热物理过程对高度场预报影响较小 ,但边界层方案和对流参数化方案对产生暴雨的 3个基本条件即水汽通量散度、垂直速度、不稳定层结的影响很明显。不同对流参数化方案所预报的中尺度热力、动力场离差的结构特征与所预报降水的离差特征相似 ,且主要是在模式积分初期迅速增加 ,其后即趋于稳定。对中国热力场较均匀的暴雨过程 ,可以通过扰动模式的边界层和对流参数化方案 ,构造集合预报模式  相似文献   

2.
利用WRF v3.2.1模式,采用其中5种云微物理参数化方案对2007—2011年的东亚夏季风气候进行了模拟研究,结果显示:5种方案均能较好地模拟出我国东部地区夏季降水的基本分布,但各方案对降水中心强度及其分布的模拟仍然存在明显的差异,总体来看,WDM6方案模拟的东亚夏季降水强度明显比其他4种方案大,而Morrison方案对降水的模拟总体效果好于其他4种方案。从云微物理角度来看,5种云微物理参数化方案均能比较合理地描述云水、雨水及冰相粒子的空间分布状态。其中,WSM3方案计算的云水、雨水质量混合比明显比其它方案大,WDM6方案计算的云水质量混合比则较小,而Morrison方案计算的雨水质量混合比较小,再者该方案冷云中霰粒子浓度偏小,因而Morrison方案在粤闽两省的夏季日降水量模拟比其他方案小,从而与TRMM观测结果更为接近。采用5种云微物理参数化方案均能较好地模拟出春、夏季西太平洋副高、雨带和大气水凝物在东亚地区的季节进退过程。5种方案模拟的雨水粒子浓度分布和中纬度雨带在南北进退过程中的位置较为吻合,两者均跟随西太平洋副高北进、南退。对于中低纬度存在的大降水中心来说,其位置少动,并且与该地区存在的的冰晶、雪晶粒子的高值中心具有较好的对应关系,说明在中低纬度地区,与热带对流相伴随的较高层次的冰相粒子数的浓度是决定降水强弱的关键因素。  相似文献   

3.
WRF模式边界层参数化方案对西南低涡模拟的影响   总被引:4,自引:3,他引:1  
刘晓冉  李国平 《气象科学》2014,34(2):162-170
应用中尺度数值模式WRF(V3.3版本)选用4种行星边界层参数化方案(YSU、ACM2、MYJ和NOPBL)对2011年6月16—18日造成强降水的西南低涡过程进行敏感性试验,对比分析不同边界层参数化方案对西南低涡过程模拟的影响。模拟结果表明:4种边界层参数化方案均能较好地模拟出西南低涡以及暴雨带的东移,其中YSU方案对低涡路径、强度及降水的总体模拟效果最好。YSU和ACM2方案,与MYJ和NOPBL方案相比,模拟的低涡中心区域正涡度柱和垂直上升运动较强,达到的垂直高度更高。造成这种差异的主要原因是对边界层上的夹卷效应以及垂直混合作用考虑的不同。不考虑边界层作用的NOPBL方案模拟的地表风速异常偏大,造成地表热通量明显偏强、边界层高度偏高。YSU、ACM2和MYJ 3种方案模拟的边界层高度和热通量的日变化比较一致,夜间基本维持少变,白天变化大,其中MYJ模拟的边界层高度和热通量较大,ACM2模拟的较小。地表风速是造成热量输送以及边界层高度模拟差异的主要因子。  相似文献   

