共查询到20条相似文献,搜索用时 0 毫秒
1.
Orbital parameters of several artificial satellites of the Earth were analyzed for 1964–2007 and secular variations of the
atmospheric density were estimated for the last 30–40 years. The analysis was based on the information about orbital parameters
of 17 satellites and high-precision numerical integrations of the equations of motion with allowance for basic perturbing
factors and spatiotemporal density variations, calculated from measured solar activity indices using the NRLMSISE-00 atmosphere
model. The results demonstrate the presence of long-term variations in the atmospheric density not presented in modern atmosphere
models. During solar-activity cycle 21, the atmospheric density became 0.4 to 19% higher (depending on height) than in cycle
20. It decreased by 1.0 to 11% (depending on height) in cycle 22 as compared to cycle 21. Both decreases and increases were
observed in the atmospheric density during cycle 23, but with much smaller gradients. The results cannot be explained only
by the growing concentration of greenhouse gases. Possible causes of the density variations and possible ways to take them
into account in modern empirical and semiempirical atmospheric models are discussed. 相似文献
2.
The results of the solar radius measurements from February 2001 to November 2003 with the solar astrolabe at the TUBITAK National
Observatory are presented. The mean semi-diameter for the period, corrected for systematic effects such as the Fried parameter
and the zenith distance, is found to be 959.29 ± 0.01 arc sec. A comparison of the monthly averages of the solar radius with
the monthly means of sunspot numbers shows that the semi-diameter of the Sun increases with an amplitude of 0.017 arc sec
per year in opposite phase with solar cycle 23. 相似文献
3.
We present the results of our long-term U BV R observations of the star T Tauri performed at Mt. Maidanak Observatory from 1986 until 2003. These data, together with previous photoelectric observations of other authors, suggest that the long-term variations of the light curve are not periodic, but have a cycle with a time scale of 6–9 yr. The light curve also exhibits slower variations with time scales of ~30–40 yr. We confirm the existence of periodic brightness variations with a period of \(P = 2\mathop .\limits^d 798\) over many years; this process is peculiar in that the phase and shape of the phase curve change from season to season. We analyze the color behavior of the star. We found evidence of a strong flare occurred on October 5, 1999, when the brightness of the star reached \(9\mathop .\limits^m 22\). This is the strongest flare recorded during its photoelectric observations. 相似文献
4.
The results of a reduction of the dataset obtained with the RATAN-600 within the framework of the “Cosmological Gene” project are reported. The project was performed in order to estimate the contribution of atmospheric noise in observations of Galactic background radiation. Atmospheric noise prevails on time scales exceeded 10–100 seconds. The efficiency of preselecting the data with low atmospheric noise on the time scales of interest is demonstrated. The potential of the “Cosmological Gene” project for different accumulation times in the sky area studied are assessed with the effect of real atmospheric noise taken into account. 相似文献
5.
C. de Jager 《Astrophysics and Space Science》1978,59(1):165-170
Observations related to the photospheric velocity field of Cephei can be interpreted as follows: during the whole cycle of pulsations the only motion form in the atmosphere is a wave motion with a nearly constant full amplitude of approximately 15 km s–1, and a wavelength of about 106 km (which are quantities, about equal to the amplitudes of pulsational velocity and radius of the star). There are no significant small-scale turbulent velocity components. The microturbulent and macroturbulent velocities, as derived from spectral line observations, are fully compatible with this picture. 相似文献
6.
Doppler measurements of the photosphere of the entire Sun carried out at the Crimean Astrophysical Observatory (CrAO) in 1974–2007 by the differential technique showed the presence of an enigmatic periodicity of P 1 = 159.967(4) min. The phase of this oscillation was constant over the entire 34-year of surveys and interval. The true nature of this phenomenon is unknown. Pulsation with the former period P 0 = 160.0101(15) min has been reliably detected only in the first nine years, from 1974 to 1982. It is noted that (a) the average amplitude of the P 1 oscillation in the first half of the data was nearly 34% higher than in the second half and (b) the beat period of 400(14) d of these two pulsations is equal within error to the Jovian synodic period (399 d). A hypothesis is discussed relating the P 1 oscillation to the superfast rotation of the inner solar core. 相似文献
7.
