首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Equations which describe single phase fluid flow and transport through an elastic porous media are obtained by applying constitutive theory to a set of general multiphase mass, momentum, energy, and entropy equations. Linearization of these equations yields a set of equations solvable upon specification of the material coefficients which arise. Further restriction of the flow to small velocities proves that Darcy's law is a special case of the general momentum balance.  相似文献   

2.
In this paper a semi-analytical approach is proposed to understand the mechanism by which a non-uniform vegetated flowpasses over a finite thick soil layer covered with grass. The flow region is divided into three layers: a homogenous water layer, a mixed water-grass layer, and a finite thick soil layer (hereafter referred to as the water layer, the grass layer, and the soil layer). The flow of the water layer is governed by the Navier–Stokes equations. Both the grass and soil layers are regarded as porous media and the Biot’s theory of poroelasticity is applied to the porous medium flow. The semi-closed solutions are then obtained by the Runge–Kutta method. The drag force induced by the flow through the grass layer and the flow profiles of three patterns: submerged grass, emergent grass and mixed type are also discussed.  相似文献   

3.
Complexity of the pore geometry and the random nature of flow velocity make it difficult to predict and represent post laminar flow through porous media. Present study experimentally investigates the applicability of Forchheimer and Wilkins equations for post laminar flow where Darcy’s law is invalid due to predominant inertial effect. It is observed that both porosity and media size have significant influence over the coefficients of the Forchheimer coefficients. To incorporate the effect of porosity and media size, behaviour of Forchheimer coefficients are investigated with hydraulic radius as characteristic length. An inversely proportional variation trend is found for all the present and earlier reported data. A new empirical relation between Forchheimer coefficients and hydraulic radius is obtained which can be universally applicable for all media size and porosity. Coefficients of the Wilkins equation are found to be non-deviating for different hydraulic radius in the present study and in the reported literature validating its applicability in predicting the non laminar flow through porous media. Further the Wilkins equation is modified after incorporating the correction factors for better applicability on the field.  相似文献   

4.
5.
A fully coupled finite-element model is presented to simulate geothermal reservoirs in terms of the unknown variables of displacement, pore pressure and temperature using an elasto-plastic stress-strain relationship. The mathematical model combines the simultaneous mechanisms of subsidence, mass flow and heat flow through porous media by utilizing the equilibrium, fluid flow and energy flow equations. The governing partial differential equations are based upon constant physical parameters (except fluid density) and formulated for hot-water-type geothermal reservoirs. A simultaneous solution algorithm is applied to the modelling equations yielding transient and spatial distributions of the unknown variables. Application of the simulator to actual field conditions is performed by simulating the production history of a well located in the Denizli-Kızıldere geothermal field in Turkey. The results show an excellent agreement between the computed and the observed values of temperature and pore pressure variations throughout the reservoir.  相似文献   

6.
Transport processes in heterogeneous porous media are often treated in terms of one-equation models. Such treatment assumes that the velocity, pressure, temperature, and concentration can be represented in terms of a single large-scale averaged quantity in regions having significantly different mechanical, thermal, and chemical properties. In this paper we explore the process of single-phase flow in a two-region model of heterogeneous porous media. The region-averaged equations are developed for the case of a slightly compressible flow which is an accurate representation for a certain class of liquid-phase flows. The analysis leads to a pair of transport equations for the region averaged pressures that are coupled through a classic exchange term, in addition to being coupled by a diffusive cross effect. The domain of validity of the theory has been identified in terms of a series of length and timescale constraints.In Part II the theory is tested, in the absence of adjustable parameters, by comparison with numerical experiments for transient, slightly compressible flow in both stratified and nodular models of heterogeneous porous media. Good agreement between theory and experiment is obtained for nodular and stratified systems, and effective transport coefficients for a wide range of conditions are presented on the basis of solutions of the three closure problems that appear in the theory. Part III of this paper deals with the principle of large-scale mechanical equilibrium and the region-averaged form of Darcy's law. This form is necessary for the development and solution of the region-averaged solute transport equations that are presented in Part IV. Finally, in Part V we present results for the dispersion tensors and the exchange coefficient associated with the two-region model of solute transport with adsorption.  相似文献   

