首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The regional hydrogeological aspects of the Markanda river basin in the Himalayan foothills, NW India have been attempted. The basin has been hydro-geomorphologically analyzed as ridge, piedmont zone, alluvial plain, flood plain and palaeochannel. Groundwater prospect in the alluvial plain, flood plain and palaeochannel areas were found to be promising. Water table contour maps of the basin revealed that groundwater flows from northeast to southwest. Groundwater permeability is low in the northern part and is high towards the southern part of the basin. The areas of recharge were identified in the northern part of the basin, while the areas of discharge were identified in the central and lower parts of the basin. Hydrogeologic transects across and along the basin indicate that aquifer horizons are made up of fine sand, medium sand and gravelly sand. These aquifer layers are laterally extensive but limited in thickness. They occur as multistoried sand bodies with pinch and swell behavior. The overall study gives an understanding of the present regional hydrogeological scenario of the Markanda basin. Such detailed integrated approach would help to locate productive groundwater areas before installing a new tubewell in the region. Also, it would help in planning future groundwater management of the region.  相似文献   

2.
Water scarcity is one of the major concerns that people are facing worldwide. Although the liquid is absolutely abundant through the globe, its availability poses too much problems specifically to each region. Those problems can result in one or a combination of three basic situations: declining water (drought), overabundance of surface water (floods) or degradation of the quality of water (pollution). All these situations are reflected in the scarcity of good quality water. Arid regions are particularly concerned. In such areas where groundwater contained in aquifers is usually perceived as providence, any project of groundwater exploration and exploitation must be preceded by prior careful and meticulous investigation, in order to avoid early and premature drying. This investigation is likely to predict the future behaviour of aquifers and to improve the groundwater resources management. Beside fundamental properties as hydraulic conductivity, the present paper that addresses the water sector in the semi-arid region of northern Cameroon emphasizes the importance of porosity on aquifer productivity and consequently on the groundwater resources management. The porosity of the local aquifer has then been determined using the Waxman and Smits model which establishes a reliable relationship between the apparent and corrected formation factors, F a and F c , taking the clay effects into consideration. This approach can be applied in other similar semi-arid regions through the world.  相似文献   

3.
Based on the long-term monitoring data of rainfall, groundwater levels, groundwater abstraction, spring flow rates and groundwater quality, an assessment has been undertaken of the sustainable yield of a karst aquifer system in Shandong Province, northern China, to maintain perennial outflow of the karst springs while meeting water demands. One of the fundamental indicators for sustainable yield of groundwater is identified as maximum allowable water-level drawdown. A regional three-dimensional finite-difference numerical model has been developed to optimize the schemes associated with well fields and their locations and sustainable yields, in the Jinan spring catchment and its adjacent karst groundwater catchments, with the aim of maintaining the water level higher than the allowable lowest water level of 27.5?m above sea level. Furthermore, measures necessary to move towards sustainable use of the karst groundwater are outlined, drawing on contingency plans of water-source replacement and artificial recharge, dual water supply (based in water quality), use of the spring waters themselves, and groundwater quality protection.  相似文献   

4.
This paper refers to the development of a conceptual model for the management of a coastal aquifer in northern Greece. The research presents the interpretation and analysis of the quantitative (groundwater level recordings and design of piezometric maps) regime and the formation of the upcone within the area of investigation. Additionally it provides the elaboration of the results of chemical analyses of groundwater samples (physicochemical parameters, major chemical constituents and heavy metals and trace elements) of the area which were taken in three successive irrigation periods (July–August 2003, July–August 2004 and July 2005), in order to identify areas of aquifer vulnerability. The study identifies the areas where ion exchange phenomena occur, as well as the parts of the aquifer where the qualitative degradation of the aquifer system is enhanced. The paper, finally, assesses the lack of any scientific groundwater resources management of the area by the local water authorities, as well as the current practices of the existing pumping conditions scheme as applied by groundwater users.An erratum to this article can be found at  相似文献   

5.
地下水年龄结构是了解一个地区地下水资源开采可持续性的重要基础。穆兴平原地下水开采量增加以及地下水环境恶化,对该地区可持续发展有一定制约,为此在2016年采集CFCs样品31组和3H样品60组,估算了研究区地下水年龄。结果表明,穆兴平原北部地下水年龄为21年到大于65年,由西北部和穆棱河向平原中部及乌苏里江逐渐变老,更新性变差,主要受到大气降水和地表河水补给,但是由于地表覆盖一层黏性土,地下水中缺失小于10年的水;不同井深样品中二者及NO_3~-浓度的变化,表明在60 m以上地下水的防污性能较差,而在100 m以下则较好,饮用水源井深需超过100 m。  相似文献   

