首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Large differences in chemistry between sampling points separated In short vertical intervals are often observed in contaminant plumes in both granular and fractured aquifers. However, most regional models assume that such differences will be reduced by dispersive mixing during transport. At a field site located in a discharge area on the Oak Ridge Reservation, Tennessee, ground water flows along discrete flowpaths, as evidenced by the presence of four distinct water types—Ca-HCO3, Ca-Na-HCO3, and Na-Ca-HCO3, and Na-Ca-HCO3-S04—in samples collected from shallow (< 3D in) multilevel wells. The preservation of distinct chemical signatures suggests that ground water must he contained in discrete flow zones during much of its transport time. The chemical composition of the water types can be explained primarily by strata-bound flow over varying flowpath lengths and secondarily by mixing of waters during cross-formational flow in a discharge zone. The hydrochemical facies identified by correlation of water types between the boreholes indicate the general orientation of ground water How paths. These inferred flowpaths are oblique to the orientation of the measured hydraulic gradient and are more closely aligned with bedding and the calculated flow direction. Results of this study indicate that discrete multilevel sampling for analysis of major ions, in addition to information gathered from tracer tests, borehole flow tests. and visual core observations, can provide valuable information on flow directions and preferential flowpaths for contaminant transport.  相似文献   

2.
According to common understanding, the advective velocity of a conservative solute equals the average linear pore-water velocity. Yet direct monitoring indicates that the two velocities may be different in heterogeneous media. For example, at the Camp Dodge, Iowa, site the advective velocity of discrete Cl- plumes was less than one tenth of the average pore-water velocity calculated from Darcy's law using the measured hydraulic gradient, effective porosity, and hydraulic conductivity (K) from large-scale three-dimensional (3D) techniques, e.g., pumping tests. Possibly, this difference reflects the influence of different pore systems, if the K relevant to transient solute flux is influenced more by lower-K heterogeneity than a steady or quasi-steady water flux. To test this idea, tracer tests were conducted under controlled laboratory conditions. Under one-dimensional flow conditions, the advective velocity of discrete conservative solutes equaled the average pore-water velocity determined from volumetric flow rates and Darcy's law. In a larger 3D flow system, however, the same solutes migrated at approximately 65% of the average pore-water velocity. These results, coupled with direct observation of dye tracers and their velocities as they migrated through both homogeneous and heterogeneous sections of the same model, demonstrate that heterogeneity can slow the advective velocity of discrete solute plumes relative to the average pore-water velocity within heterogeneous 3D flow sytems.  相似文献   

3.
Regional ground water flow is most usually estimated using Darcy's law, with hydraulic conductivities estimated from pumping tests, but can also be estimated using ground water residence times derived from radioactive tracers. The two methods agree reasonably well in relatively homogeneous aquifers but it is not clear which is likely to produce more reliable estimates of ground water flow rates in heterogeneous systems. The aim of this paper is to compare bias and uncertainty of tracer and hydraulic approaches to assess ground water flow in heterogeneous aquifers. Synthetic two-dimensional aquifers with different levels of heterogeneity (correlation lengths, variances) are used to simulate ground water flow, pumping tests, and transport of radioactive tracers. Results show that bias and uncertainty of flow rates increase with the variance of the hydraulic conductivity for both methods. The bias resulting from the nonlinearity of the concentration–time relationship can be reduced by choosing a tracer with a decay rate similar to the mean ground water residence time. The bias on flow rates estimated from pumping tests is reduced when performing long duration tests. The uncertainty on ground water flow is minimized when the sampling volume is large compared to the correlation length. For tracers, the uncertainty is related to the ratio of correlation length to the distance between sampling wells. For pumping tests, it is related to the ratio of correlation length to the pumping test's radius of influence. In regional systems, it may be easier to minimize this ratio for tracers than for pumping tests.  相似文献   