M. A. Zaitsev M. V. Gerasimov E. N. Safonova A. S. Vasiljeva 《Solar System Research》2016,50(2):113-129
Results of the experiments on model impact vaporization of peridotite, a mineral analogue of stony asteroids, in a nitrogen–methane atmosphere are presented. Nd-glass laser (γ = 1.06 µm) was used for simulation. Pulse energy was ~600–700 J, pulse duration ~10–3 s, vaporization tempereature ~4000–5000 K. The gaseous medium (96% vol. of N2 and 4% vol. of CH4, P = 1 atm) was a possible analogue of early atmospheres of terrestrial planets and corresponded to the present-day atmosphere composition of Titan, a satellite of Saturn. By means of pyrolytic gas chromatography/mass spectrometry, it is shown that solid condensates obtained in laser experiments contain relatively complex lowand high-molecular weight (kerogen-like) organic compounds. The main products of condensate pyrolysis were benzene and alkyl benzenes (including long-chain ones), unbranched aliphatic hydrocarbons, and various nitrogen-containing compounds (aliphatic and aromatic nitriles and pyrrol). It is shown that the nitrogen–methane atmosphere favors the formation of complex organic compounds upon hypervelocity impacts with the participation of stony bodies even with a small methane content in it. In this process, falling bodies may not contain carbon, hydrogen, and other chemical elements necessary for the formation of the organic matter. In such conditions, a noticeable contribution to the impact-induced synthesis of complex organic substances is probably made by heterogeneous catalytic reactions, in particular, Fischer–Tropsch type reactions. 相似文献
8.
Measurements from the 1225 to 1340 Å region by the ultraviolet detectors on Mars-3 are presented. Model calculations of the intensity of the OI triplet lines at 1304 Å are compared with the measurements made on December 27, 1971, and February 17, 1972. Agreement is found between experimental data and a model in which the neutral oxygen density at 100 km is 2–8 × 109 cm?3. 相似文献
9.
The two-dimensional equation of transfer is solved for the case of locally-controlled source function (LTE) and radiationally-controlled ionization. Horizontal fluctuations in electron temperature and macroscopic velocity fields are superposed on the basic one-dimensional model (cf. Altrock and Cannon, 1972). Output intensities are compared with observed rms intensity fluctuations and spatially-averaged intensities in Mg i 4571 Å. We find that at least one model (with a height-independent temperature fluctuation T/T=±0.02 in the range 0h450 km) can predict the magnitude of the intensity fluctuations in both the continuum and 4571 Å. The asymmetry of the line can be explained by adding a height-independent, temperature-correlated flow of amplitude 1 to 2 km s–1. The relationship between these results and other multi-dimensional analyses is discussed.On leave from Department of Applied Mathematics, University of Sydney, Sydney, Australia. 相似文献
10.
A. V. Morozhenko A. P. Vidmachenko P. V. Nevodovskii 《Kinematics and Physics of Celestial Bodies》2013,29(5):243-246
The upper atmospheric layer of Venus, Mars, Jupiter, Saturn, and earth contains an aerosol layer. The meteorites, rings, and removal of small planetary particles may be responsible for its appearance. The observations from 1979–1992 have shown that the optical aerosol thickness over the earth’s polar regions varies from τ ≈ 0.0002 to 0.1 to λ = 1 μm. The highest τ value was in 1984 and 1992 and was preceded by intense activity of the El Chichon (1982) and Pinatubo (1991) volcanoes. We have shown that increase in τ of the stratospheric aerosol may lead to decrease in ozone layer registered in the 1970s. The nature of the stratospheric aerosol (a real part of the refraction index), effective size particles r, and latitudinal variation τ remain unknown. The analysis of phase dependence of the degree of polarization is effective among the distal methods of determination of n r and r. The observation value of intensity and degree of polarization in the visible light are caused by the optical surface properties and optical atmospheric thickness, whose values varied with latitude, longitude, and in time. Thus, it is impossible to correctly distinguish the contribution of the stratospheric aerosol. In UV-rays (λ < 300 nm), the ozone layer stops the influence of the surface and earth’s atmosphere up to height of 20–25 km. In this spectrum area, the negative factors are emission of various depolarizating gases, horizontal heterogeneity of the effective optical height of the ozone layer, and oriented particles indicated by variation of the polarization plane. 相似文献
11.
12.
During the 1990–1991 solar maximum, the CRRES satellite measured helium from 38 to 110 MeV n–1, with isotopic resolution, during both solar quiet periods and a number of large solar flares, the largest of which were seen during March and June 1991. Helium differential energy spectra and isotopic ratios are analyzed and indicate that (1) the series of large solar energetic particle (SEP) events of 2–22 June display characteristics consistent with CME-driven interplanetary shock acceleration; (2) the SEP events of 23–28 March exhibit signatures of both CME-driven shock acceleration and impulsive SEP acceleration; (3) below about 60 MeV n–1, the helium flux measured by CRRES is dominated by solar helium even during periods of least solar activity; (4) the solar helium below 60 MeV n–1 is enriched in 3He, with a mean 3He/4He ratio of about 0.18 throughout most of the CRRES mission `quiet' periods; and (5) an association of this solar component with small CMEs occurring during the periods selected as solar `quiet' times. 相似文献
13.