6.
 Over-abstraction of the Dammam aquifer, the principal aquifer in Bahrain, by the agricultural and domestic sectors, has led to its salinization by adjacent brackish and saline water bodies. A hydrochemical study identified the locations of the sources of aquifer salinization and delineated their areas of influence. The investigation indicates that the aquifer water quality is significantly modified as groundwater flows from the northwestern parts of Bahrain, where the aquifer receives its water by lateral underflow from eastern Saudi Arabia, to the southern and southeastern parts. Four types of salinization of the aquifer are identified: brackish-water up-flow from the underlying brackish-water zones in north-central, western, and eastern regions; seawater intrusion in the eastern region; intrusion of sabkha water in the southwestern region; and irrigation return flow in a local area in the western region. Four alternatives for the management of groundwater quality that are available to the water authorities in Bahrain are discussed and their priority areas are proposed, based on the type and extent of each salinization source, in addition to groundwater use in that area. The effectiveness of the proposed management options in controlling the degradation of water quality in the Dammam aquifer should be evaluated using simulation modeling. Received: June 1998 Revised: November 1998 Accepted: December 1998  相似文献   

7.
The overexploitation of groundwater in coastal aquifers is often accompanied by seawater intrusion, intensified by climate change and sea level rise. Heading long-term water quality safety and thus the determination of vulnerable zones to seawater intrusion becomes a significant hydrogeological task for many coastal areas. Due to this background, the present study focussed the established methodology of the GIS-based GALDIT model to assess the aquifer vulnerability to seawater intrusion for the Algerian example of the Quaternary coastal Collo aquifer. According to the result analysis overall, more than half of the total surface of the northern study area can be classified as highly vulnerable. Besides the coastline, the areas nearby the local wadis of Guebli and Cherka occur to be the most vulnerable in the region. In view of further map removal performance as well as single-parameter sensitivity analyses from a coupled perspective respectively the GALDIT parameters, distance from the shore (D) and aquifer hydraulic conductivity (A) have been found to be of key significance regarding the model results (mean effective weightings ~?18–19%). Overall, the study results provide a good approximation basis for future management decisions of the Collo aquifer region, including various perspectives such as identification of suitable settings for prospective groundwater pumping wells.  相似文献   

8.
云应盆地东北部属鄂北贫水地区,赋存于古近系—第四系含水层中的地下水是当地生产、生活用水的主要来源,亟需查明含水层的结构、含水层间地下水的转化关系等基本条件,为研究区内合理开发利用地下水提供依据。本研究通过野外水文地质调查、水文地质钻探工作,将研究区划分为单层含水层与双层含水层结构两个亚区(6个小区)。并通过地下水水位动态长期监测,获取了区内不同含水层的水位动态变化特征,分析各含水层之间的水力联系,建立了区域地下水转化的概念模式,即:研究区地下水以接受山前降雨入渗及风化裂隙水侧向径流补给为主,主要以水平径流的形式经古近系孔隙-裂隙含水层及第四系孔隙承压含水层往澴水方向运移,而后进入第四系孔隙潜水含水层。地下水和地表水在不同季节补排模式不同,雨季地表水(澴水)补给地下水,旱季地下水向地表水(澴水)排泄。古近系孔隙-裂隙水与上覆第四系孔隙水联系密切互为补给,共同构成具有统一水力联系的垂向多层结构的含水系统。独特的含水层结构决定了区内地下水接受降水补给的条件较差,地下水可开采资源量总体较贫乏,建议重点利用区域地表水资源,适度开发地下水资源,推进农业节水灌溉工程,实现水资源可持续利用。  相似文献   

9.
在鄂尔多斯盆地都思兔河流域供水水文地质详查的基础上,通过水文地质钻探、抽水试验、样品分析等手段,查明了流域含水层的结构、埋深以及含水层和隔水层在水平和垂直方向上的变化规律,探讨了各含水层之间的水力联系,并求取了含水层的水文地质参数;对比圈定了包乐浩晓、巴彦布拉格、好勒包勒吉3处富水区;采用地下水流数值模拟方法对上述3处富水区地下水开采量进行计算,提出了27种地下水开采方案,并经过对比得到地下水开采推荐方案。结果表明:包乐浩晓、巴彦布拉格、好勒包勒吉3处富水区主要补给为侧向径流及大气降水入渗补给,排泄方式以潜水面蒸发及向河流排泄为主;在地下水浅埋区,结合含水层单井涌水量的大小,确定采用管井开采方式、中段悬挂式非完整井结构,平均布井,井深300m,单一开采白垩系环河组的地下水,最大限度夺取潜水蒸发排泄量;根据推荐方案,上述3个富水区总开采量达到123500m3/d,可为该地区地下水资源开发与利用提供技术保障。  相似文献   