4.
Measurement uncertainty is a key hindrance to the quantification of water fluxes at all scales of investigation. Predictions of soil‐water flux rely on accurate or representative measurements of hydraulic gradients and field‐state hydraulic conductivity. We quantified the potential magnitude of errors associated with the parameters and variables used directly and indirectly within the Darcy – Buckingham soil‐water‐flux equation. These potential errors were applied to a field hydrometric data set collected from a forested hillslope in central Singapore, and their effect on flow pathway predictions was assessed. Potential errors in the hydraulic gradient calculations were small, approximately one order of magnitude less than the absolute magnitude of the hydraulic gradients. However, errors associated with field‐state hydraulic conductivity derivation were very large. Borehole (Guelph permeameter) and core‐based (Talsma ring permeameter) techniques were used to measure field‐saturated hydraulic conductivity. Measurements using these two approaches differed by up to 3\9 orders of magnitude, with the difference becoming increasingly marked within the B horizon. The sensitivity of the shape of the predicted unsaturated hydraulic conductivity curve to ±5% moisture content error on the moisture release curve was also assessed. Applied moisture release curve error resulted in hydraulic conductivity predictions of less than ±0\2 orders of magnitude deviation from the apparent conductivity. The flow pathways derived from the borehole saturated hydraulic conductivity approach suggested a dominant near‐surface flow pathway, whereas pathways calculated from the core‐based measurements indicated vertical percolation to depth. Direct tracer evidence supported the latter flow pathway, although tracer velocities were approximately two orders of magnitude smaller than the Darcy predictions. We conclude that saturated hydraulic conductivity is the critical hillslope hydrological parameter, and there is an urgent need to address the issues regarding its measurement further. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Soil-solution samplers and shallow ground water monitoring wells were utilized to monitor nitrate movement to ground water following H2O2 application to a clogged soil absorption system. Nitrate-nitrogen concentrations in soil water and shallow ground water ranged from 29 to 67 mg/L and 9 to 22 mg/L, respectively, prior to H2O2 treatment. Mean nitrate-nitrogen concentrations in soil water and ground water increased and ranged from 67 to 115 mg/L and 23 to 37 mg/L, respectively, one week after H2O2 application. Elevated concentrations of nitrate-nitrogen above background persisted for several weeks following H2O2 treatment. The H2O2 treatment was unsuccessful in restoring the infiltrative capacity of a well-structured soil. Application of H2O2 to the soil absorption system poses a threat of nitrate contamination of ground water and its usefulness should be fully evaluated before rehabilitation is attempted.  相似文献   

6.
Measurements of CO2 fluxes from ground surface of the atmosphere (soil respiration) are needed to quantify biotic and abiotic reaction rates in unsaturated zones and to gain insight into the importance of these processes on global warming. The use of three techniques (dynamic closed chambers, static chambers, and gradient calculations) to determine soil respiration was assessed by measuring fluxes of microbially produced CO2 from an unsaturated mesocosm (2.4 m dia.×3.2 m thick) and two unsaturated minicosms (0.58 m dia.×1.2 m thick), one maintained at 18–23 °C (HT) and the other at 5 °C (LT). By injecting known and constant CO2 fluxes into the bottom of the HT minicosm and measuring the resulting fluxes, it was shown that the dynamic closed chamber (DCCS) technique yielded accurate measurements of fluxes over the range observed from natural unsaturated media. Over this same range, results showed that the concentration gradient method yielded reasonable estimates of fluxes but its accuracy was limited by uncertainties in both the concentration gradient and the gaseous diffusion coefficient in the soil atmosphere. The static chamber method underestimated the actual flux at higher CO2 fluxes and when adsorption times of >24 h were used.  相似文献   

7.
Installation of a permeable reactive barrier to intercept a phosphate (PO4) plume where it discharges to a pond provided an opportunity to develop and test methods for monitoring the barrier's performance in the shallow pond-bottom sediments. The barrier is composed of zero-valent-iron mixed with the native sediments to a 0.6-m depth over a 1100-m2 area. Permanent suction, diffusion, and seepage samplers were installed to monitor PO4 and other chemical species along vertical transects through the barrier and horizontal transects below and near the top of the barrier. Analysis of pore water sampled at about 3-cm vertical intervals by using multilevel diffusion and suction samplers indicated steep decreases in PO4 concentrations in ground water flowing upward through the barrier. Samples from vertically aligned pairs of horizontal multiport suction samplers also indicated substantial decreases in PO4 concentrations and lateral shifts in the plume's discharge area as a result of varying pond stage. Measurements from Lee-style seepage meters indicated substantially decreased PO4 concentrations in discharging ground water in the treated area; temporal trends in water flux were related to pond stage. The advantages and limitations of each sampling device are described. Preliminary analysis of the first 2 years of data indicates that the barrier reduced PO4 flux by as much as 95%.  相似文献   