7.
Flow and displacement of non-Newtonian fluids in porous media occurs in many subsurface systems, related to underground natural resource recovery and storage projects, as well as environmental remediation schemes. A thorough understanding of non-Newtonian fluid flow through porous media is of fundamental importance in these engineering applications. Considerable progress has been made in our understanding of single-phase porous flow behavior of non-Newtonian fluids through many quantitative and experimental studies over the past few decades. However, very little research can be found in the literature regarding multi-phase non-Newtonian fluid flow or numerical modeling approaches for such analyses.For non-Newtonian fluid flow through porous media, the governing equations become nonlinear, even under single-phase flow conditions, because effective viscosity for the non-Newtonian fluid is a highly nonlinear function of the shear rate, or the pore velocity. The solution for such problems can in general only be obtained by numerical methods.We have developed a three-dimensional, fully implicit, integral finite difference simulator for single- and multi-phase flow of non-Newtonian fluids in porous/fractured media. The methodology, architecture and numerical scheme of the model are based on a general multi-phase, multi-component fluid and heat flow simulator — TOUGH2. Several rheological models for power-law and Bingham non-Newtonian fluids have been incorporated into the model. In addition, the model predictions on single- and multi-phase flow of the power-law and Bingham fluids have been verified against the analytical solutions available for these problems, and in all the cases the numerical simulations are in good agreement with the analytical solutions. In this presentation, we will discuss the numerical scheme used in the treatment of non-Newtonian properties, and several benchmark problems for model verification.In an effort to demonstrate the three-dimensional modeling capability of the model, a three-dimensional, two-phase flow example is also presented to examine the model results using laboratory and simulation results existing for the three-dimensional problem with Newtonian fluid flow.  相似文献   

8.
White球状Patchy模型中纵波传播研究   总被引:4,自引:2,他引:2       下载免费PDF全文
在球坐标系下用直接求解孔隙弹性方程的方法计算了介观尺度下空间周期排列的White球状Patchy模型中纵波传播问题.首先对纵波的衰减和频散进行了计算,并引入了物理学上声子晶体原理来解释高频时纵波在White球状模型中传播的异常现象.在含水饱和度和速度关系的研究中发现,在低频段用等效流体理论和Gassmann理论估计流体Patchy饱和岩石中的纵波速度完全能够满足当前地震勘探的要求.随后的具有相同含气饱和度但有不同周期的Patchy模型研究结果表明,随着空间周期变大,低频的纵波频散变得明显,纵波衰减峰频率向低频移动,但峰值几乎不变.最后,对单元外层含水中心含油的White球状Patchy模型和中心含气White球状Patchy模型进行研究、对比,发现孔隙流体流动对孔隙介质中的纵波频散、衰减影响显著.另外,在具体数值求解过程中用缩减方程组规模的方法解决了线性方程组严重病态得不到正确结果的问题.  相似文献   

9.
In this paper, dynamic response of saturated-layered porous media under harmonic waves is evaluated through a semi-analytical solution. The coupled differential equations governing the dynamics of saturated or nearly saturated porous media such as soils containing all the inertial terms of solid and fluid phases are presented for a multi-layer system. Possible simplifications of the equations which are called formulations are introduced based upon the presence of inertial terms associated with the phases. The semi-analytical solutions to the response of multiple layers for all the formulations are presented in terms of pore water pressure and stress variations considering a set of non-dimensional parameters and their respective ratios. Validity of the formulations is presented in a non-dimensional parametric space. The maximum discrepancies in the pore pressure response of the formulations leading to validity regions are illustrated for typical dynamic problems. Subsequently, the effects of layering and drainage conditions on these regions are also presented. The proposed semi-analytical solution may be served as a benchmark one for validating the coupled numerical solutions, which can be used to deal with real scientific and geo-engineering problems in the emerging field of computational geomechanics.  相似文献   

