首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Summary. A direct calculation is made of the effect on the Chandler wobble of 1287 earthquakes that occurred during 1977–1983. The hypocentral parameters (location and origin time) and the moment tensor representation of the best point source for each earthquake as determined by the 'centroidmoment tensor' technique were used to calculate the change in the Chandler wobble's excitation function by assuming this change is due solely to the static deformation field generated by that earthquake. The resulting theoretical earthquake excitation function is compared with the 'observed' excitation function that is obtained by deconvolving a Chandler wobble time series derived from LAGEOS polar motion data. Since only 7 years of data are available for analysis it is not possible to resolve the Chandler band and determine whether or not the theoretical earthquake excitation function derived here is coherent and in phase with the 'observed' excitation function in that band. However, since the power spectrum of the earthquake excitation function is about 56 dB less than that of the 'observed' excitation function at frequencies near the Chandler frequency, it is concluded that earthquakes, via their static deformation field, have had a negligible influence on the Chandler wobble during 1977–1983. However, fault creep or any type of aseismic slip that occurs on a time-scale much less than the period of the Chandler wobble could have an important (and still unmodelled) effect on the Chandler wobble.  相似文献   

7.
8.
9.
10.
11.
Magnitude calibration of north Indian earthquakes   总被引:13,自引:0,他引:13  
  相似文献   

12.
13.
14.
There have been several claims that seismic shear waves respond to changes in stress before earthquakes. The companion paper develops a stress-sensitive model (APE) for the behaviour of low-porosity low-permeability crystalline rocks containing pervasive distributions of fluid-filled intergranular microcracks, and this paper uses APE to model the behaviour before earthquakes. Modelling with APE shows that the microgeometry and statistics of distributions of such fluid-filled microcracks respond almost immediately to changes in stress, and that the behaviour can be monitored by analysing seismic shear-wave splitting. The physical reasons for the coupling between shear-wave splitting and differential stress are discussed.
In this paper, we extend the model by using percolation theory to show that large crack densities are limited at the grain-scale level by the percolation threshold at which interacting crack clusters lead to pronounced increases in rock-matrix permeability. In the simplest formulation, the modelling is dimensionless and almost entirely constrained without free parameters. Nevertheless, APE modelling of the evolution of fluid-saturated rocks under stress reproduces the observed fracture criticality and the narrow range of shear-wave azimuthal anisotropy in crustal rocks. It also reproduces the behaviour of temporal variations in shear-wave splitting observed before and after the 1986, M = 6, North Palm Springs earthquake, Southern California, and several other smaller earthquakes.
The agreement of APE modelling with a wide range of observations confirms that fluid-saturated crystalline rocks are stress-sensitive and respond to changes in stress by critical fluid-rock interactions at the microscale level. This means that the effects of changes in stress and other parameters can be numerically modelled and monitored by appropriate observations of seismic shear waves.  相似文献   

15.
Summary. Most crustal earthquakes of the world are observed to occur within a seismogenic layer which extends from the Earth's surface to a depth of a few tens of kilometres at most. A model is proposed in which the shear zone along a transcurrent plate margin is represented as a viscoelastic medium with depth-dependent power-law rheology. A frictional resistance linearly increasing with depth is assumed on a vertical transcurrent fault within the shear zone. Such a model is able to reproduce a continuous transition from the brittle behaviour of the upper crust to the ductile behaviour at depth. Assuming that the shear zone is subjected to a constant strain rate from the opposite motions of the two adjacent plates, it is found that there exists a maximum depth H below which tectonic stress can never reach the frictional threshold: this may be identified as the maximum depth of earthquake nucleation. The value of H is consistent with observations for plausible values of the model parameters. The stress evolution in the shear zone is calculated in the linear approximation of the constitutive equation. A change in rigidity with depth, which is also introduced in the model, may reproduce the high vertical gradient of shear stress, which has been measured across the San Andreas fault, and the fact that most earthquakes are nucleated at some depth in the seismogenic layer. A crack which drops the ambient stress to the dynamic frictional level is then introduced in the model. To this aim, a crack solution is employed without a stress singularity at its edges, which is compatible with a frictional stress threshold criterion for fracture. A constraint on the vertical friction gradient is obtained if such cracks are assumed to be entirely confined within the seismogenic layer.  相似文献   

16.
A group of three earthquakes in 2000 June in SW Iceland included the two largest earthquakes in Iceland in the past 30 yr. Previously, temporal changes in shear-wave splitting had not been recognized before these earthquakes as there were too few small earthquakes to provide adequate shear-wave data, and they were not stress forecast, even with hindsight. These large earthquakes were subject to a special investigation by the European Community funded PREPARED Project during which the seismic catalogue was extended to include smaller magnitude earthquakes. This more detailed data set, together with a semi-automatic programme for measuring the parameters of shear-wave splitting greatly increased the number of time-delay measurements.
The new measurements displayed the typical temporal variations before larger earthquakes as seen elsewhere: a long-term increase in time delays, interpreted as stress accumulation before the earthquake; and a decrease, interpreted as crack coalescence, immediately prior to the earthquake. The logarithms of the durations of both the implied accumulation of stress and the crack coalescence have the same self-similar relationships to earthquake magnitude as found elsewhere in Iceland. This means that, in principle, the time and magnitude of the larger earthquakes could have been stress forecast in real time had the smaller source earthquakes of the extended catalogue and the improved measuring procedures been available at the time.  相似文献   

17.
Observations of stress relaxation before earthquakes   总被引:20,自引:0,他引:20  
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号