首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the context of nuclear waste disposal in clay formations, laboratory experiments were performed to study at reduced scale the excavation damaged zone (EDZ) induced by the construction of galleries in the Boom clay formation. For this purpose, thick-walled hollow cylindrical samples were subjected (after recovery of in situ stress conditions) to a decrease in the inner confining pressure aiming at mimicking a gallery excavation. X-ray computed tomography (XRCT) scans of the specimens were carried out through the testing cell before and after the mechanical unloading and allowed to quantify the displacements undergone by the clay as a result of the mechanical unloading. The deformation of the hollow cylinders and the inferred extent of the damaged zone around the central hole are found to depend on the orientation of the specimen with respect to the bedding planes and show a great similarity with in situ observations around galleries and boreholes at Mol URL in the Boom clay formation. In the experiments performed on samples cored parallel to the bedding, the damaged zone is not symmetrical with respect to the hole axis and extends more in the direction parallel to the bedding. It is the same for the radial convergence of the hole walls which is larger in the direction parallel to bedding than in the perpendicular one. In contrast, a test on a sample cored perpendicularly to the bedding did not show any ovalisation of the central hole after the mechanical unloading. These observations confirm the significance of the pre-existing planes of weakness (bedding planes) in Boom clay and the need for a correct consideration of the related mechanical anisotropy.  相似文献   

2.
In the context of nuclear waste disposal in clay formations, laboratory and in situ simulation experiments were performed to study at reduced scale the excavation damaged zone (EDZ) around tunnels in the indurated Opalinus Clay at Mont Terri, Switzerland. In the laboratory, thick-walled hollow cylindrical specimens were subjected to a mechanical unloading mimicking a gallery excavation. In samples cored parallel to bedding, cracks sub-parallel to the bedding planes open and lead to a buckling failure in two regions that extend from the borehole in the direction normal to bedding. The behaviour is clearly anisotropic. On the other hand, in experiments performed on specimens cored perpendicular to bedding, there is no indication of failure around the hole and the response of the hollow cylinder sample is mainly isotropic. The in situ experiment at Mont Terri which consisted in the overcoring of a resin-injected borehole that follows the bedding strike of the Opalinus Clay showed a striking similarity between the induced damaged zone and the fracture pattern observed in the hollow cylinder tests on samples cored parallel to bedding and such a bedding controlled “Excavation” Damaged Zone is as well consistent with the distinct fracture patterns observed at Mont Terri depending on the orientation of holes/galleries with respect to the bedding planes. Interestingly, the damaged zone observed in the hollow cylinder tests on samples cored parallel to bedding and in situ around URL galleries is found to develop in reverse directions in Boom Clay (Mol) and in Opalinus Clay (Mont Terri). This most probably results from different failure mechanisms, i.e. shear failure along conjugated planes in the plastic Boom Clay, but bedding plane splitting and buckling in the indurated Opalinus Clay.  相似文献   

3.
4.
Summary  When modeling the mechanical behavior of underground excavations, it is necessary to include the influence of the rock mass characteristics on the Excavation Damaged/Disturbed Zone (EDZ). In this paper, the Realistic Failure Process Analysis code, RFPA, is used to model the extent of the EDZ. The inhomogeneous characteristics of rock at the mesoscopic level are included by assuming that the material properties of the constituent elements conform to a Weibull distribution; the anisotropy is incorporated as a transversely isotropic medium; the non-elastic characteristic is simulated via an elastic damage-based constitutive law. A finite element program is adopted as the basic stress analysis tool. In this study, a notable feature is that no a priori assumptions need to be made about where and how fracture and failure will occur – cracking can take place spontaneously and can exhibit a variety of mechanisms when certain local stress conditions are met. The deformation and failure process of anisotropic rock around excavations of different geometries is analyzed, and compared to experimental tests, showing similar fracture patterns. Additionally, the effect of confining stress and of different material layers is modeled and discussed. It is found that the model clearly illustrates that fracturing, both initiation and propagation, occurs as a combination of the stress concentrations and weakness planes introduced via the transverse anisotropy – which could represent either foliations or ubiquitous joint sets. Correspondence: Dr. Shuhong Wang, Box 265, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, P.R. China  相似文献   

