首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Active fault zones of Armenia, SE Turkey and NW Iran present a diverse set of interrelated natural hazards. Three regional case studies in this cross-border zone are examined to show how earthquakes interact with other hazards to increase the risk of natural disaster. In northern Armenia, a combination of several natural and man-made phenomena (earthquakes, landslides and unstable dams with toxic wastes) along the Pambak-Sevan-Sunik fault (PSSF) zone lowers from 0.4 to 0.2–0.3g the maximum permissible level (MPL) of seismic hazard that may induce disastrous destruction and loss of life in the adjacent Vanadzor depression.

In the Ararat depression, a large active fault-bounded pull-apart basin at the junction of borders of Armenia, Turkey, Iran and Azerbaijan, an earthquake in 1840 was accompanied by an eruption of Ararat Volcano, lahars, landslides, floods, soil subsidence and liquefaction. The case study demonstrates that natural hazards that are secondary with respect to earthquakes may considerably increase the damage and the casualties and increase the risk associated with the seismic impact.

The North Tabriz–Gailatu fault system poses a high seismic hazard to the border areas of NW Iran, eastern Turkey, Nakhichevan (Azerbaijan) and southern Armenia. Right-lateral strike–slip motions along the North Tabriz fault have given rise to strong earthquakes, which threaten the city of Tabriz with its population of 1.2 million.

The examples illustrate how the concentration of natural hazards in active fault zones increases the risk associated with strong earthquakes in Armenia, eastern Turkey and NW Iran. This generally occurs across the junctions of international borders. Hence, the transboundary character of active faults requires transboundary cooperation in the study and mitigation of the natural risk.  相似文献   


2.
We present three geomorphologic and geological phenomena that have occurred in Algeria in recent years: (i) the Bab El Oued mudflow on 11 November 2001, which claimed several hundred lives, (ii) a soil collapse induced by sand liquefaction triggered by the Boumerdes earthquake (M w = 6.8) on 21 May 2003, and (iii) landslides that are threatening Constantine city, for which a hazard map is presented using a qualitative approach. We briefly describe and analyze these natural disasters, and in the first two cases propose the application of geophysical techniques such as ambient noise recordings and electrical imagery to help evaluate their extent and potential threat. Finally a landslide hazard map of Constantine is proposed.  相似文献   

3.
Landslide HotSpot Mapping by means of Persistent Scatterer Interferometry   总被引:1,自引:0,他引:1  
Landslide detection and mapping represent fundamental requirements for every hazard and risk evaluation and consequent improvement of the management strategies for such natural hazards. Optical and radar remote sensing can be used to observe landslide-induced ground deformation, ranging from regional to local scales. This work presents a methodology called Landslide HotSpot Mapping; this approach integrates cartographic, thematic and optical data with Persistent Scatterer Interferometry for the identification of extremely slow to very slow moving landslides, and for the evaluation of their state of activity and intensity. This methodology scans wide areas to detect hotspots, which are narrow unstable zones characterized by higher landslide hazard. To these hotspots, priority has to be given when planning field surveys and in situ validation campaigns, so that field work time and effort can be optimized and significantly reduced. The approach is tested in Central Calabria, over a 4,470?km2 area located in southern Italy. ENVISAT ascending images acquired between 2003 and 2009 and processed with the Persistent Scatterer Pairs (PSP) technique are used to analyse deformation patterns. Combining conventional photo-interpretation with the analysis of PSP data, 64 new landslides are identified and the spatial (boundaries) and temporal (activity) information of 980 pre-mapped phenomena (23.6% of updated inventory) are updated. 1,012 active (continuous or reactivated) landslides are identified and 4 hotspot areas selected: San Fili, Rende, Lago, Catanzaro. Urgent field checks have to be organized for these hotspots to validate the satellite-based observations and to design appropriate mitigation measures to reduce impacts on the elements at risk.  相似文献   