V. L. Oknyansky N. V. Metlova O. G. Taranova V. I. Shenavrin B. P. Artamonov C. M. Gaskell 《Astronomy Letters》2014,40(9):527-536
We investigate the correlation between infrared (JHKL) and optical (B) fluxes of the variable nucleus of the Seyfert galaxy NGC4151 using partially published data for the last 6 years (2008–2013). We find that the lag of flux in all the infrared bands is the same, 40±6 days, to within the measurement accuracy. Variability in the J and K bands is not quite simultaneous, perhaps due to the differing contributions of the accretion disk in these bands. The lag found for the K band compared with the B band is not significantly different from earlier values obtained for the period 2000–2007. However, finding approximately the same lags in all IR bands for 2008–2013 differs from previous results at earlier epochs when the lag increased with increasing wavelength. Examples of almost the same lag in different IR bands are known for some other active nuclei. In the case of NGC 4151 it appears that the relative lags between the IR bands may be different in different years. The available data, unfortunately, do not allow us to investigate a possible change in the lags during the test interval. We discuss our results in the framework of the standard model where the variable infrared radiation is mainly due to thermal re-emission from the part of the dusty torus closest to the central source. There is also a contribution of some IR emission from the accretion disk, and this contribution increases with decreasing wavelength. 相似文献
14.
Sami Dib C. Jakob Walcher Mark Heyer Edouard Audit Laurent Loinard 《Monthly notices of the Royal Astronomical Society》2009,398(3):1201-1206
Supernova (SN) explosions inject a considerable amount of energy into the interstellar medium (ISM) in regions with high-to-moderate star formation rates. In order to assess whether the driving of turbulence by supernovae is also important in the outer Galactic disc, where the star formation rates are lower, we study the spatial distribution of molecular cloud (MC) inclinations with respect to the Galactic plane. The latter contains important information on the nature of the mechanism of energy injection into the ISM. We analyse the spatial correlations between the position angles (PAs) of a selected sample of MCs (the largest clouds in the catalogue of the outer Galaxy published by Heyer et al). Our results show that when the PAs of the clouds are all mapped to values into the [0°, 90°] interval, there is a significant degree of spatial correlation between the PAs on spatial scales in the range of 100–800 pc. These scales are of the order of the sizes of individual SN shells in low-density environments such as those prevailing in the outer Galaxy and where the metallicity of the ambient gas is of the order of the solar value or smaller. These findings suggest that individual SN explosions, occurring in the outer regions of the Galaxy and in likewise spiral galaxies, albeit at lower rates, continue to play an important role in shaping the structure and dynamics of the ISM in those regions. The SN explosions we postulate here are likely associated with the existence of young stellar clusters in the far outer regions of the Galaxy and the ultraviolet emission and low levels of star formation observed with the Galaxy Evolution Explorer (GALEX) satellite in the outer regions of local galaxies. 相似文献
15.
A. K. Pavlov A. V. Blinov G. I. Vasilyev M. A. Vdovina P. A. Volkov A. N. Konstantinov V. M. Ostryakov 《Astronomy Letters》2013,39(9):571-577
An explanation is offered for the impulsive increase in the concentration of cosmogenic radiocarbon in annual tree rings (Δ14C ~ 12‰) from AD ?775. A possible cause of such an increase could be the high-energy emission from a Galactic gamma-ray burst. It is shown that such an event should not lead to an increase in the total production of 10Be in the atmosphere, as distinct from the effect of cosmic-ray fluxes on the atmosphere. At the same time, the production of an appreciable amount of 36Cl, which can be detected in Greenland and Antarctica ice samples of the corresponding age, should be expected. This allows the effects caused by a gamma-ray burst and anomalously powerful proton events to be distinguished. 相似文献
16.
To correctly determine the relative contribution of aerosol to the scattering properties of a gas–aerosol medium in the continuum, we propose a method that allows more reliable values of the imaginary part of the refractive index n i to be obtained for Jupiter’s atmosphere in the short-wavelength spectral range. We considered the measurement data on the spectral values of the geometric albedo of Jupiter acquired in 1993 and used the model of homogeneous spherical aerosol particles. The obtained values of n i are 0.00378, 0.00309, 0.00254, 0.00175, 0.00123, 0.00084, 0.00064, 0.00045, 0.00031, 0.00033, 0.00013, and 0.00008 at wavelengths λ = 320, 350, 375, 400, 420, 450, 470, 500, 520, 550, 606, and 631 nm, respectively. 相似文献
17.