5.
The Opalinus Clay (OPA) is an argillaceous rock formation selected to host a deep geologic repository for high-level nuclear waste in Switzerland. It has been shown that the excavation damaged zone (EDZ) in this formation is heavily affected by the anisotropic mechanical response of the material related to the presence of bedding planes. In this context, the purpose of this study is twofold: (i) to illustrate the new developments that have been introduced into the combined finite-discrete element method (FEM/DEM) to model layered materials and (ii) to demonstrate the effectiveness of this new modelling approach in simulating the short-term mechanical response of OPA at the laboratory-scale. A transversely isotropic elastic constitutive law is implemented to account for the anisotropic elastic modulus, while a procedure to incorporate a distribution of preferentially oriented defects is devised to capture the anisotropic strength. Laboratory results of indirect tensile tests and uniaxial compression tests are used to calibrate the numerical model. Emergent strength and deformation properties, together with the simulated damage mechanisms, are shown to be in strong agreement with experimental observations. Subsequently, the calibrated model is validated by investigating the effect of confinement and the influence of the loading angle with respect to the specimen anisotropy. Simulated fracture patterns are discussed in the context of the theory of brittle rock failure and analyzed with reference to the EDZ formation mechanisms observed at the Mont Terri Underground Research Laboratory.  相似文献   

6.
For the disposal of high-level waste (HLW) in a deep geological formation as Boom Clay, safety assessment studies have shown that long lived 79Se is one of the more critical fission products. Therefore, the knowledge of its migration properties (diffusion, retention) through the geological barrier (Boom Clay) is of paramount importance. The migration behaviour of selenium strongly depends on its speciation. Under reducing conditions, selenide would be the dominant species and selenium migration would mainly be controlled by the low solubility of Se(−II)-bearing minerals. However Se species are often found in redox disequilibrium and more oxidized species might also coexist. Therefore, the study of selenate migration requires attention, as it might be the most mobile selenium species in the host rock. Electromigration experiments performed with a 75Se-labeled selenate in Boom Clay indicate a high mobility for this species. The apparent diffusion coefficient (Dapp) of selenate in Boom Clay is estimated from electromigration experiments performed under different electric fields. Using two independent approaches, the value of Dapp for selenate is shown to fall in the range from 1.7×10−11 to 6.2×10−11 m2 s−1. Moreover, no reduction of selenate in Boom Clay was observed.  相似文献   

7.
Deep low-permeability clay layers are considered as suitable environments for disposal of high-level radioactive waste. In Belgium, the Boom Clay is the reference host formation and the Ypresian Clay an alternative host formation for research and safety and feasibility assessment of deep disposal of nuclear waste. In this study, two hydrogeological models are built to calculate the radionuclide fluxes that would migrate from a potential repository through these two clay formations. Transport parameter heterogeneity is incorporated in the models using geostatistical co-simulations of hydraulic conductivity, diffusion coefficient and diffusion accessible porosity. The calculated radionuclide fluxes in the two clay formations are compared. The results show that in the Ypresian Clay larger differences between the fluxes through the lower and the upper clay boundary occur, larger total output radionuclide amounts are calculated and a larger effect of parameter heterogeneity on the calculated fluxes is observed, compared to the Boom Clay.  相似文献   

8.
9.
Boom Clay is studied as a potential host formation for the disposal of high-and intermediate level long-lived radioactive waste in Belgium. In such a geological repository, generation of gases (mainly H2 from anaerobic corrosion) will be unavoidable. In order to make a good evaluation of the balance between gas generation vs. gas dissipation for a particular waste form and/or disposal concept, good estimates for gas diffusion coefficients of dissolved gases are essential. In order to obtain an accurate diffusion coefficient for dissolved hydrogen in saturated Boom Clay, diffusion experiments were performed with a recently developed through-diffusion set-up for dissolved gases. Due to microbial activity in the test set-up, conversion of hydrogen into methane was observed within several experiments. A complex sterilisation procedure was therefore developed in order to eliminate microbiological disturbances. Only by a combination of heat sterilisation, gamma irradiation and the use of a microbial inhibitor, reliable, reproducible and accurate H2(g) diffusion coefficients (measured at 21 °C) for samples oriented parallel (Deff = 7.25 × 10−10 m2/s and Deff = 5.51 × 10−10 m2/s) and perpendicular (Deff = 2.64 × 10−10 m2/s) to the bedding plane were obtained.  相似文献   

