首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes techniques to compute and map dasymetric population densities and to areally interpolate census data using dasymetrically derived population weights. These techniques are demonstrated with 1980-2000 census data from the 13-county Atlanta metropolitan area. Land-use/land-cover data derived from remotely sensed satellite imagery were used to determine the areal extent of populated areas, which in turn served as the denominator for dasymetric population density computations at the census tract level. The dasymetric method accounts for the spatial distribution of population within administrative areas, yielding more precise population density estimates than the choroplethic method, while graphically representing the geographic distribution of populations. In order to areally interpolate census data from one set of census tract boundaries to another, the percentages of populated areas affected by boundary changes in each affected tract were used as adjustment weights for census data at the census tract level, where census tract boundary shifts made temporal data comparisons difficult. This method of areal interpolation made it possible to represent three years of census data (1980, 1990, and 2000) in one set of common census tracts (1990). Accuracy assessment of the dasymetrically derived adjustment weights indicated a satisfactory level of accuracy. Dasymetrically derived areal interpolation weights can be applied to any type of geographic boundary re-aggregation, such as from census tracts to zip code tabulation areas, from census tracts to local school districts, from zip code areas to telephone exchange prefix areas, and for electoral redistricting.  相似文献   

2.
In GIS, spatial analysis is based on the use of spatial operations such as testing the spatial relations between features. Often, such tests are invalidated by errors in datasets. It is a very common experience that two bordering regions which should obey the topological relation “meet” fall instead in the “overlap” category. The situation is exacerbated when applying topological operators to regions that come from different datasets, where resolution and error sources are different. Despite the problem being quite common, up to now no standard approach has been defined to deal with spatial relations affected by errors of various origins. Referring to topological relations, we define a model to extend the eight Egenhofer relations between two simple regions: we call them homological relations (H‐relations). We discuss how exact topological relations can be extracted from observed relations and discuss the case of irregular tessellations, where errors have the most impact on vector data. In the proposed case study within the domain of geographic crowdsourced data, we propose algorithms for identifying homological regions and obtaining a corrected tessellation. This methodology can be considered as a step for quality control and the certification of irregular tessellations.  相似文献   

3.
传统上用行政区内每千人病床数等指标来评价就医的空间可达性,并未考虑医院(供给)与人口(需求)的空间分布差异性及两者可跨越行政区界的潜在相互作用。基于GIS的移动搜寻法使用较小普查单元的人口数据,解决了内在的人口空间分布问题;移动搜寻域可以跨越行政区界,更合理地考虑病人与医院潜在的相互作用。本文通过北京市就医空间可达性的实证研究,展现了基于GIS的两步移动搜寻法在公共服务空间可达性评价方面的重要作用。  相似文献   

4.
High‐resolution spatial data have become increasingly available with modern data collection techniques and efforts. However, it is often inappropriate to use the default geographic units to perform spatial analysis due to unstable estimates with small areas (e.g. cancer rates for census blocks or tracts). Regionalization is aggregating small units into relatively larger areas while optimizing a homogeneity measure (such as the sum of squared differences). For exploratory spatial analysis, regionalization may help remove spurious data variation through aggregation and discover hidden patterns in data (such as areas of unusually high cancer rates). Towards this goal, this research introduces several improvements to a recent group of regionalization methods – REDCAP ( Guo 2008 ) and conducts evaluation experiments with synthetic data sets to assess and compare the capability of regionalization methods for exploratory spatial analysis. One of the major improvements is the integration of a local empirical Bayes smoother (EBS) with the regionalization methods. We generate a large number of synthetic data sets with controlled spatial patterns to evaluate the performance of both new and existing methods. Evaluation results show that the new methods (integrated with EBS) perform significantly better than their original versions and other methods (including the EBS method on its own) in terms of detecting the true patterns in the synthetic data sets.  相似文献   

5.
Global and local spatial autocorrelation in bounded regular tessellations   总被引:3,自引:1,他引:2  
This paper systematically investigates spatially autocorrelated patterns and the behaviour of their associated test statistic Moran's I in three bounded regular tessellations. These regular tessellations consist of triangles, squares, and hexagons, each of increasing size (n=64; 256; 1024). These tesselations can be downloaded at http://geo-www.sbs.ohio-state.edu/faculty/tiefelsdorf/regspastruc/ in several GIS formats. The selection of squares is particularly motivated by their use in raster based GIS and remote sensing. In contrast, because of topological correspondences, the hexagons serve as excellent proxy tessellations for empirical maps in vector based GIS. For all three tessellations, the distributional characteristics and the feasibility of the normal approximation are examined for global Moran's I, Moran's I (k) associated with higher order spatial lags, and local Moran's I i. A set of eigenvectors can be generated for each tessellation and their spatial patterns can be mapped. These eigenvectors can be used as proxy variables to overcome spatial autocorrelation in regression models. The particularities and similarities in the spatial patterns of these eigenvectors are discussed. The results indicate that [i] the normal approximation for Moran's I is not always feasible; [ii] the three tessellations induce different distributional characteristics of Moran's I, and [iii] different spatial patterns of eigenvectors are associated with the three tessellations. Received: 2 July 1999 / Accepted: 9 November 1999  相似文献   

