首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Through the continuing development of improved detectors and detector arrays, far-infrared/submillimeter astronomical space missions have had enormous successes in recent years. Despite these advances, the diffraction-limited angular resolving power has remained virtually constant. The advent of telescopes with apertures of several meters will improve this capability, but will still leave image resolution many orders of magnitude poorer than in most other spectral ranges. Here we point out that the only foreseeable way to improve image quality to rival that of modern optical telescopes will be with interferometers whose light collectors are connected by tethers. After making the scientific case for high spatial resolution far-infrared/submillimeter imaging and the use of interferometry as the most immediate way of producing results, we discuss recent advances in dynamic analysis and control of tethered formations, and argue that the further development and testing of tethers in space is a first step toward providing improved far-infrared/submillimeter angular resolution and astronomical image quality.  相似文献   

2.
The capabilities of the new medium- and low-resolution spectrograph installed recently on the 1.6-m AZT-33IK telescope at the Sayan Observatory of the Institute of Solar–Terrestrial Physics to solve the problems of ground-based optical support for the future all-skyX-ray survey of the SRGobservatory are discussed. Results of the test observations of galaxy clusters, active galactic nuclei (AGNs) and quasars, and cataclysmic variables performed immediately after the installation of the spectrograph on the telescope are presented. The results of these observations show that the AZT-33IK telescope equipped with the new medium- and low-resolution spectrograph can provide a substantial fraction of the necessary optical observations in the program of ground-based optical support for the all-sky survey of the SRG observatory.  相似文献   

3.
Space VLBI is a new observing technique which will be available in the second half of this decade by radio telescopes as interferometer elements in orbit. Besides the main astronomical interests, this new development has some very interesting potential applications in satellite dynamics, geodesy and geodynamical research which qualify space VLBI a potential new technique in space geodesy. A geodesy demostration experiment (GEDEX) is being proposed for the Japanese space VLBI satellite-VSOP, with the main objectives of reference frame interconnections and orbit accuracy improvement of the space radio telescope. The paper gives a review of the special characteristics of space VLBI and a general background of the GEDEX proposal.  相似文献   

4.
Adaptive optics: a breakthrough in astronomy   总被引:1,自引:0,他引:1  
Until the 1970s, atmospheric seeing was considered as an absolute limitation for angular resolution of ground-based optical telescopes, exactly at the time of the conception of the new generation of giant optical telescopes, as the VLT and the Keck. Emerging in the context of the cold war with many constraints due to the research being classified, but with the new possibilities of digital control, astronomical adaptive optics was shown to be feasible in 1989 and gradually convinced an initially skeptical astronomical community of its potential. Twenty years later, it is a mandatory ingredient for the planning of Extremely Large Telescopes on the surface of the Earth, and has allowed many discoveries concerning galactic and extragalactic objects. Some directions for new developments are discussed.  相似文献   

5.
We present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parameters including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. We attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.  相似文献   

6.
Because of its geographical location and (astronomically) excellent climate South Africa can make an unique contribution to international astronomical research. An assessment of recent developments in telescope technology has shown that an advanced technology telescope of 4m-class can be constructed which will out-perform most existing 4m-class telescopes. Detailed consideration is given to the construction of such a telescope for optical/infrared astronomy, the new science that this will enable and the selection of a site of sufficiently good quality to justify the erection of such a telescope. If a telescope of this nature is sited in southern Africa it would provide the premier astronomical facility in Africa for decades to come.  相似文献   