8.
To better understand the groundwater resources of southern Nye County, Nevada, a multipart distributed thermal perturbation sensing (DTPS) test was performed on a complex of three wells. These wells penetrate an alluvial aquifer that drains the Nevada National Security Site, and characterizing the hydraulic properties and flow paths of the regional groundwater flow system has proven very difficult. The well complex comprised one pumping well and two observation wells, both located 18 m from the pumping well. Using fiber‐optic cables and line heaters, DTPS tests were performed under both stressed and unstressed conditions. Each test injects heat into the water column over a period of one to two days, and observes the rising temperature during heat injection and falling temperatures after heating ceases. Aquifer thermal properties are inferred from temperature patterns in the cased section of the wells, and fluxes through the 30‐m screened section are estimated based on a model that incorporates conductive and advective heat fluxes. Vertical variations in flux are examined on a scale of tens of cm. The actively flowing zones of the aquifer change between the stressed and unstressed test, and anisotropy in the aquifer permeability is apparent from the changing fluxes between tests. The fluxes inferred from the DTPS tests are compared to solute tracer tests previously performed on the same site. The DTPS‐based fluxes are consistent with the fastest solute transport observed in the tracer test, but appear to overestimate the mean flux through the system.  相似文献   

9.
A natural gradient tracer test using perdeuterated MTBE was conducted in an anaerobic aquifer to determine the relative importance of dispersion and degradation in reducing MTBE concentrations in ground water. Preliminary ground water chemistry and hydraulic conductivity data were used to place the tracer within an existing dissolved MTBE plume at Port Hueneme, California. Following one year of transport, the tracer plume was characterized in detail.
Longitudinal dispersion was identified as the dominant mechanism for lowering the perdeuterated MTBE concentrations. The method of moments was used to determine the longitudinal and lateral dispersion coefficients (0.85 m2/day and 0.08 m2/day, respectively). A mass-balance analysis, carried out after one year of transport, accounted for 110% of the injected mass and indicated that no significant mass loss occurred. The plume structure created by zones of higher and lower hydraulic conductivity at the site was complex, consisting of several localized areas of high tracer concentration in a lower concentration plume. This is important because the aquifer has generally been characterized as exhibiting fairly minor heterogeneity. In addition, the tracer plume followed a curved flowpath that deviated from the more macroscopic direction of ground water flow inferred from local ground water elevation measurements and the behavior of the existing plume. Understanding the mass balance, plume structure, curvature of the tracer plume, and consequently natural attenuation behavior required the detailed sampling approach employed in this study. These data imply that a detailed understanding of site hydrogeology and an extensive sampling network may be critical for the correct interpretation of monitored natural attenuation of MTBE.  相似文献   

10.
When the purpose of aquifer testing is to yield data for modeling aqueous mass transport, pumping tests and gradient measurement can only partially satisfy characterization requirements. Effective porosity, ground water flow velocity, and the vertical distribution of hydraulic conductivity within the aquifer are left as unknowns. Single well tracer methods, when added to the testing program, can be used to estimate these parameters. A drift, and pumpback test yields porosity and velocity, and point-dilution testing yields depth-discrete hydraulic information, A single emplacement of tracer into a test well is sufficient to conduct both tests. The tracer tests are facilitated by a simple method for injecting and evenly distributing the tracer solution into a wellbore, and by new ion-selective electrode instrumentation, specifically designed for submersible service, for monitoring the concentration of tracers such as bromide.  相似文献   