4.
Intense rainfall in May 1998 and December 1999 caused disastrous landslides in the Sarno-Quindici and Cervinara areas (Campania, southern Italy). The landslides began with slips of the local pyroclastic covers mantling the carbonate relief and then evolved into debris flows/avalanches. The study discussed in this paper used a numerical modelling approach to assess the influence of man-made cuts on the stability conditions of pyroclastic covers. The model that was developed took into account initial failure conditions in order to better simulate the impact of man-made cuts along the slopes, with or without water seepage into the permeable pumiceous layers of the pyroclastic multilayer. Numerical analysis of stress-strain field clearly showed that tracks or geomorphological discontinuities had a negative impact on the multilayer stability conditions. Consequently, preservation of this vulnerable environment requires correct forest management practices.  相似文献   

5.
6.
Landslide is one of the natural disasters which causes a lot of annual damage directly or indirectly in the world. Many planned areas, especially in hilly regions, are prone to different types of landslides; therefore, landslide susceptibility maps become an urgent issue, so that landslide damages and impact can be minimized. The best method for studying landslides, which has long been of interest to researchers, is hazard zonation. In this method, due to the affecting factors in landslide occurrence, study areas are classified into areas with low to very high risk. Different methods have been developed for this purpose. In this paper, the four bivariate statistical methods namely information value, density area, LNRF, and frequency ratio are used to investigate the hazard zonation of landslide in Miandarband located north of the Kermanshah Province. The density ratio (D r) and Qs values for information value, density area, frequency ratio, and LNRF methods used in this study were calculated to be 2.245312, 0.98146; 2.857816, 1.071185; 2.858085, 0.783945; and 2.418375, 1.070928, respectively. The results indicate that although there are minor differences, the frequency ratio method compared to the density area method that was used for the study of landslide zonation presents better results.  相似文献   

7.
黄土地区一些小型沟谷的沟脑和沟岸常发生黄土滑坡, 并沿沟远程滑动数百米至千余米, 有时大量滑体滑出沟口形成大面积的扇状堆积体, 造成严重的灾害损失. 虽然此类滑坡的平面形态与粘性泥流类似, 但其发生除由暴雨直接引发外, 也可能由滞后降水、地震、冻融、灌溉等引发. 泥流型黄土滑坡沿沟道的运动具有明显的相对固定的滑动面和滑动带, 与一般的粘性泥流差异较大, 更具滑坡的特征, 属于一种特殊的黄土滑坡. 暴雨引发的泥流型黄土滑坡的前缘部分滑体可转化为泥流, 形成滑坡-泥流灾害链. 通过对近年来发生的典型泥流型黄土滑坡实例分析, 论述了该类滑坡的特征、成因和灾害属性, 为此类滑坡的研究与防治提供一定的参考.  相似文献   

8.

This paper reports on a quantitative estimation of the risk to residents at the toe of Mount Albino, a carbonatic relief covered by shallow deposits of pyroclastic soils, which threatens the municipality of Nocera Inferiore (southern Italy). The quantitative risk analysis (QRA) focuses on one type of mass transport phenomena typical for the context at hand, namely the hyperconcentrated flows. The methodological approach includes three main steps: hazard analysis, consequence analysis and risk estimation. Based on historical incident data, the hazard analysis makes use of a high-resolution digital terrain model and advanced models that incorporate relevant geological and geotechnical input data collected via in situ investigations and laboratory tests. The consequence analysis takes into account information on the exposed persons (age, gender) and their vulnerability. The estimated risk to life is calculated at the individual level (risk to the average and most exposed person). The reported procedure is one of the first QRA’s applications to instabilities which potentially affect natural slopes in Italy, and it was successfully used as technical basis for a public participatory process in Nocera Inferiore, designed and developed to support decisions about risk mitigation measures.