10.
The existence of a free‐flow domain (e.g. a liquid layer) adjacent to a porous medium is a common occurrence in many environmental and petroleum engineering problems. The porous media may often contain various forms of heterogeneity, e.g. layers, fractures, micro‐scale lenses, etc. These heterogeneities affect the pressure distribution within the porous domain. This may influence the hydrodynamic conditions at the free–porous domain interface and, hence, the combined flow behaviour. Under steady‐state conditions, the heterogeneities are known to have negligible effects on the coupled flow behaviour. However, the significance of the heterogeneity effects on coupled free and porous flow under transient conditions is not certain. In this study, numerical simulations have been carried out to investigate the effects of heterogeneous (layered) porous media on the hydrodynamics conditions in determining the behaviour of combined free and porous regimes. Heterogeneity in the porous media is introduced by defining a domain composed of two layers of porous media with different values of intrinsic permeability. The coupling of the governing equations of motion in free and porous domains has been achieved through the well‐known Beavers and Joseph interfacial condition. Of special interest in this work are porous domains with flow‐through ends. They represent the general class of problems where large physical domains are truncated to smaller sections for ease of mathematical analysis. However, this causes a practical difficulty in modelling such systems. This is because the information on flow behaviour, i.e. boundary conditions at the truncated sections, is usually not available. Use of artificial boundary conditions to solve these problems effectively implies the imposition of conditions that do not necessarily match with the solutions required for the interior of the domain. This difficulty is resolved in this study by employing ‘stress‐free boundary conditions’ at the open ends of the domains, which have been shown to provide accurate results by a number of previous workers. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
波在饱含流体的孔隙介质中的传播问题   总被引:16,自引:0,他引:16       下载免费PDF全文
考虑到流体的可压缩性,笔者进一步发展了以前的结果。引进了准微观连续条件的概念,直接联合应用流体动力学方程和固体的弹性或粘弹性力学方程,即得到了此种介质的动力学方程组,其中直接引用了流体和固体的弹性(或粘弹性)系数,较之Biot从物理考虑而建立的应力-应变关系中的后两个常数Q、R具有更明确的物理意义,因而更便于用常规的方法确定。证明了,此种无限介质中通常具有两种P波和一种S波,且具阻尼和频散效应。对于几种极端情况可以明确地得到固体波和流体波,有助于近似地解释一些地球物理和声学现象。文中还指出了区分两种典型的计算模型的重要意义。  相似文献   

12.
Tight oil/gas medium is a special porous medium, which plays a significant role in oil and gas exploration. This paper is devoted to the derivation of wave equations in such a media, which take a much simpler form compared to the general equations in the poroelasticity theory and can be employed for parameter inversion from seismic data. We start with the fluid and solid motion equations at a pore scale, and deduce the complete Biot's equations by applying the volume averaging technique.The underlying assumptions are carefully clarified. Moreover, time dependence of the permeability in tight oil/gas media is discussed based on available results from rock physical experiments. Leveraging the Kozeny-Carman equation, time dependence of the porosity is theoretically investigated. We derive the wave equations in tight oil/gas media based on the complete Biot's equations under some reasonable assumptions on the media. The derived wave equations have the similar form as the diffusiveviscous wave equations. A comparison of the two sets of wave equations reveals explicit relations between the coefficients in diffusive-viscous wave equations and the measurable parameters for the tight oil/gas media. The derived equations are validated by numerical results. Based on the derived equations, reflection and transmission properties for a single tight interlayer are investigated. The numerical results demonstrate that the reflection and transmission of the seismic waves are affected by the thickness and attenuation of the interlayer, which is of great significance for the exploration of oil and gas.  相似文献   