11.
Abstract
Determination of chemical constituent ratios allows distinction between two salinization mechanisms responsible for shallow saline ground water and vegetative-kill areas in parts of west Texas. Mixing of deep-basin (high Cl) salt water and shallow (low Cl) ground water results in saline waters with relatively low Ca/Cl, Mg/Cl, SO44/ Cl, Br/Cl, and NO3/Cl ratios. In scattergrams of major chemical constituents vs. chloride, plots of these waters indicate trends with deep-basin brines as high Cl end members. Evaporation of ground water from a shallow water table, in contrast, results in saline water that has relatively high Ca/Cl, Mg/Cl, SO4/Cl, and Br/CL ratios. Trends indicated by plots of this water type do not coincide with trends indicated by plots of sampled brines. Leaching of soil nitrate in areas with a shallow water table accounts for high NO3 concentrations in shallow ground water.  相似文献   

12.
The flow of ponded water into and through the unsaturated zone depends on both the saturated and unsaturated components of the hydraulic conductivity. Recent studies indicate that the ratio of the saturated (Kfs) to the unsaturated (φm) components (Kfsm=α*) of flow lies within prescribed bounds for most field soils, i.e., 1m−1≤α*≤ 100 m−1. In addition, the fact that the calculation of Kfs and φm is not strongly dependent on the choice of α*, suggests that a site estimation of α* leads to reasonable "best estimates" of Kfs and φm when using the constant head well permeameter technique. As a consequence, measurement of the steady flow rate using only one ponded head may be all that is necessary for many practical applications. Multiple head measurements or independent measurements of α* or φm can be used, however, to give more accurate estimates of Kfs if required.  相似文献   

13.
A fully instrumented physical model was designed and built to reproduce development by surging and monitor its effects during surging and after development. The model simulates a horizontal layer in a confined aquifer with control of vertical overburden pressure. An automatic apparatus produced development by surging in successive phases up to 24 hours. Aquifer tests in steady-state conditions were performed between successive phases. The paper reports the main results of three experiments performed with Johnson screens 200 mm in diameter; they had slot sizes between the D54 and D70 of the aquifer soil. This soil was placed under controlled conditions, and initial homogeneity was obtained as confirmed by initial control tests. Pore pressures (and thus hydraulic heads) were continuously monitored during development phases and aquifer tests by 22 electronic piezometers at distances between 0 and 1 m from the screen. These piezometers measured water pressures every 0.1 s when required. Solid particles passing through the screen were recovered to study the solid yield and the gradation of particles. Positive and negative values of local gradients reached values up to 400 close to the screen at the beginning of development and decreased with time of development. These high values produced high seepage forces displacing particles in the aquifer. The well yield was increased by a factor of 6 after development. These model test results confirmed empirical criteria on entrance velocity, internal stability criteria, and field values of "sand" production by development. In addition, they enabled a quantification of skin effects to be considered in interpreting an aquifer test.  相似文献   