10.
江苏南通地下水补给源、水化学特征及形成机理   总被引:8,自引:0,他引:8  
在地下水的大规模开采条件下,江苏沿海一带,特别是南通许多地区的地下水一度出现咸化趋势,对区域水资源及环境产生了极大的影响,已成为制约生态环境建设和经济社会发展的重要因素.为查明地下水的补给来源、水化学特征和矿化度增高的机理,对南通地区深浅层地下水开展了野外调查取样.通过对各种水化学参数的讨论分析,系统地研究了该区地下水...  相似文献   

11.
The present work studies the environmental isotopes assess groundwater characteristics of the different parts of the main aquifer in the northeast Missan Province in south of Iraq.Water samples of groundwater and surface water were collected for two dry and wet seasons during the water year of 2011–2012.The study shows that most of the groundwater in the aquifer falls above the global meteoric water line,and all the samples fall below the Mediterranean meteoric water line,indicating that these samples are a mixture of two water types.The tritium content of these samples supports this conclusion.The overall conclusion of this study indicates that there are two sources of groundwater recharge in the studied area:the ephemeral streams(Teeb and Dewerge) and major precipitation sources.According to the tritium levels at or below one tritium unit(TU) obtained from the water,supply wells are highly confined or "not vulnerable".Overall,the 3H results imply that recent recharge has taken place during the last four to five decades.In the recharge area,the high tritium content in the southern part of the Teeb area suggests that the recharge originates from rapid infiltration of surface runoff.Therefore,the groundwater resources in the study area should be protected from contamination,because it will influence the aquifer in a relatively short period of time if any contamination enters the recharge areas of the aquifer.  相似文献   

12.
Hydrogeology of the Ordos Basin,China   总被引:1,自引:0,他引:1       下载免费PDF全文
The Ordos Basin is located in the east of NW China that is composed of different aquifer systems. Karst groundwater is stored in the Carmbrian-Ordovician carbonates along the margins of the basin. Fissured-pore water is present in the Cretaceous strata in the central-western basin and pore water is stored in the overlying Quaternary deposits discontinuously. The main origin of groundwater in the basin is direct or indirect infiltration of precipitation. Groundwater flows from recharge areas to adjacent local discharge areas. Besides evaporation and abstraction, groundwater feeds springs and rivers, such as the Yellow River and its tributaries. According to the karst aquifer lithologic structure, the features of karst development and circulation, the karst aquifer is divided into three structural and circulation patterns. Based on the control of Cretaceous sedimentary environment, lithologic structure, lithofacies, and palaeogeographic characteristics, the Cretaceous system is divided into the northern desert simple plateau aquifer system and the southern loess plateau aquifer system. PACKER was used to obtain temperature, hydrogeochemical and isotope data at specific depths. Groundwater circulation is studied using hydrodynamic fields, temperature fields, isotopes, hydrogeochemical data and numerical simulations. According to the result, it is divided into local, intermediate and regional systems.  相似文献   

13.
Groundwater is one of the important source of water supply to meet the requirements of National Capital Territory (NCT) of Delhi, India which is a fast developing urban conglomeration. An assessment of dynamic groundwater resources of NCT Delhi has been attempted based on the methodology known as Ground Water Resources Estimation Methodology—1997. The methodology includes assessment of annual replenishable groundwater resources using water level fluctuation approach and empirical norms, estimation of the annual quantity of groundwater withdrawal and categorization of the assessment units based on the status of groundwater utilization and water level trend. Annual replenishable groundwater resources of NCT Delhi is about 297 million cubic meter (mcm) while the annual groundwater draft is about 480 mcm. This is because of over-exploitation of replenishable resources in seven out of nine districts of the Capital Territory. Based on the assessment of dynamic groundwater resources, a broad groundwater management plan has been proposed in this paper. This include augmentation of groundwater resources through rain water harvesting schemes to be implemented on a large scale, regulation on groundwater withdrawal in vulnerable areas, development of Yamuna flood plain aquifer and declaration of Delhi ridge as groundwater sanctuary.  相似文献   