  相似文献   

9.
Flash floods are considered to be one of the worst weather-related natural disasters. They are dangerous because they are sudden and are highly unpredictable following brief spells of heavy rain. Several qualitative methods exist in the literature for the estimations of the risk level of flash flood hazard within a watershed. This paper presents the utilization of remote sensing data such as enhanced Thematic Mapper Plus (ETM+), Shuttle Radar Topography Mission (SRTM), coupled with geological, geomorphological, and field data in a GIS environment for the estimation of the flash flood risk along the Feiran–Katherine road, southern Sinai, Egypt. This road is a vital corridor for the tourists visiting here for religious purposes (St. Katherine monastery) and is subjected to frequent flash floods, causing heavy damage to man-made features. In this paper, morphometric analyses have been used to estimate the flash flood risk levels of sub-watersheds within the Wadi Feiran basin. First, drainage characteristics are captured by a set of parameters relevant to the flash flood risk. Further, comparison between the effectiveness of the sub-basins has been performed in order to understand the active ones. A detailed geomorphological map for the most hazardous sub-basins is presented. In addition, a map identifying sensitive sections is constructed for the Feiran–Katherine road. Finally, the most influenced factors for both flash flood hazard and critical sensitive zones have been discussed. The results of this study can initiate appropriate measures to mitigate the probable hazards in the area.  相似文献   

10.
This paper reports on a quantitative estimation of the risk to residents at the toe of Mount Albino, a carbonatic relief covered by shallow deposits of pyroclastic soils, which threatens the municipality of Nocera Inferiore (southern Italy). The quantitative risk analysis (QRA) focuses on one type of mass transport phenomena typical for the context at hand, namely the hyperconcentrated flows. The methodological approach includes three main steps: hazard analysis, consequence analysis and risk estimation. Based on historical incident data, the hazard analysis makes use of a high-resolution digital terrain model and advanced models that incorporate relevant geological and geotechnical input data collected via in situ investigations and laboratory tests. The consequence analysis takes into account information on the exposed persons (age, gender) and their vulnerability. The estimated risk to life is calculated at the individual level (risk to the average and most exposed person). The reported procedure is one of the first QRA’s applications to instabilities which potentially affect natural slopes in Italy, and it was successfully used as technical basis for a public participatory process in Nocera Inferiore, designed and developed to support decisions about risk mitigation measures.  相似文献   

11.
This paper deals with the estimation of both individual and societal risks owing to landslides in the Campania region (southern Italy) thanks to the availability of an extensive catalogue of historical incident data spanning from the 5th century up to now. Individual risk is estimated by computing the landslide mortality rate. Societal risk is measured by plotting the annual frequency F of events causing N or more fatalities against the number N of fatalities (i.e. an F–N curve). The results obtained show that in Campania both individual and societal risks owing to landslides are very high when compared to similar risks of the Italian territory. Moreover, the analysis of the incident data clearly highlights the most prone areas to catastrophic events, essentially related to the occurrence of flow-like fast-moving phenomena, where the societal risk is proved to be one of the highest in Europe.  相似文献   

12.
Fatal landslides in Europe   总被引:4,自引:3,他引:1  
Landslides are a major hazard causing human and large economic losses worldwide. However, the quantification of fatalities and casualties is highly underestimated and incomplete, thus, the estimation of landslide risk is rather ambitious. Hence, a spatio-temporal distribution of deadly landslides is presented for 27 European countries over the last 20  years (1995–2014). Catastrophic landslides are widely distributed throughout Europe, however, with a great concentration in mountainous areas. In the studied period, a total of 1370 deaths and 784 injuries were reported resulting from 476 landslides. Turkey showed the highest fatalities with 335. An increasing trend of fatal landslides is observed, with a pronounced number of fatalities in the latest period from 2008 to 2014. The latter are mostly triggered by natural extreme events such as storms (i.e., heavy rainfall), earthquakes, and floods and only minor by human activities, such as mining and excavation works. Average economic loss per year in Europe is approximately 4.7 billion Euros. This study serves as baseline information for further risk mapping by integrating deadly landslide locations, local land use data, and will therefore help countries to protect human lives and property.  相似文献   

13.
This paper presents a case study about the perception of landslide risk. Following a major set of landslides in the eastern part of Austria in June 2009, we surveyed local experts, residents who had suffered losses from the landslides, and others living in the affected communities. Overall, the risk perception was significantly higher among those who had been personally affected by a landslide, had knowledge of the geology in the study region, had been affected by another natural hazard, or spent a lot of time outdoors and in touch with nature. Non-experts viewed natural factors as the main causes for the occurrence of landslides, while experts viewed anthropogenic factors as more important. Likewise, non-experts placed a greater emphasis on hard measures (such as retaining walls) to reduce the risk, whereas the experts tended to focus on better information and land-use planning. In terms of responsibility for mitigative actions, a majority of inhabitants believed that public authorities should undertake most of the costs, whereby those who had personal experience with landslides were more likely to favor the government paying for it.  相似文献   