14.
The fate and transport of contaminants in the vicinity of septic fields remains poorly understood in many hydrogeomorphological environments. We report hydrometric data from an intensive hillslope‐scale experiment conducted between 29 August and 11 November 1998 at a residential leach field in New York State. The objective of our study was to characterize water flux within the vadose zone, understand the physical controls on the flux, and predict how this ultimately will affect subsurface water quality. Soil‐water flux was calculated using matric potential measurements from a network of 25 tensiometer nests, each nest consisting of three tensiometers installed to depths of 10, 50 and 130 cm. Unsaturated hydraulic conductivity curves were derived at each depth from field‐determined time‐domain reflectometry–tensiometry moisture‐release curves and borehole permeametry measurements. Flownets indicated that a strong upward flux of soil water occurred between rainstorms. Following the onset of (typically convective) rainfall, low near‐surface matric potentials were rapidly converted to near‐saturated and saturated conditions, promoting steep vertical gradients through the near‐surface horizons of the hillslope. Lateral hydraulic gradients were typically 10 times smaller than the vertical gradients. Resultant flow vectors showed that the flux was predominantly vertical through the vadose zone, and that the flux response to precipitation was short‐lived. The flux response was controlled primarily by the shape of the unsaturated hydraulic conductivity curves, which indicated a rapid loss of conductivity below saturation. Thus, soil water had a very high residence time in the vadose zone. The absence of rapid wetting at 130 cm and the delayed and small phreatic zone response to rainfall indicated that water movement through macropores did not occur on this hillslope. These results are consistent with a Cl tracing experiment, which demonstrated that the tracer was retained in the vadose zone for several months after injection to the system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Electromigration is proposed as an in situ method for preconcentrating contaminants in ground water prior to pumping and treating. In earlier investigations by the senior author and co-workers, it was found that Cu in synthetic ground water migrated strongly to a Pt cathode and plated out as metallic copper. In the present study, carbon electrodes were inserted into a laboratory column of fine quartz sand that was saturated with a lower concentration of CuSO4 solution. A fixed potential of 2.5 V was applied, causing dissolved Cu and SO4 to accumulate strongly at the cathode and anode, respectively. Only minor plating-out of Cu took place on the carbon electrodes. In addition to the use of carbon electrodes, the present research also investigated the effects of a lower concentration of metal, accumulation of SO4 adjacent to the anodes, adsorption of Cu on the sand, and competition by moving ground water.
At an imposed voltage of 2.5 V and in the presence of 65 mg/L of dissolved Cu and 96 mg/L of SO4 (0.001 M CuSO4 solution), electrolysis of water caused large changes in the pH and speciation of the aqueous components, as well as precipitation of solid Cu-hydroxides. Significant retardation of Cu occurred in the presence of ground water flowing at an average intergranular velocity of 0.2 m/day, but only minor retardation at water velocities of 1.9 and 2.9 m/day.
Sulfate tends to migrate strongly to the anodes, suggesting that in situ electromigration may offer a useful new method for preconcentrating such highly soluble ions as SO4, NO3, and CI that are difficult to remove by conventional pump-and-treat methods. A number of potential problems exist that should be addressed in a field test.  相似文献   

16.
The variation in soil texture, surface moisture or vertical soil moisture gradient in larger scale atmospheric models may lead to significant variations in simulated surface fluxes of water and heat. The parameterization of soil moisture fluxes at spatial scales compatible with the grid size of distributed hydrological models and mesoscale atmospheric models ( 100 km2) faces principal problems which relate to the underlying microscopic or field scale heterogeneity in soil characteristics.

The most widely used parameterization in soil hydrology, the Darcy-Richards (DR) equation, is gaining increasing importance in mesoscale and climate modelling. This is mainly due to the need to introduce plant-interactive soil water depletion and stomatal conductance parameterizations and to improve the calculation of deep percolation and runoff. Covering a grid of several hundreds of square kilometres, the DR parameterization in soil-vegetation-atmosphere-transfer schemes (SVATs) is assumed to be scale-invariant. The parameters describing the non-linear, area-average soil hydraulic functions in this scale-invariant DR-equation should be treated as calibration-parameters, which do not necessarily have a physical meaning. The saturated hydraulic conductivity is one of the soil parameters to which the models show very high sensitivity. It is shown that saturated hydraulic conductivity can be scaled in both vertical and horizontal directions for large flow domains.

In this paper, a distinction is made between effective and aggregated soil parameters. Effective parameters are defined as area-average values or distributions over a domain with a single, distinct textural soil type. They can be obtained by scaling or inverse modelling. Aggregated soil parameters represent grid-domains with several textural soil types. In soil science dimensional methods have been developed to scale up soil hydraulic characteristics. With some specific assumptions, these techniques can be extrapolated from classical field-scale problems in soil heterogeneity to larger domains, compatible with the grid-size of large scale models. Particularly promising is the estimation of effective soil hydraulic parameters from area averaging measurements through inverse modelling of the unsaturated flow.