14.
The design of the Rovni Lake reservoir in the Kolubara District, western Serbia, is the basis for the regional water-supply system there. The design was promoted as an example of integrative and sustainable water management, with regard to the planned provision for long-term municipal water supply in the Kolubara region, as well as for the regulation of the downstream river flow. Hydrogeological analyses, however, have indicated three key issues that contest this sustainable water-management model: (1) the capability of the available groundwater sources to fully meet the drinking water demands in the region, (2) a pronounced risk of water loss from the reservoir, and (3) a pronounced risk of karst aquifer contamination. The Rovni project ignores the hydrogeological properties of a karst aquifer and thereby needlessly threatens the groundwater resource. Hence, modifications to the project are recommended in order to mitigate or eliminate the most significant construction and ecological risk factors and to improve sustainable exploitation and integrative water-resource management.  相似文献   

15.
Sustainable groundwater extraction in coastal areas: a Belgian example   总被引:1,自引:0,他引:1  
Water extractions in coastal areas have to deal with salt water intrusion and lowering of hydraulic heads in valuable ecosystems. Therefore, sustainable management of fresh water resources in these areas is crucial. This is illustrated here with two water extractions in the western Belgian coastal plain which extract groundwater from a phreatic dune aquifer. One water extraction faced problems with salt water intrusion, while lowering of hydraulic heads was an issue for both. To remedy the salt water intrusion, it was found that decreasing the extraction rate was the only solution. To offset this and to increase hydraulic heads around both extractions, it was decided to artificially recharge the aquifer of the second extraction with tertiary treated wastewater. By taking these interventions, the combined production capacity of the water extractions was increased with 56% whereas 27% less water was extracted from the dune aquifer itself. Extraction history and the effects of interventions are illustrated for both water extractions with water quality data and fresh water head observations. A more detailed insight in groundwater flow and fresh–salt water distribution in the aquifer is provided by simulating the evolution of the water extractions with a 3D density dependent groundwater flow model.  相似文献   

16.
The Paris–Abu Bayan area located along the Darb El Arbaein road is involved in the New Valley Project in the Egyptian Western Desert (EWD) as part of ongoing efforts since the 1960s. In this dryland area, groundwater stored in the Nubian Sandstone Aquifer System (NSAS) serves as the only water resource for a number of different uses. A major concern is the significant groundwater withdrawals from 74 pumped wells since the beginning of agricultural activities in 2000. The recent rapid expansion of agricultural activity and the lack of sufficient groundwater recharge as a result of unplanned groundwater development have led to severe stress on the aquifer. Field measurements have shown a rapid decline in groundwater levels, creating a crisis situation for this sole source of water in the area. In this study, mathematical modeling of the groundwater system (single aquifer layer) of the Paris–Abu Bayan reclaimed area was implemented using MODFLOW to devise a new strategy for the sustainable use of groundwater, by applying a number of scenarios in a finite-difference program. The conceptual model and calibration were developed by generating and studying the hydrogeological records, NSA parameters, production wells, and water level measurements for 2005 and 2012. Three management scenarios were applied on the calibrated model to display the present and future stresses on this aquifer over a 30-year period (2012–2042). The results clearly show a high decline in the heads of the NSA, by about 13.8 m, due to the continuous withdrawal of water (first scenario: present conditions, 102,473 m3/day). In the second scenario, the water level is expected to decrease significantly, by about 16 m, in most of the reclamation area by increasing the pumping rates by about 25% (over-pumping) to meet the continuous need for more cultivation land in the area. To reduce the large decline in water levels, the third plan tests the aquifer after reducing the water withdrawal by approximately 25%, applying modern irrigation systems, and suggesting two new reclaimed areas in the northeastern and northwestern parts (areas 1 and 2), with 20 new wells, at 500 m3/day/well. The results in this case show that groundwater levels are slightly decreased, by about 9.5 m, while many wells (especially the new wells in the northern part) show a slight decrease in groundwater levels (0.8 m). The results comparison shows that the groundwater level in the modeled area is lowered by 0.3 m/year with an increase in the number of wells to 94 and increased cultivation area by about 18% (third scenario), versus 0.45 m/year and 0.60 m/year recorded for the first and second scenarios, respectively. Therefore, based on the results, the third scenario is recommended as a new strategy for improving groundwater resource sustainability in the region.  相似文献   