V. G. Kruchinenko K. I. Churyumov T. K. Churyumova 《Kinematics and Physics of Celestial Bodies》2011,27(3):109-116
This paper analyzes data on thermal explosions of large meteoroids in the earth’s atmosphere. The cumulative function of flux
of space bodies is corrected with regard to the explosion height, which is determined, according to our approach, by maximum
braking. As a result, the integral function of flux in the work [Brown, P., Spalding, R.E., ReVelle, D.O., et al., The Flux of Small Near-Earth Objects Colliding with the Earth, Nature, 2002, vol. 420, pp. 314–316] is consistent with the one we derived earlier. It is found that at least one phenomenon of those discussed
in the paper by Brown et al. is a result of explosion of a comet nucleus fragment. It is shown that the Tunguska phenomenon
cannot be explained within a monolithic body model. 相似文献
18.
Using the Fourier Transform Spectrometer at the Canada-France-Hawaii Telescope, we observed a spectrum of Mars at the P-branch of the strongest CH4 band at 3.3 μm with resolving power of 180,000 for the apodized spectrum. Summing up the spectral intervals at the expected positions of the 15 strongest Doppler-shifted martian lines, we detected the absorption by martian methane at a 3.7 sigma level which is exactly centered in the summed spectrum. The observed CH4 mixing ratio is 10±3 ppb. Total photochemical loss of CH4 in the martian atmosphere is equal to , the CH4 lifetime is 340 years and methane should be uniformly mixed in the atmosphere. Heterogeneous loss of atmospheric methane is probably negligible, while the sink of CH4 during its diffusion through the regolith may be significant. There are no processes of CH4 formation in the atmosphere, so the photochemical loss must therefore be balanced by abiogenic and biogenic sources. Outgassing from Mars is weak, the latest volcanism is at least 10 million years old, and thermal emission imaging from the Mars Odyssey orbiter does not reveal any hot spots on Mars. Hydrothermal systems can hardly be warmer than the room temperature at which production of methane is very low in terrestrial waters. Therefore a significant production of hydrothermal and magmatic methane is not very likely on Mars. The calculated average production of CH4 by cometary impacts is 2% of the methane loss. Production of methane by meteorites and interplanetary dust does not exceed 4% of the methane loss. Methane cannot originate from an extinct biosphere, as in the case of “natural gas” on Earth, given the exceedingly low limits on organic matter set by the Viking landers and the dry recent history which has been extremely hostile to the macroscopic life needed to generate the gas. Therefore, methanogenesis by living subterranean organisms is a plausible explanation for this discovery. Our estimates of the biomass and its production using the measured CH4 abundance show that the martian biota may be extremely scarce and Mars may be generally sterile except for some oases. 相似文献
19.
S. V. Drabek V. V. Komarov S. A. Potanin A. D. Savvin A. S. Moskvitin O. I. Spiridonova 《Astrophysical Bulletin》2017,72(2):206-216
The results of studies of the optics of the 1-m Zeiss-1000 telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) by the Shack–Hartmann (SH) method are presented. Using a Shack–Hartmann wavefront sensor (SH WFS) we have adjusted the telescope optical system by means of shifts and tilts of the secondary mirror. The procedure has significantly reduced the aberrations that appeared during the long-term instrument operation. A new method to investigate the surface quality of the mirrors of the Zeiss-1000 being applied, characteristics close to the diffraction limit are achieved. In general, the entire opto-mechanical telescope system provides an image quality of about 0.5″ at 80%energy level. 相似文献
20.
V.A. Krasnopolsky 《Icarus》1975,24(1):28-35
Altitude dependences of [CO2] and [CO2+] are deduced from Mariner 6 and 7 CO2+ airglow measurements. CO2 densities are also obtained from ne radio occultation measurements. Both [CO2] profiles are similar and correspond to the model atmosphere of Barth et al. (1972) at 120 km, but at higher altitudes they diverge and at 200–220 km the obtained [CO2] values are three times less the model. Both the airglow and radio occultation observations show that a correction factor of 2.5 should be included into the values for solar ionization flux given by Hinteregger (1970). The ratio of [CO2+]/ne is 0.15–0.2 and, hence, [O]/[CO2] is ~3% at 135 km. An atmospheric and ionospheric model is developed for 120–220 km. The calculated temperature profile is characterized by a value of T ≈ 370°K at h ? 220 km, a steep gradient (~2°/km) at 200-160 km, a bend in the profile at 160 km, a small gradient (~0.7°/km) below and a value of T ≈ 250°K at 120 km. The upper point agrees well with the results of the Lyman-α measurements; the steep gradient may be explained by molecular viscosity dissipation of gravity and acoustical waves (the corresponding energy flux is 4 × 10?2 erg cm?2sec?1 at 180 km). The bend at 160 km may be caused by a sharp decrease of the eddy diffusion coefficient and defines K ≈ 2 × 108cm2sec?1; and the low gradient gives an estimate of the efficiency of the atmosphere heating by the solar radiation as ? ≈ 0.1. 相似文献