4.
利用WRF(ARW)V3.6模式模拟了2010年10月5—6日发生在海南的一次秋季大暴雨过程,从降水、风场、反射率和云结构等方面分析WRF模式中3个积云参数化方案(KF,BMJ,Tied Tke)和4个微物理参数化方案(Lin et al,WSM5,WSM6,Thompson)对海南岛秋季暴雨模拟的影响。结果表明:此次秋季暴雨过程模拟对不同的积云参数化方案和微物理参数化方案组合是比较敏感的,不同的积云参数化方案和微物理参数化方案组合通过调整温湿场结构,从而影响模拟降水的时间、强度和落区。对比发现,Thompson微物理方案的组合对于降水量级的模拟更为敏感,能较合理的描述暴雨发生发展过程中的水汽输送、热力和动力条件,并通过影响雨水混合比和云水混合比的高度和大小从而影响降水。其中Thompson微物理方案和Tied Tke积云方案的组合能较好的模拟出本次暴雨过程的特征,与实测最为接近,该组合模拟的最大垂直速度和反射率区与最大云水混合比对应。另外,积云方案和微物理方案的选择不影响水汽混合比的模拟。  相似文献   

5.
本文使用中尺度数值模式WRFV3.4中的8种不同云微物理过程参数化方案,模拟2010年5月6~7日华南一次暴雨事件,探讨不同云微物理方案对华南暴雨模拟的影响。结果表明:不同云微物理方案对不同量级降水模拟效果总体较好。WSM3方案对小到大雨和大暴雨的模拟效果最好,对暴雨的模拟最差;WDM5方案对暴雨模拟效果最好。结合TS评分和误差分析结果,整体效果最好的是WSM5方案,最差的是Lin方案。对于同一云微物理参数化方案,不同分辨率的降水模拟结果差异不大,但同一分辨率的不同云微物理参数化方案的降水结果差异较大,这说明云微物理过程比模式分辨率对暴雨模拟的影响更大。  相似文献   

6.
利用中尺度模式WRFV3.5中常用的云微物理过程参数化方案,对河南省3次典型强天气过程进行敏感性试验。结果表明:不同微物理方案对过程降水的预报效果存在差异,随着模拟降水量级的增大,各方案之间的差异也随之增大。模拟效果相对较好的方案存在不确定性,在所选过程的模拟中没有哪种云微物理方案明显优于其他方案。相对地,WSM6类冰雹方案在所选的局地干、湿对流过程中能更合理地表现出强降水量级、范围及落区。对于"2007-07-29"卢氏暴雨过程,采用WSM6类冰雹方案的模拟效果最理想,WSM3方案模拟效果次之,Thompson和Lin方案的模拟效果最不理想。对于"2011-06-24"豫西局地强风雹过程,3种相对复杂的微物理方案模拟结果差别不大,相对地,WSM6类冰雹方案模拟效果优于其他方案的,Lin方案的模拟效果相对较差。"2006-06-25"豫西北飑线过程的模拟结果表明,各方案虽不能完美再现飑线的影响时间、范围及其结构特征,但每种方案均有其自身特点且能表现出部分细节特征。相比于WSM6类冰雹方案和Thompson方案,Lin方案模拟结果在影响时段、范围及飑线结构等方面表现得更理想。  相似文献   

7.
基于WRF(Weather Research and Forecasting)模式及其3Dvar(3-Dimentional Variational)资料同化系统,采用36、12、4 km嵌套网格进行快速更新循环同化和不同的微物理及积云对流参数化方案对比试验,对2011年5月8日鲁中一次局地大暴雨过程进行了研究。结果表明,快速更新循环同化地面观测资料是影响模式降水落区预报准确性的关键因素,不同的微物理和积云对流参数化方案主要影响降水强度预报。采用不同的微物理参数化方案和积云对流参数化方案进行降水预报对比试验表明,LIN方案和WSM6(WRF Single-Moment 6-class)微物理参数化方案对降水预报均较好,LIN方案降水预报较WSM6方案略强。4 km网格预报使用K-F (Kain-Fritsch)积云对流参数化方案或不使用积云对流参数化方案,预报的降水均较好。4 km网格使用旧的K-F积云对流参数化方案,预报的近地层大气风场偏弱,导致大气动力抬升作用偏弱,从而造成模式降水预报偏弱。  相似文献   