13.
将时空守恒元/解元(CE/SE)方法推广到二维孔隙介质多相流问题的数值计算中,采用人工压缩法耦合速度和压力,同时结合杂交粒子水平集方法捕捉物质界面.提出一套完整的二维欧拉型孔隙介质非稳态多相不可压缩黏性流动计算方案.通过对溃坝和液滴在重力作用下的运动和变形问题的数值模拟,验证了方法的精度和有效性.在此基础上,提出了一个新的孔隙介质两相流物理模型——双层流体顶盖驱动方腔流.  相似文献   

14.
The use of similarity solutions for the problem of horizontal infiltration of water into a semi-infinite, dry and homogeneous porous medium is studied based upon some recent results of functional analysis. It is found that the so-called non-unique representation of reported experimental moisture profiles for this problem is not necessarily evidence against the validity of the extended Darcy's law for unsaturated flow through porous media.  相似文献   

15.
Stochastic analysis is commonly used to address uncertainty in the modeling of flow and transport in porous media. In the stochastic approach, the properties of porous media are treated as random functions with statistics obtained from field measurements. Several studies indicate that hydrological properties depend on the scale of measurements or support scales, but most stochastic analysis does not address the effects of support scale on stochastic predictions of subsurface processes. In this work we propose a new approach to study the scale dependence of stochastic predictions. We present a stochastic analysis of immiscible fluid–fluid displacement in randomly heterogeneous porous media. While existing solutions are applicable only to systems in which the viscosity of one phase is negligible compare with the viscosity of the other (water–air systems for example), our solutions can be applied to the immiscible displacement of fluids having arbitrarily viscosities such as NAPL–water and water–oil. Treating intrinsic permeability as a random field with statistics dependant on the permeability support scale (scale of measurements) we obtained, for one-dimensional systems, analytical solutions for the first moments characterizing unbiased predictions (estimates) of system variables, such as the pressure and fluid–fluid interface position, and we also obtained second moments, which characterize the uncertainties associated with such predictions. Next we obtained empirically scale dependent exponential correlation function of the intrinsic permeability that allowed us to study solutions of stochastic equations as a function of the support scale. We found that the first and second moments converge to asymptotic values as the support scale decreases. In our examples, the statistical moments reached asymptotic values for support scale that were approximately 1/10000 of the flow domain size. We show that analytical moment solutions compare well with the results of Monte Carlo simulations for moderately heterogeneous porous media, and that they can be used to study the effects of heterogeneity on the dynamics and stability of immiscible flow.  相似文献   

16.
An equivalent medium model for wave simulation in fractured porous rocks   总被引:3,自引:0,他引:3  
Seismic wave propagation in reservoir rocks is often strongly affected by fractures and micropores. Elastic properties of fractured reservoirs are studied using a fractured porous rock model, in which fractures are considered to be embedded in a homogeneous porous background. The paper presents an equivalent media model for fractured porous rocks. Fractures are described in a stress‐strain relationship in terms of fracture‐induced anisotropy. The equations of poroelasticity are used to describe the background porous matrix and the contents of the fractures are inserted into a matrix. Based on the fractured equivalent‐medium theory and Biot's equations of poroelasticity, two sets of porosity are considered in a constitutive equation. The porous matrix permeability and fracture permeability are analysed by using the continuum media seepage theory in equations of motion. We then design a fractured porous equivalent medium and derive the modified effective constants for low‐frequency elastic constants due to the presence of fractures. The expressions of elastic constants are concise and are directly related to the properties of the main porous matrix, the inserted fractures and the pore fluid. The phase velocity and attenuation of the fractured porous equivalent media are investigated based on this model. Numerical simulations are performed. We show that the fractures and pores strongly influence wave propagation, induce anisotropy and cause poroelastic behaviour in the wavefields. We observe that the presence of fractures gives rise to changes in phase velocity and attenuation, especially for the slow P‐wave in the direction parallel to the fracture plane.  相似文献   