7.
地基光学天文望远镜是人类探索与研究宇宙的重要手段, 对已有地基光学台址的光学观测环境进行监测分析, 可以为后期设备针对性改造以及观测者调整观测策略提供参考依据, 对提升地基光学设备的观测效能具有重要的意义. 吉林天文观测基地(简称``基地'')隶属于中国科学院国家天文台长春人造卫星观测站, 位于吉林省吉林市大绥河镇小绥河村南沟约5 km处(东经126.3\circ, 北纬43.8\circ, 海拔高度313m). 基地大气视宁度均值范围约为1.3$''$--1.4$''$、天顶附近V波段的天光背景亮度为20.64magcdotarcsec-2、年晴夜数最高可达270余天, 具有良好的天文观测条件. 吉林天文观测基地于2016年投入运行, 现有1.2m光电望远镜、迷你光电阵列望远镜、大视场光电望远镜阵列、新型多功能阵列结构光电探测平台等多台(套)光电望远镜设备. 利用上述设备, 主要围绕空间目标探测与识别、精密轨道确定、光电探测新方法以及变源天体的多色测光等开展相关研究工作, 与多家国内高校及科研院所保持着良好的合作关系.  相似文献   

8.
类地行星(月球)自转监测望远镜的科学目标是在行星(月球)表面现场测量行星(月球)自转并研究其内部结构和物理性质.为了验证全新的观测原理和资料处理方法,项目团队设计制造了一套原理样机,在一台商用天文望远镜的光路前端增加3面反射镜组,使其具有同时观测3个视场的能力.自2017年起在地面上开展了观测实验,获得了混合有3视场星象的图像.通过计算星象在前后图像上的位移实现了归属视场识别,使得观测效果与分视场独立观测等同,证明了用一台设备同时观测多视场的可行性.处理图像并通过3个视场中心的指向变化归算地球自转轴的空间指向,与理论值比较偏差平均约1′′,证明了观测原理和数据处理方法有效.对各种观测误差来源进行了分析,包含大气折射、仪器热稳定性和光学分辨能力的影响等,指出采用更长焦距的望远镜可以提高空间分辨率,优化形变控制可以提高观测稳定性.改进多视场同时观测中的光学设计也有助于精度的提高.  相似文献   

9.
The International Space Station offers a unique platform for rapid and inexpensive deployment of space telescopes. A scientific opportunity of great potential later this decade is the use of telescopes for the electromagnetic follow-up of ground-based gravitational wave detections of neutron star and black hole mergers. We describe this possibility for OpTIIX, an ISS technology demonstration of a 1.5 m diffraction limited optical telescope assembled in space, and ISS-Lobster, a wide-field imaging X-ray telescope now under study as a potential NASA mission. Both telescopes will be mounted on pointing platforms, allowing rapid positioning to the source of a gravitational wave event. Electromagnetic follow-up rates of several per year appear likely, offering a wealth of complementary science on the mergers of black holes and neutron stars.  相似文献   

10.
Iraq is currently experiencing a praid cultural, scientific, and technical renaissance, and astronomy is a natural focus for the country's pride in the past achievements of the civilization which have flourished in Iraq. The current plans of the Space and Astronomy Research Center (SARC) include building a major observatory to work in the optical, IR and radio region of the spectrum.The core of the optical facility will be a 3.5 m optical telescope, together with 1.25 m telescope designed for efficient performance in the IR. These telescopes will be equipped with instruments for photographic, photometric and spectroscopic observations. A 30 m dish is also being built for millimeter/radio observations.SARC has selected an excellent observing site in the northern mountains of Iraq which has good seeing and clear dark skies. The sites selection was made with the collaboration of several leading astronomers and observatories from various countries.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984  相似文献   

11.
RTS2 (Remote Telescope System 2) is a highly modular open source telescope and observatory management software package. It evolved from RTS, which was developed in Python to control a telescope aimed at observing optical transients of γ ray burts. The development of a network system capable of operating robotic telescopes is both difficult and complicated. Along with continued software development one must be concerned with maintaining operations and obtaining results. This is a review of experiences gained building a network of robotic telescopes. It focuses on describing which issues are important during development of the robotic observatory software and requirements for future development of the RTS2 package. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The telescopes of the new generation allow an archive to be built as a section of data management; nevertheless, careful planning is needed and data handling needs to be designed together with the control system of the telescope itself, both for space-borne and for ground-based facilities. Simulations are essential to understand how observations will be archived, and to build and test an archiving system capable of dealing efficiently with the expected data flow.The TNG (Telescopio Nazionale Galileo) will be one of the first ground-based observing facilities where archiving of both technical and scientific data will be made directly at the telescope as a natural extension of the data handling chain. The results obtained testing the prototype implementation of the archive system at the TNG with a simulated data flow will be shown.  相似文献   