8.
利用WRF模式的5种云微物理方案对华西地区一次秋雨过程(2011年9月13—20日)进行了模拟,分析不同云微物理方案对华西秋雨的模拟能力,并对降水模拟差异的可能原因进行分析。结果表明:WRF模式的5种云微物理方案对华西秋雨均具有一定的模拟能力,可模拟出华西秋雨的夜雨特征,但Kessler方案模拟的降水落区偏小且降水强度偏弱,而Lin方案模拟的降水强度则偏强;相对来说,Ferrier和WSM3方案对华西秋雨主要降水过程的模拟效果较好。对比WRF模式5种不同云微物理方案对华西秋雨过程的模拟可知,各方案模拟的区域降水强度与WRF模式模拟的上升运动的强弱存在较好的一致性。  相似文献   

9.
侯瑞钦  程麟生 《气象科技》2007,35(4):458-463
利用MM5模式,选用4种积云对流参数化方案对2002年7月长江流域梅雨锋暴雨过程进行数值试验,讨论了同一水平分辨率下不同参数化方案对降水特征、中尺度特征和云物理特征模拟的影响。结果表明:不同方案对强降水中心落区影响不是很大,但对降水强度有较大影响;4种方案次网格尺度和网格尺度降水对总降水贡献不同;GR和KF方案的闭合假设中考虑次网格尺度湿下沉气流,可一定程度再现一些中尺度特征;4种方案模拟的云物理量特征存在很大差别。  相似文献   

10.
不同云微物理参数化方案对舟曲"8.8"暴雨过程模拟的影响   总被引:4,自引:0,他引:4  
利用NCEP 每6h一次的1°×1°格点资料和中尺度模式WRF(V3.2),选用Kessler 方案、Lin 方案和Morrison 双参数方案等3 种云微物理参数化方案,对2010 年舟曲"8.8"特大暴雨天气进行了数值模拟试验,以分析不同参数化方案对降水特征、物理量特征和云微物理特征模拟的影响.结果表明,此次暴雨过...  相似文献   

11.
应用WRF v4.0模式五种边界层参数化方案(YSU、MYJ、MYNN2、ACM2和SH),对2016 年汛期(5~9月)在川渝盆地东部造成暴雨的所有西南涡过程进行了数值模拟,检验评估了它们对各量级降水的预报能力,并基于加密的L波段秒级探空资料对比分析了模拟与实况边界层结构的差异,结合各方案对湍流运动的算法特点探讨了其差异的原因,最后对ACM2方案进行了湍流强度调整,由此改善其对于川渝盆地边界层与西南涡降水的模拟能力。结果表明:ACM2和YSU方案TS评分表现较好,相对其它方案ACM2空报较少,这种可以根据周围环境的稳定性切换局地或非局地算法的方案更适合于盆地西南涡降水模拟,但边界层方案对西南涡降水的空报都较普遍,尤以大量级降水更明显;精细的探空资料进一步表明,所有方案模拟的白天边界层高度都偏高,湍流混合强度都偏强。通过参数调整而降低混合强度的ACM2方案,模拟的边界层温湿结构则更符合实际观测,其边界层下部温度更低、湿度更高,减少了大量级降水的空报,使盆地西南涡降水模拟有一定改善;边界层参数化方案对西南涡模拟的差别主要体现为不同的西南涡位置与降水强度,但归根到底都源于方案的局地或非局地特性、不同的混合强度这两方面原因。因此,根据不同特定区域下垫面环境与气候状况合理选择方案的特性和混合强度是准确模拟边界层结构及其降水过程的关键。  相似文献   

12.
汪晋  廖前锋  闫申  王毅  项杰 《暴雨灾害》2022,29(5):515-524

大气边界层(Atmospheric Boundary Layer,ABL)是自由大气和地球表面(陆地和海洋)的连接层,它对于降水的发生发展有重要影响。ABL高度是ABL的一个重要参数,主要应用于大气数值天气(或气候)模式中的ABL过程的参数化,获取准确的ABL高度数据对于提高数值天气预报模式、空气污染物预报模式等的预报精度具有重要作用。概述了利用常规探空资料、卫星遥感资料、气溶胶后向散射资料、全球导航卫星系统GNSS (Global Navigation Satellite System)掩星探测资料等数据估计ABL高度的主要方法及进展情况,提出在同时具有多种观测资料时如何处理ABL高度的三个基本原则,并以目前广泛应用的数值天气预报模式WRF (Weather Research and Forecasting)为例重点介绍ABL高度数据在数值天气(或气候)预报模式中的应用,对相关的发展情况进行了总结展望。