10.
A proper evaluation of the perturbations of the host rock induced by the excavation and the emplacement of exothermic wastes is essential for the assessment of the long-term safety of high-level radioactive waste disposals in clay formations. The impact of the thermal transient on the evolution of the damaged zone (DZ) has been explored in the European Commission project TIMODAZ (thermal impact on the damaged zone around a radioactive waste disposal in clay host rocks, 2006–2010). This paper integrates the scientific results of the TIMODAZ project from a performance assessment (PA) point of view, showing how these results support and justify key PA assumptions and the values of PA model parameters. This paper also contextualises the significance of the thermal impact on the DZ from a safety case perspective, highlighting how the project outcomes result into an improved understanding of the thermo–hydro–mechanical behaviour of the clay host rocks. The results obtained in the TIMODAZ project strengthen the assessment basis of the safety evaluation of the current repository designs. There was no evidence throughout the TIMODAZ experimental observations of a temperature-induced additional opening of fractures nor of a significant permeability increase of the DZ. Instead, thermally induced plasticity, swelling and creep seem to be beneficial to the sealing of fractures and to the recovery of a very low permeability in the DZ, close to that of an undisturbed clay host rock. Results from the TIMODAZ project indicate that the favourable properties of the clay host rock, which guarantee the effectiveness of the safety functions of the repository system, are expected to be maintained after the heating–cooling cycle. Hence, the basic assumptions usually made in PA calculations so far are expected to remain valid, and the performance of the system should not be affected in a negative way by the thermal evolution of the DZ around a radioactive waste repository in clay host rock.  相似文献   

11.
The present paper evaluates the role of microfabric in strain localization patterns observed in soil specimens during its shear deformation in compression and extension triaxial testing. A series of compression and extension lubricated end triaxial tests are performed on Kaolin clay with extreme as well as intermediate microfabrics, which are obtained using slurry consolidation technique by varying calagon content from 0 to 3 %. Intermediate microfabric is the geometric arrangement of particles within the soil mass, which lies in between the particle orientation during two extreme microfabrics; flocculated and dispersed. Flocculated has random orientation of particles with face-to-edge particle contacts and dispersed has parallel orientation of particles with face-to-face particle contacts. When the specimen is subjected to large stress levels in triaxial testing, the particle orientation and geometric arrangement get affected due to the force acting on the clay platelets. In this experimental research, the variation in clay’s stress–strain and pore pressure response and initiation, propagation and formation of shear bands at different levels of compression and extension shearing is evaluated using digital image analysis setup associated with triaxial system.  相似文献   

12.
Static load test program was performed on a single pile and two 16-pile groups with equal and different pile lengths. The soil profile consists of sand fill to 0.5 m depth placed on a thick deposit of soft, normally consolidated and compressible clay. The closed end steel pipe piles in 60 mm diameter were installed from 1.5 m through 2.1 m depth within soft clay deposit. The center-to-center distance of piles in group is about 3 times of pile diameter. The strain gages were installed at one level above and two through four levels below ground surface. Tests were carried out about 7 days after driving by method of a series of load increments placed every 5-min until plunging failure occurred. The load at plunging failure for the single pile, the equal-length pile group and the different-length pile group were about 3, 40 and 48 kN, respectively. The movements at start of failure were about 12, 18, and 17 mm, respectively. The analysis of strain gage measurements indicates that the load distribution on piles in the different-length pile group has become significantly uniform.  相似文献   

13.
粘土矿物对形成过渡带气的催化作用研究   总被引:1,自引:0,他引:1  
雷怀彦  关平 《沉积学报》1995,13(2):14-21
本文分析了有机质在粘土矿物中的赋存状态,测定了粘土矿物的表面酸、实验模拟了低演化程度的烃源岩及其抽提物干酪根+不同粘土矿物的催化机制、并通过粘土催化醇脱水反应对粘土过渡带有机质成气机理进行了探讨。研究结果表明,过渡带气的形成主要是受蒙脱石粘土矿物的催化所致,其原因是成岩过程中蒙脱石向混层矿物转化在蒙脱石晶间发生大量的铝代硅,因此在粘土表面产生电荷不平衡而形成酸性,井以路易斯酸和布郎酸作用于有机质,使碳-碳键发生断裂以形成气态烃。  相似文献   