13.
天文光学望远镜轴系驱动方式发展概述   总被引:4,自引:0,他引:4  
王国民 《天文学进展》2007,25(4):364-374
该文首先介绍了已投入使用的2.5米口径以上的25架地平式光学望远镜和11架赤道式光学望远镜轴系驱动方式,并概述了天文光学望远镜轴系驱动及其相关技术的发展过程;然后对目前国际上在研的6架大型光学望远镜和预研的10架极大光学望远镜轴系所采用的驱动形式进行了归类;最后分析了未来极大光学望远镜轴系驱动的发展趋势和与之相关的研究内容.  相似文献   

14.
An optical survey is the main technique for detecting space debris. Due to the specific characteristics of observation, the pointing errors and tracking errors of the telescope as well as image degradation may be significant, which make it difficult for astrometric calibration. Here we present an improved method that corrects the pointing and tracking errors, and measures the image position precisely. The pipeline is tested on a number of CCD images obtained from a 1-m telescope administered by Xinjiang Astronomical Observatory while observing a GPS satellite. The results show that the position measurement error of the background stars is around 0.1 pixel, while the time cost for a single frame is about 7.5 s; hence the reliability and accuracy of our method are demonstrated. In addition, our method shows a versatile and feasible way to perform space debris observation utilizing non-dedicated telescopes, which means more sensors could be involved and the ability to perform surveys could be improved.  相似文献   

15.
The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is the next-generation ground-based gamma-ray observatory that is being built in southern Arizona by a collaboration of 10 institutions in Canada, Ireland, the UK and the USA. VERITAS is designed to operate in the range from 50 GeV to 50 TeV with optimal sensitivity near 200 GeV; it will effectively overlap with the next generation of space-based gamma-ray telescopes. The first phase of VERITAS, consisting of four telescopes of 12 m aperture, will be operational by the time of the GLAST launch in 2007. Eventually, the array will be expanded to include the full array of seven telescopes on a filled hexagonal grid of side 80 m. A prototype VERITAS telescope with a reduced number of mirrors and signal channels has been built. Its design and performance is described here. The prototype is scheduled to be upgraded to a full 499 pixel camera with 350 mirrors during the autumn of 2004. The VERITAS collaboration consists of universities and institutions from Ireland, UK, USA and Canada. See for a full listing.  相似文献   

16.
The understanding of high-energy astrophysical sources often depends on observations over the entire electromagnetic spectrum. Yet, extensive multifrequency observing campaigns can consume the resources of a large number of telescopes, including ground-based and satellite facilities, and usually involve large, unwieldy consortia of observers. Because most X-ray sources are variable on a short time-scale, there is an additional need to make the multifrequency observations simultaneous. The logistical difficulties involved in coordinating these observations, coupled with the vagaries of the weather at ground-based observing sites, mean that comparatively few such coordinated campaigns are attempted; of those that have been tried the success rate for achieving simultaneity is low.In the present paper we argue that simultaneous X-ray, optical and ultraviolet observations could be achieved more logically, cheaply, and effectively by mounting a small boresighted optical/UV-telescope alongside future X-ray telescopes. A 12 optical/UV monitor could, for instance, be incorporated into X-ray facilities such as the American AXAF or the European XMM missions with minimal impact on the total cost, weight, size, and telemetry requirements. Such a telescope, equipped with a position sensitive photoncounting detector, could provide two-dimensional photometric imaging of stars as faint asB=23.5 in a 1000 s exposure with a resolution that could easily be matched to that of the X-ray telescope. A series of wide- and narrow-band filters could be used to define spectral bands, while wide-field, low-resolution spectroscopy could be provided by a prism. Such an instrument could monitor not only the multifrequency variability of such active sources as quasars, Seyfert galaxies, BL Lac objects, X-ray binaries, cataclysmic variables, RS CVn stars, and flare stars, but also could provide astrometry, broadband colours, low-resolution spectroscopy, and imaging of constant sources and fortuitously observed field objects. Moreover, the concept of providing multifrequency simultaneous coverage of astrophysical objects in an unbiased way allows new phenomena to be discovered. A review is given of the scientific problems that require such a monitor, and some of the design and performance characteristics of a suitable monitor are discussed.  相似文献   