  相似文献   

13.
边界层参数化方案对暴雨数值模拟的影响   总被引:16,自引:1,他引:16  
选取2003年7月4-5日南京暴雨个例,采用非静力中尺度模式MM5进行模拟,着重研究了不同边界层参数化方案对雨量中心强度、雨区分布的影响。结果表明:对于不同的边界层参数化方案,垂直速度场、水汽通量散度场、涡度场、水平风场的散度以及θse场都表现出不同的特征;合理边界层方案的引入对预报效果有明显的改进;结合边界层和自由大气的动力、热力结构进行了综合分析,给出了边界层作用与自由大气动力、热力结构的配置情况。说明这种配置对暴雨的形成是至关重要的。  相似文献   

14.
不同参数化方案对安徽一次暴雨过程模拟的影响分析   总被引:2,自引:1,他引:2  
使用WRF v3.4模式对2012年7月12—14日安徽的一次暴雨进行模拟。保持其他参数如辐射、陆面过程等不变, 将不同微物理过程(Eta、Kessler、Lin方案)与积云参数方案(KF、BMJ、GD方案)进行组合成9个试验。将试验模拟结果与实况进行对比分析, 发现:微物理方案的选取对于降水的雨强、位置、雨区范围的模拟都有一定的影响。积云参数化方案对于降水的范围, 雨带的位置模拟也都有影响, 但对于雨强的影响不大。将各试验模拟的逐小时降水与实况进行比较, 发现试验Eta-GD和Lin-GD模拟降水日变化与实况更接近。通过TS评分、ETS评分和系统偏差分析, 表明试验Eta-GD在此次暴雨过程的降水模拟中表现最好。  相似文献   

15.
不同物理过程参数化方案对梅雨锋暴雨的敏感性试验   总被引:5,自引:0,他引:5  
以2005年7月上旬江淮流域的一次梅雨锋暴雨为研究对象,选取WRF模式中Lin和Ferrier两个微物理方案和KF、NKF、Betts-Miller-Janjic三个积云参数化方案,经过组合得到6组方案,进行两重网格嵌套模拟,对数值模拟结果进行分析比较。通过分析得出如下结论:6个方案均能模拟出降水雨带的走向、降水中心,其中Ferri-er和NKF方案及Ferrier和Betts-Miller-Janjic方案模拟的降水强度和分布与实况最接近;在模拟降水量时采用微物理方案Ferrier初始阶段效果好,采用微物理方案Lin在后期效果好;当微物理方案相同时,积云对流参数化方案的变化对垂直速度、假相当位温、相对比湿的反映敏感;粗网格采用一定的积云对流参数化后,可一定程度再现α中尺度特征。  相似文献   

16.
WRF模式中微物理和积云参数化方案的对比试验   总被引:7,自引:3,他引:7  
为了研究微物理参数化方案对珠江三角洲(简称珠三角)降水模拟的影响,利用WRF中尺度数值预报模式,在3 km模式分辨率下,在微物理方案为WSM6方案条件下,选用KF、BMJ、GD以及G3等四种积云参数化方案对2010年5月14日广东珠三角地区的一次暴雨过程进行了模拟试验。结果显示,KF方案对于降水带和降水量的模拟与实况较为一致。在积云参数化方案为KF条件下,分别选用Kessler、Lin et al、WSM 3、WSM5、Ferrier(New eta)和WSM6等6种微物理方案再次对这次暴雨过程进行模拟试验,模拟结果的对比分析表明:选用Lin et al微物理方案时,模式较好地模拟出了强降水雨带的位置和降水强度;而其他5种参数方案的模拟效果均不好,降水量明显偏小,雨带位置偏差较大;同时对低空急流、K指数和上升速度等物理量分析可知,Lin et al方案能较好地模拟出降水实况。  相似文献   