6.
Mismatching sets of boundaries present a persistent problem in spatial analysis for many different applications. Dasymetric mapping techniques can be employed to estimate population characteristics of small areas that do not correspond to census enumeration boundaries. Several types of ancillary data have been used in dasymetric mapping but performance is often limited by their relatively coarse resolution and moderate correspondence to actual population counts. The current research examines the performance of using high resolution ancillary data in the form of individual address point datasets which represent the locations of all addressable units within a jurisdiction. The performance of address points was compared with several other techniques, including areal weighting, land cover, imperviousness, road density and nighttime lights. Datasets from 16 counties in Ohio were used in the analysis, reflecting a range of different population densities. For each technique the ancillary data sources were employed to estimate census block group population counts using census tracts as source zones, and the results were compared with the known block group population counts. Results indicate that address points perform significantly better compared with other types of ancillary data. The overall error for all block groups (n = 683) using address points is 4.9% compared with 10.8% for imperviousness, 11.6% for land cover, 13.3% for road density, 18.6% for nighttime lights and 21.2% for areal weighting. Using only residential address points rather than all types of locations further reduces this error to 4.2%. Analysis of the spatial patterns in the relative performance of the various techniques revealed that address points perform particularly well in low density rural areas, which typically present challenges for traditional dasymetric mapping techniques using land cover datasets. These results provide very strong support for the use of address points for small area population estimates. Current developments in the growing availability of address point datasets and the implications for spatial demographic analyses are discussed.  相似文献   

7.
Spatial accessibility is an enduring topic of spatial analysis that is intimately tied to issues of spatial representation and scale. A variety of methods to measure accessibility have been developed with most research focusing on metropolitan‐sized spatial extents using census‐defined aggregation units and relying on vector point representation to calculate Euclidean or network distances as key ingredients in measure formulations. Less research considers broader scales where both origin and destination points are treated as polygons. This research develops alternative gravity‐based measures of polygon‐to‐polygon accessibility for a case study of county‐level accessibility to national forests in the western US. Different methods of county and forest representation are implemented using census block centroids and a lattice approach for disaggregation and re‐aggregation. Other characteristics that are analyzed include origin‐destination linkage definitions, population weighting, and distance thresholds. Correlation analysis is used to assess relationships of alternative measures with a simple percentage measure and with each other. Low correlations would suggest that measures capture different aspects of accessibility that are related to their qualitative characteristics. Results show the alternative measures to be dissimilar from the percentage measure; however, high correlations among alternative measures suggest that there is little to differentiate certain disaggregated measures in spite of their richer qualitative interpretation.  相似文献   

8.
This paper discusses the importance of determining an accurate depiction of total population and specific sub-population distribution for urban areas in order to develop an improved "denominator," which would enable the calculation of more correct rates in GIS analyses involving public health, crime, and urban environmental planning. Rather than using data aggregated by arbitrary administrative boundaries such as census tracts, we use dasymetric mapping, an areal interpolation method using ancillary information to delineate areas of homogeneous values. We review previous dasymetric mapping techniques (which often use remotely sensed land-cover data) and contrast them with our technique, Cadastral-based Expert Dasymetric System (CEDS), which is particularly suitable for urban areas. The CEDS method uses specific cadastral data, land-use filters, modeling by expert system routines, and validation against various census enumeration units and other data. The CEDS dasymetric mapping technique is presented through a case study of asthma hospitalizations in the Bronx, New York City, in relation to proximity buffers constructed around major sources of air pollution. The case study shows the impact that a more accurate estimation of population distribution has on a current environmental justice and health disparities research project, and the potential of CEDS for other GIS applications.  相似文献   