14.
对马钢凹山铁矿区断层带中规模较大的粘土矿,采用化学分析、岩矿鉴定、X衍射分析、红外吸收光谱分析、差热分析、透射电镜及物理工艺性能等综合分析测试方法进行了研究,查明其岩石、矿石类型及6种类型矿石的物质组分和矿物特征、2组矿石样品的物理工艺性能,在此基础上,从选矿和提高矿石质量等方面提出了意见  相似文献   

15.
曹友杰 《探矿工程》2010,37(11):42-44
在基坑工程施工中,潜水和承压水往往是工程降水的主要对象,而包气带水往往被忽视。实践证明,包气带水对基坑工程的影响也不容忽视。通过分析少粘性土地区包气带水对基坑工程的影响,提出用改进的轻型井点降水法疏干包气带中的上层滞水,这种处理方法成本低,见效快,效果好,具有很强的实用性和推广价值。  相似文献   

16.
以南京某边坡结构面中的滑带土为研究对象,定量分析不同的滑带土颗粒级配情况下,岩质边坡结构面中粘土矿物含量及含水率的变化对边坡稳定性影响机制及变化规律.随着粘土矿物的增加,安全系数值整体上呈现减小的趋势,安全系数在45%~55%之间时达到最低;随含水率的增加,安全系数值也呈下降的趋势.采用了粒子群算法对试验成果作以解析,结果显示,随着粘土矿物含量的增加,安全系数的变化为非线性,但始终表现出较好的相关性,其相关系数由小变大;安全系数值与含水率呈现出一种负相关的线性关系,且保持较高的相关性,相关系数在0.90以上,较符合一般的自然规律.  相似文献   

17.
In Belgium, compatibility studies are performed in view of the final disposal of nitrate-containing bituminised intermediate-level radioactive waste in Boom Clay, which is considered as a potential host formation. Due to the presence of large amounts of nitrate in the waste, a slow release of nitrate (and to a smaller extent also nitrite) into the Boom Clay is expected. Nitrate and/or nitrite reduction by redox-active components of the host rock may cause a geochemical perturbation of the clay and subsequently might affect its barrier function against the migration of radionuclides. This paper therefore addresses the possible oxidation of one of the main redox-active components of the Boom Clay, i.e. dissolved organic matter, by nitrate and nitrite. For this, abiotic and microbially mediated nitrate and nitrite reduction was studied during long-term batch tests (2–2.5 years) in Boom Clay pore water, containing 155 ± 15 mg C/l present as humic and fulvic acids. Changes in the reducing capacity of the DOM due to oxidation were assessed successfully using two oxidants, namely ferricyanide and ferric citrate. The results of these experiments indicate that an abiotic reaction between DOM and nitrate does not occur or is characterised by very slow kinetics. On the other hand, a slow microbial nitrate reduction to nitrite was observed and the associated oxidation of DOM was confirmed by a decrease in the (partial) reducing capacity of DOM for ferric citrate. In contrast to nitrate, nitrite was shown to oxidise DOM both abiotically and mediated by microbes through (chemo)denitrification, although these reactions also seem to occur only at a rather slow rate. No significant change in the maximally obtainable reducing capacity of DOM (using ferricyanide) was detected during any of the observed reactions, suggesting that the impact of such a slow heterotrophic nitrate reduction is very limited.  相似文献   

18.
Chen  G. J.  Li  X. L.  Sillen  X.  Levasseur  S. 《Acta Geotechnica》2023,18(1):127-147
Acta Geotechnica - In the HADES underground research laboratory in Belgium, a large-scale PRACLAY Heater test and a small-scale ATLAS Heater test are performed to examine the...  相似文献   

19.
Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes (Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.  相似文献   

20.
This paper summarizes the geotechnical characterization conducted for the design and subsequent analysis of a strutted excavation in “Metro do Porto”. This region is geologically dominated by heterogeneous weathered granite masses with deep residual soil profiles. Local saprolitic soils exhibit, by their nature, a particular behavior characterized by very sensitive and weak relic micro-structures, due to their specific genesis. This study has included the interpretation of a significant volume of in situ test results, triaxial tests over undisturbed samples and monitoring data, giving rise to specific correlations between testing and design parameters. Real time monitoring enabled a back-analysis by FEM of a well instrumented section of the strutted excavation, which was calibrated taking into account the derived correlations and the deformability behavior of this specific geotechnical ambient. This geomaterial, although revealing very high initial stiffness values (for very small strain ranges) has shown low stiffness values for “medium to high” strain levels, reflecting a singular strong non-linearity in the stress-strain behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号