Techniques to scale and aggregate the soil characteristics presented in this paper qualify for direct or indirect use in large scale meteorological models. One of the interesting results is the effective behaviour of the reference curve, which can be obtained from similar media scaling. If the conclusions of this paper survive further studies, a relatively simple method will become available to parameterize soil variability at large scales. The inverse technique is found to provide effective soil parameters which perform well in predicting both the area-average evaporation and the area-average soil moisture fluxes, such as subsurface runoff. This is not the case for aggregated soil parameters. Obtained from regression relationships between soil textural composition and hydraulic characteristics, these aggregated parameters predict evaporation fluxes well, but fail to predict water balance terms such as percolation and runoff. This is a serious drawback which could eventually hamper the improvement of the representation of the hydrological cycle in mesoscale atmospheric models and in GCMs.  相似文献   


17.
Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced‐gradient tracer test. We estimated the three dimensional (3D) hydraulic‐conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot‐point method. We compared the estimated parameter field to available profiles of hydraulic‐conductivity variations from direct‐push injection logging (DPIL), and validated the hydraulic‐conductivity field with hydraulic‐head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual‐domain transport were estimated by fitting tracer data collected during a forced‐gradient tracer test. The dual‐domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic‐conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout.  相似文献   

18.
Land surface process is of great importance in global climate change, moisture and heat exchange in the interface of the earth and atmosphere, human impacts on the environment and eco- system, etc. Soil freeze/thaw plays an important role in cold land surface processes. In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied. A sophisti- cated land surface model is developed, the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux. The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil, but also demon- strates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone, which makes the model applicable for various circumstances. The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme. Finally, the model is applied to analyze the diurnal energy and water cycle char- acteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998. Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently, in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period, ground heat flux increases, and sensible heat flux decreases, but latent heat flux does not change much; and (iv) during freezing period, soil temperature decreases, though ground heat flux increases.  相似文献   

19.
The stability of subsurface Light Nonaqueous Phase Liquids (LNAPLs) is a key factor driving expectations for remedial measures at LNAPL sites. The conventional approach to resolving LNAPL stability has been to apply Darcy's Equation. This paper explores an alternative approach wherein single‐well tracer dilution tests with intermittent mixing are used to resolve LNAPL stability. As a first step, an implicit solution for single‐well intermittent mixing tracer dilution tests is derived. This includes key assumptions and limits on the allowable time between intermittent mixing events. Second, single‐well tracer dilution tests with intermittent mixing are conducted under conditions of known LNAPL flux. This includes a laboratory sand tank study and two field tests at active LNAPL recovery wells. Results from the sand tank studies indicate that LNAPL fluxes in wells can be transformed into formation fluxes using corrections for (1) LNAPL thicknesses in the well and formation and (2) convergence of flow to the well. Using the apparent convergence factor from the sand tank experiment, the average error between the known and measured LNAPL fluxes is 4%. Results from the field studies show nearly identical known and measured LNAPL fluxes at one well. At the second well the measured fluxes appear to exceed the known value by a factor of two. Agreement between the known and measured LNAPL fluxes, within a factor of two, indicates that single‐well tracer dilution tests with intermittent mixing can be a viable means of resolving LNAPL stability.  相似文献   

20.
Eloctromigraiion offers a potential tool for remediating ground water contaminated with highly soluble components, such as Na+, Cl, NO3 and SO4. A field experiment was designed to lest the efficacy of electromigration for preconcontrating dissolved SO42 in ground water associated with a fossil-fuel power plant. Two shallow wells, 25 feel apart (one 25 feel deep, the other 47 feet deep), were constructed in the upper portion of an unconfined alluvial aquifer. The wells were constructed with a double-wall design, with an outer casing of 4-inch PVC and an inner lube of 2-inch FVC; both were fully slotted (0.01 inch). Electrodes were constructed by wrapping the inner lulling with a 100-foot length of rare-earth metal oxide/copper wire. An electrical potential of 10.65 volts DC Was applied, and tests were run for periods of 12, 44, and 216 hours. Results showed large changes in the pH from the initial pH of ground water of about 7.5 to values of approximately 2 and 12 at the anode and cathode, respectively. Despite the fact that the test conditions were far from ideal, dissolved SO42-; was significantly concentrated at the anode. Over a period of approximately nine days, the concentration of SO42- at the anode reached what appeared to he a steady-state value of 2200 mg/L. compared lo the initial value in ground water of approximately 1150 mg/L. The results of this field lest should encourage further investigation of electromigration as a tool in the remediation of contaminated ground water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号