17.
A rigorous understanding of the mass and momentum conservation equations for gas transport in porous media is vital for many environmental and industrial applications. We utilize the method of volume averaging to derive Darcy-scale, closure-level coupled equations for mass and momentum conservation. The up-scaled expressions for both the gas-phase advective velocity and the mass transport contain novel terms which may be significant under flow regimes of environmental significance. New terms in the velocity expression arise from the inclusion of a slip boundary condition and closure-level coupling to the mass transport equation. A new term in the mass conservation equation, due to the closure-level coupling, may significantly affect advective transport. Order of magnitude estimates based on the closure equations indicate that one or more of these new terms will be significant in many cases of gas flow in porous media.  相似文献   

18.
The ability to realistically model flows through heterogeneous domains, which contain both solid and fluid phases, can benefit the analysis and simulation of complex real-world systems. Environmental impact studies, as well as engineering equipment design, can both take advantage of reliable modelling of turbulent flow in permeable media. Turbulence models proposed for such flows depend on the order of application of volume-and time-average operators. Two methodologies, following the two orders of integration, lead to distinct governing equations for the statistical quantities. This paper reviews recently published methodologies to mathematically characterize turbulent transport in permeable media. A new concept, called double-decomposition, is here discussed and instantaneous local transport equations are reviewed for clear flow before the time and volume averaging procedures are applied to them. Equations for turbulent transport follow, including their detailed derivation and a proposed model for suitable numerical simulations. The case of a moving porous bed is also discussed and transport equations for the mean and turbulent flow fields are presented.  相似文献   

19.
The strong coupling of applied stress and pore fluid pressure, known as poroelasticity, is relevant to a number of applied problems arising in hydrogeology and reservoir engineering. The standard theory of poroelastic behavior in a homogeneous, isotropic, elastic porous medium saturated by a viscous, compressible fluid is due to Biot, who derived a pair of coupled partial differential equations that accurately predict the existence of two independent dilatational (compressional) wave motions, corresponding to in-phase and out-of-phase displacements of the solid and fluid phases, respectively. The Biot equations can be decoupled exactly after Fourier transformation to the frequency domain, but the resulting pair of Helmholtz equations cannot be converted to partial differential equations in the time domain and, therefore, closed-form analytical solutions of these equations in space and time variables cannot be obtained. In this paper we show that the decoupled Helmholtz equations can in fact be transformed to two independent partial differential equations in the time domain if the wave excitation frequency is very small as compared to a critical frequency equal to the kinematic viscosity of the pore fluid divided by the permeability of the porous medium. The partial differential equations found are a propagating wave equation and a dissipative wave equation, for which closed-form solutions are known under a variety of initial and boundary conditions. Numerical calculations indicate that the magnitude of the critical frequency for representative sedimentary materials containing either water or a nonaqueous phase liquid is in the kHz–MHz range, which is generally above the seismic band of frequencies. Therefore, the two partial differential equations obtained should be accurate for modeling elastic wave phenomena in fluid-saturated porous media under typical low-frequency conditions applicable to hydrogeological problems.  相似文献   

20.
针对饱和多孔介质中热弹性波的传播特性问题,基于多孔介质理论和广义的热弹性模型,研究平面S波在饱和多孔热弹性介质边界上的反射问题。以考虑流-固耦合的饱和多孔介质波动方程和热-弹耦合的广义热弹性基本方程出发,建立饱和多孔介质的热-流-固耦合弹性波动模型。通过引入势函数并考虑自由透水和绝热的边界条件,经过理论推导最终给出在饱和多孔热弹性介质边界上的四种反射波的振幅反射率的理论表达式。在此基础上进行数值计算,分别讨论平面S波的入射频率、入射角和热膨胀系数等参数对四种反射波的振幅反射率的影响情况。结果表明:各反射波的振幅反射率分别随频率和热膨胀系数的增大而增大,同时也受到平面S波入射角变化的影响。该结论对于土动力学的理论研究及其相关的工程勘探具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号