17.
Atmospheric optics is the study of optical effects induced by the atmosphere on light propagating from distant sources. Of particular concern to astronomers is atmospheric turbulence, which limits the performance of ground-based telescopes. The past two decades have seen remarkable growth in the capabilities and performance of adaptive optics (AO) systems. These opto-mechanical systems actively compensate for the blurring effect of the Earth’s turbulent atmosphere. By sensing, and correcting, wavefront distortion introduced by atmospheric index-of-refraction variations, AO systems can produce images with resolution approaching the diffraction limit of the telescope at near-infrared wavelengths. This review highlights the physical processes and fundamental relations of atmospheric optics that are most relevant to astronomy, and discusses the techniques used to characterize atmospheric turbulence. The fundamentals of AO are then introduced and the many types of advanced AO systems that have been developed are described. The principles of each are outlined, and the performance and limitations are examined. Aspects of photometric and astrometric measurements of AO-corrected images are considered. The paper concludes with a discussion of some of the challenges related to current and future AO systems, particularly those that will equip the next generation of large, ground-based optical and infrared telescopes.  相似文献   

18.
The Zeiss-2000 telescope of the International Center for Astronomic and Medico-Ecological Research, National Academy of Sciences of Ukraine (Terskol observatory), with a 2-meter aperture is the largest optical instrument in Europe that is regularly used for investigating space debris in the vicinity of the geostationary orbit. One of the main objectives is to detect and characterize small fragments of space debris that are difficult to approach for other telescopes. During each photometric night, we usually detect four to five unknown fragments of 17th to 20th magnitude. This article provides orbital parameters and physical characteristics of several small-sized fragments of space debris that were detected during observations at Terskol observatory in 2014–2015.  相似文献   

19.
漂移扫描CCD用于地球同步轨道卫星观测的初步结果   总被引:1,自引:0,他引:1  
毛银盾  唐正宏  陶隽  于涌 《天文学报》2007,48(4):475-487
对于地球同步轨道卫星,目前国内主要采用两种观测手段,即小光电望远镜短曝光观测和天文望远镜跟踪恒星(或卫星)观测.事实上,这两种手段都各自存在不足,尤其对于暗弱目标问题更加显著.利用CCD漂移扫描模式和凝视模式相结合观测地球同步轨道卫星具有明显的优势,小口径望远镜(口径约25cm)就能够获得高质量的目标和恒星圆星像与高精度的定位结果.本文重点阐述了获得高精度地球同步轨道卫星光学位置与星等的原理、方法及步骤;最后,利用实测资料的数据处理结果,分析了所获得的地球同步轨道卫星的内部精度及其误差源.  相似文献   

20.
In order to obtain detailed information from multiple telescope observations a general blind super-resolution (SR) reconstruction approach for astronomical images is proposed in this paper. A pixel-reliability-based SR reconstruction algorithm is described and implemented, where the developed process incorporates flat field correction, automatic star searching and centering, iterative star matching, and sub-pixel image registration. Images captured by the 1-m telescope at Yunnan Observatory are used to test the proposed technique. The results of these experiments indicate that, following SR reconstruction, faint stars are more distinct, bright stars have sharper profiles, and the backgrounds have higher details; thus these results benefit from the high-precision star centering and image registration provided by the developed method. Application of the proposed approach not only provides more opportunities for new discoveries from astronomical image sequences, but will also contribute to enhancing the capabilities of most spatial or ground-based telescopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号