17.
Water availability and management issues related to the supply of drinking water in northern communities are problematic in Canada. While rivers and lakes are abundant, they are vulnerable to contamination and may become dry in winter due to freezing. Groundwater can often provide a more secure and sustainable water source, however its availability is limited in northern Canada due to the presence of permafrost. Moreover, the exploitation of northern aquifers poses a dual challenge of identifying not only permafrost-free areas, but also permeable areas which will allow groundwater recharge and exploitation. Suitable aquifers are not as common in northern Canada since the shallow subsurface is mostly composed of low-permeability crystalline rocks or unconsolidated sediments of glacial origin that are highly heterogeneous. In order to investigate groundwater occurrence and associated geological contexts in Nunavik (northern Quebec, Canada), along with exploring how these resources will evolve in response to climate change, field and compilation work were conducted in the surroundings of the four villages of Salluit, Kuujjuaq, Umiujaq and Whapmagoostui-Kuujjuarapik. These villages are located in different permafrost zones, ranging from continuous to discontinuous, as well as in different geological environments. It was found that despite the ubiquitous presence of permafrost, unfrozen aquifers could be identified, which suggests that groundwater may be available as a source of drinking water for small communities. Expected climate change, with predicted permafrost thawing and increases in temperature and precipitation, should enhance groundwater availability and may contribute to a more secure source of drinking water for northern communities.  相似文献   

18.
The US High Plains aquifer, one of the largest freshwater aquifer systems in the world, continues to decline, threatening the long-term viability of the region’s irrigation-based economy. The eight High Plains States take different approaches to the development and management of the aquifer based on each state’s body of water laws that abide by different legal doctrines, on which Federal laws are superposed, thus creating difficulties in integrated regional water-management efforts. Although accumulating hydrologic stresses and competing demands on groundwater resources are making groundwater management increasingly complex, they are also leading to innovative management approaches, which are highlighted in this paper as good examples for emulation in managing groundwater resources. It is concluded that the fragmented and piecemeal institutional arrangements for managing the supplies and quality of water are inadequate to meet the water challenges of the future. A number of recommendations for enhancing the sustainability of the aquifer are presented, including the formation of an interstate groundwater commission for the High Plains aquifer along the lines of the Delaware and Susquehanna River Basins Commissions in the US. Finally, some lessons on groundwater management that other countries can learn from the US experience are outlined.  相似文献   

19.
Coastal aquifers are considered as major sources for freshwater supply worldwide, especially in arid zones. The weak rainfall as well as the intensive extraction of groundwater from coastal aquifers reduce freshwater budget and create local water aquifer depression, causing both seawater intrusion and a threat to groundwater. This phenomenon was observed in the Jerba Island which is located in southeast Tunisia. Jerba??s unconfined aquifer shows high values of groundwater salinity reaching, locally, 17?g/l and a strong contrast between some zones of the aquifer. High pumping rates and weak recharge disturb the natural equilibrium between fresh and saline water causing water salinization in most areas of the island. This study aims at establishing the salinity map of the aquifer and identifying the origin of groundwater salinization. The salinity map shows that zones characterized by low groundwater salinity are located in the center of the study area. High groundwater salinities are observed near the coast and in some parts having low topographic and piezometric levels. Groundwater geochemical characterization, and Br/Cl and Na/Cl ratios suggest that the origin of abnormal salinity is seawater intrusion. Considering groundwater salinity values and Br concentrations, a seawater intrusion map is established. It shows that many areas of the unconfined aquifer are contaminated by mixed groundwater and seawater. The statistical analysis demonstrates that high mineralization of the groundwater is due to gypsum and carbonate dissolution coupled with the mixed groundwater and seawater in many areas.  相似文献   

20.
王宇 《中国岩溶》2019,38(6):823-830
岩溶地区地表水流域与地下水流域边界的分异形式有三类,即:地表分水岭与地下水流域边界在平面分布上基本一致;地表分水岭超出了地下水流域边界;地下水流域边界超出了地表分水岭。岩溶区地表水与地下水耦合流域的顶界为地表水流域的水面及下垫面,底界为浅循环潜水含水层或潜水—承压含水层下伏的隔水层顶面,在大厚度岩溶含水层分布区,可以弱岩溶发育带的顶面作为底界。其中地表水与地下水两个子系统间的次级边界,为地表水流域的下垫面。结合专门调查(勘查)评价和区域调查评价的特性,提出评价单元划分的原则及方法。这有助于在新一轮自然资源调查评价中,以流域为单元系统地开展水资源及环境调查评价,实行地表水和地下水资源及环境的统一管理。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号