17.
马艳  陈尚  董海鹰 《暴雨灾害》2017,28(6):550-556

基于中尺度大气数值模式WRF,检验分析YSU和MYJ两种边界层参数化方案和分辨率分别为1 km(称为USGS)和500 m(称为MODIS)的两类下垫面资料对2014年5月9—12日青岛一次暴雨过程模拟的影响。分析表明, YSU和MYJ方案都能模拟出强降雨带的位置和强度,MYJ试验对大雨TS评分高达0.88,YSU对暴雨TS评分为0.65;和USGS试验相比,MODIS试验提高了暴雨的TS评分,提高率为6.2%,但对大雨仍易空报。YSU、MYJ和MODIS试验较好地模拟了2 m气温、10 m风向。YSU模拟的2 m气温准确率是降雨前优于降雨开始后,MYJ则相反;MODIS试验预报沿海地区气温偏高。和USGS相比,MODIS提高了近地面风速和风向的模拟精度。总体上,所有试验方案对所考虑气象要素的模拟,基本上是内陆站准确率高于沿海站,YSU优于MYJ,MODIS优于USGS。

  相似文献   

18.
模式的不同参数化方案会对模拟的天气和气候产生影响,但如何影响陆气耦合还不是很清楚。利用WRF 4.0模式设计了一组16种不同参数化方案组合的集合试验,对华北地区2013年夏季气候进行模拟。结果表明,不同积云对流参数化方案对模拟的降水平均态影响较大,其次是短波辐射方案,而微物理方案影响较小。进一步利用潜热通量(LH,Latent Heat flux)和土壤湿度(SM,Soil Moisture)、抬升凝结高度(LCL,Lifting Condensation Level)的相关系数R(SM,LH)R(LH,LCL)表征陆气耦合过程,评估了陆气耦合对不同参数化方案的敏感性。模式模拟的R(SM,LH)在不同区域随着平均降水、相对湿度的增加以及平均短波辐射的减少而减小,而R(LH,LCL)的变化正好相反。它们内在的物理机制类似,与气候态的干湿变化密切相关,即随着土壤湿度趋于饱和,蒸散发过程逐渐受太阳辐射的限制,陆面对大气的影响减弱。另外,陆气耦合强度受积云对流方案、微物理方案和短波辐射方案的影响而产生差别,这与不同参数化方案模拟的气候态的不同密切相关,因此本研究对于WRF 4.0模式中参数化方案特别是积云对流方案的选择同样有着重要的指导意义。  相似文献   

19.
利用新一代数值预报模式WRF耦合RUC、NOAH两个陆面过程,对2006年4月11-12日发生在江西境内的一次暴雨过程进行模拟,并对模式输出的水文平衡和能量,尤其是土壤湿度、地表径流、土壤温度等的变化进行了分析.结果显示,WRF模式耦合两个陆面过程均能模拟出此次暴雨过程的降水空间、时间分布和强度,而WRF-RUC提供了...  相似文献   

20.
应用WRF V3.6模式,对陕、晋、冀、鲁4省2013年7月12—13日的一次大范围暴雨过程,从初值、侧边界和物理过程扰动出发进行了集合预报研究。结果表明:(1)物理过程扰动对此次降水的影响最大,初值扰动在积分初期影响较大,而后逐渐减弱,而侧边界扰动随着时间积分向模拟区域中心传播并逐步增大;(2)物理过程扰动、初值扰动的集合预报分别对小雨和大雨及以上量级降水预报最优,而侧边界扰动的集合预报对中雨和暴雨及以上量级的降水预报最优;(3)从集合预报的离散度分析得出,物理过程扰动的集合预报最优,其次是侧边界扰动,初值扰动最差;(4)同时考虑3种不确定性的集合预报,总体上好于单个因子扰动的集合预报,使模式的降水预报效果得到显著改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号