9.
In map generalization, displacement is the most frequently used operator to reduce the proximity conflicts caused by reducing scales or other generalization operations. Building displacement can be formalized as a combinatorial optimization problem, and a heuristic or intelligent search algorithm can be borrowed to obtain the solution. In this way, we can explicitly resolve minimum distance conflicts and control positional accuracy during the displacement. However, maintaining spatial relations and patterns of buildings can be challenging. To address spatial conflicts as well as preserve the significant spatial relations and patterns of buildings, we propose a new spatial contextual displacement algorithm based on an immune genetic algorithm. To preserve important spatial relations and global patterns of map objects and avoid topology errors, displacement safety zones are constructed by overlapping the Voronoi tessellation and buffer areas of the buildings. Additionally, a strategy to shift the buildings in a building group synchronously is used to maintain local building patterns. To demonstrate the effectiveness of our algorithm, two data sets with different building densities were tested. The results indicate that the new algorithm has obvious advantages in preventing topology errors and preserving spatial relations and patterns.  相似文献   

10.
When we map an area or create a digital database for it, the first task is often to partition the space into smaller units. There are traditionally two methods of partitioning: vector and raster. A vector partition delineates the boundary of features by polylines while a raster partition subdivides the space into a regular matrix of square or rectangular pixels. These two are complementary methods of subdividing the space either by features or by unconstrained space cells. In the third dimension, they are extended to polyhedra and voxels, respectively. We will argue in this paper that the terms “vector” and “raster” cannot describe all cases of tessellation. With advances in data modelling, variations of the two traditional methods have been developed, such as the representation of a feature by pixels and not by polylines. At present, there is a lack of systematic terminology to describe the various methods of tessellation. In this paper, we will propose a taxonomy for three-dimensional space tessellation. Its essential feature is to distinguish between abstract concepts of tessellation and their encoding methods. We recognise that tessellation of geographic space is carried out in different stages with increasingly precise mathematical meaning. This provides us with an insight into the process of spatial tessellation and a model to systematically describe the various structures. These concepts could form a basis for spatial data models.  相似文献   

11.
This article describes a methodology for allocating demographic microdata to small enumeration areas such as census tracts, in the presence of underlying ambiguities. Maximum Entropy methods impute population weights that are constrained to match a set of census tract‐level summary statistics. Once allocated, the household characteristics are summarized to revise estimates of tract‐level demographic summary statistics, and to derive measures of ambiguity. The revised summary statistics are compared with original tract summaries within a context of expected variation. Allocation ambiguity is quantified for each household as a function of the distribution of imputed sample weights over all census tracts, and by computed metrics of confusion and variety of allocation to any census tract. The process reported here allows differentiation of households with regard to inherent ambiguity in the allocation decision. Ambiguity assessment represents an important component that has been neglected in spatial allocation work to date but can be seen as important additional knowledge for demographers and users of small area estimates. For the majority of tested variables, the revised tract level summaries correlate highly with original tract summary statistics. In addition to assessments for individual households, it is also possible to compute average allocation ambiguity for individual tracts, and to associate this with demographic characteristics not utilized in the allocation process.  相似文献   

12.
一种人口连续分布模型的研究   总被引:3,自引:0,他引:3  
分析了常用的表示人口分布的方法及其不足,提出了将人口统计数据空间分布化的方法,将研究区域划分为一定分辨率的格网,用距离衰减函数将人口密度估计值分配到每个格网上,每个格网上的人口是均匀分布的,随着格网分辨率的提高,就可以模拟出符合人口说细分布的人口密度空间连续分布模型,并通过实验说明该方法是可行的。  相似文献   

13.
The hierarchid tessellation model belongs to a class of spatial data models based on the recursive decomposition of space. The quadtree is one such tessellation and is characterized by square cells and a 1:4 decomposition ratio. To relax these constraints in the tessellation, a generalized hierarchical tessellation data model, called Adaptive Recursive Tessellations (ART), has been proposed. ART increases flexibility in the tessellation by the use of rectangular cells and variable decomposition ratios. In ART, users can specify cell sizes which are intuitively meaningful to their applications, or which can reflect the scales of data. ART is implemented in a data structure called Adaptive Recursive Run-Encoding (ARRE), which is a variant of two-dimensional run-encoding whose running path can vary with the different tessellation structures incorporated in an ART model. Given the recognition of the benefits of implementing statistical spatial analysis in GIS, the use of hierarchical tessellation models such as ART in spatial analysis is discussed. Three examples are introduced to show how ART can: (1) be applied to solve the quadrat size problem in quadrat analysis of point patterns; (2) act as the data model in the variable resolution block kriging technique for geostatistical data to reduce variation in kriging error; and (3) facilitate the evaluation of spatial autocorrelation for area data at multiple map resolutions via the construction of a connectivity matrix for calculating spatial autocorrelation indices based on ARRE.  相似文献   

14.
基于规则知识的空间推理研究   总被引:5,自引:0,他引:5  
在一般空间推理的基础上 ,提出了空间推理扩展 ,即基于规则知识的空间推理。该方法结合了人工智能的基本原理 ,继承并发展了空间推理的方法学 ,其推理过程建立在空间知识与模型集成的基础上 ,以规则知识为推理控制 ,因而更符合实际 ,具有更大的灵活性。实例验证了本方法的正确性。  相似文献   

15.
Dasymetric mapping techniques can be employed to estimate population characteristics of small areas that do not correspond to census enumeration areas. Land cover has been the most widely used source of ancillary data in dasymetric mapping. The current research examines the performance of alternative sources of ancillary data, including imperviousness, road networks, and nighttime lights. Nationally available datasets were used in the analysis to allow for replicability. The performance of the techniques used to examine these sources was compared to areal weighting and traditional land cover techniques. Four states were used in the analysis, representing a range of different geographic regions: Connecticut, New Mexico, Oregon, and South Carolina. Ancillary data sources were used to estimate census block group population counts using census tracts as source zones, and the results were compared to the known block group population counts. Results indicate that the performance of dasymetric methods varies substantially among study areas, and no single technique consistently outperforms all others. The three best techniques are imperviousness with values greater than 75 percent removed, imperviousness with values greater than 60 percent removed, and land cover. Total imperviousness and roads perform slightly worse, with nighttime lights performing the worst compared to all other ancillary data types. All techniques performed better than areal weighting.  相似文献   

16.
Population data used in GIS analyses is generally assumed to be homogeneous and planar (i.e. census tracts, townships or prefectures) due to the public unavailability of building population data. However, information on building population is required for micro-spatial analysis for improved disaster management and emergency preparedness, public facility management for urban planning, consumer and retail market analysis, environment and public health programs and other demographic studies. This article discusses a GIS approach using the Areametric and Volumetric methods for estimating building population based on census tracts and building footprint datasets. The estimated results were evaluated using actual building population data by visual, statistical and spatial means, and validated for use in micro-spatial analysis. We have also implemented a standalone GIS tool (known as 'PopShape GIS') for generating new building footprint with population attribute information based on user-defined criteria.  相似文献   

17.
18.
Development in techniques of spatial data acquisition enables us to easily record the trajectories of moving objects. Movement of human beings, animals, and birds can be captured by GPS loggers. The obtained data are analyzed by visualization, clustering, and classification to detect patterns frequently or rarely found in trajectories. To extract a wider variety of patterns in analysis, this article proposes a new method for analyzing trajectories on a network space. The method first extracts primary routes as subparts of trajectories. The topological relations among primary routes and trajectories are visualized as both a map and a graph‐based diagram. They permit us to understand the spatial and topological relations among the primary routes and trajectories at both global and local scales. The graph‐based diagram also permits us to classify trajectories. The representativeness of primary routes is evaluated by two numerical measures. The method is applied to the analysis of daily travel behavior of one of the authors. Technical soundness of the method is discussed as well as empirical findings.  相似文献   

19.
The social interaction potential (SIP) metric measures urban structural constraints on social interaction opportunities of a metropolitan region based on the time geographic concept of joint accessibility. Previous implementations of the metric used an interaction surface based on census tracts and the locations of their centroids. This has been shown to be a shortcoming, as the metric strongly depends on the scale of the zoning system in the region, making it difficult to compare the SIP metric between metropolitan regions. This research explores the role of spatial representation in the SIP metric and identifies a suitable grid-based representation that allows for comparison between regions while retaining cost-effectiveness with respect to computational burden. We also report on findings from an extensive sensitivity analysis investigating the SIP metric’s input parameters such as a travel flow congestion factor and the length of the allowable time budget for social activities. The results provide new insights on the role of the modifiable areal unit problem in the computation of time geographic measures of accessibility.  相似文献   

20.
地图制图中行政区划通常用颜色来区分,本文以Heawood定理及其证明过程为基础,提出一个基于协调某些已着色区域,用限定色数对政区进行自动着色的方法。它在只要求区分相邻色块的情况下,用最多5种颜色就可完成着色过程。并且在此方法中,根据制图中图面颜色平衡的要求,引进颜色的权重及相应的着色步骤。通过分析地图行政单元的区划特点以及制图中表示行政单元的要求,指出对政区这一类地图着色,在存在分离区域的情况下,不能保证按给定色数完成自动着色过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号