14.
In the last 20 years, several catastrophic precipitation-induced landslides have hit villages, towns and roads in Campania (southern Italy), causing extensive damage and many fatalities. Although such phenomena have occurred since time immemorial, recent urbanisation and infrastructural development have produced a major increase in landslide risk. Due to climatic changes and further unavoidable increases in exposure, in the near future, the risk will become even greater. It is therefore high time to develop reliable criteria for landslide prediction. The paper discusses the main factors which affect the triggering of precipitation-induced landslides, highlighting the key role played by antecedent rainfalls which cannot be precisely accounted for using empirical criteria. We propose a simple 1D numerical approach able to predict the evolution of the key factors governing slope stability as a tool to predict the onset of slope failure, with potential benefits for early warning systems. The approach is calibrated through a well-documented case history.  相似文献   

15.
黄河上游地区崩塌滑坡泥石流地质灾害风险评价   总被引:5,自引:0,他引:5  
本文在对黄河上游地区崩塌、滑坡、泥石流进行野外地质调查和资料收集的基础上,确定了灾害风险评价的主要影响要素和指标体系,进行了以县(市、旗)为单元的风险评价。评价单元共116个。研究区地质灾害风险共分为5级,高风险单元3个,较高风险单元8个,中等风险单元24个,较低风险单元54个,低风险单元27个。风险评价结果表明,评价区内不同地区崩滑流灾害风险程度相对差异较大,总体分布特点是中部地区较高,北部和南部较低。从风险指数的结果来看,有些风评价单元的风险指数非常接近临界值,一旦危险性条件和易损性条件发生改变,将会引起地质灾害的风险级别发生变化。因此,在西部大开发的进程中,无论是在开发资源还是进行各种工程活动,都应注意保护环境,避免地质灾害向着严重的方向发展。   相似文献   

16.
《地学前缘(英文版)》2020,11(4):1203-1217
Natural hazards are often studied in isolation.However,there is a great need to examine hazards holistically to better manage the complex of threats found in any region.Many regions of the world have complex hazard landscapes wherein risk from individual and/or multiple extreme events is omnipresent.Extensive parts of Iran experience a complex array of natural hazards-floods,earthquakes,landslides,forest fires,subsidence,and drought.The effectiveness of risk mitigation is in part a function of whether the complex of hazards can be collectively considered,visualized,and evaluated.This study develops and tests individual and collective multihazard risk maps for floods,landslides,and forest fires to visualize the spatial distribution of risk in Fars Province,southern Iran.To do this,two well-known machine-learning algorithms-SVM and MARS-are used to predict the distribution of these events.Past floods,landslides,and forest fires were surveyed and mapped.The locations of occurrence of these events(individually and collectively) were randomly separated into training(70%) and testing(30%) data sets.The conditioning factors(for floods,landslides,and forest fires) employed to model the risk distributions are aspect,elevation,drainage density,distance from faults,geology,LULC,profile curvature,annual mean rainfall,plan curvature,distance from man-made residential structures,distance from nearest river,distance from nearest road,slope gradient,soil types,mean annual temperature,and TWI.The outputs of the two models were assessed using receiver-operating-characteristic(ROC) curves,true-skill statistics(TSS),and the correlation and deviance values from each models for each hazard.The areas-under-the-curves(AUC) for the MARS model prediction were 76.0%,91.2%,and 90.1% for floods,landslides,and forest fires,respectively.Similarly,the AUCs for the SVM model were 75.5%,89.0%,and 91.5%.The TSS reveals that the MARS model was better able to predict landslide risk,but was less able to predict flood-risk patterns and forest-fire risk.Finally,the combination of flood,forest fire,and landslide risk maps yielded a multi-hazard susceptibility map for the province.The better predictive model indicated that 52.3% of the province was at-risk for at least one of these hazards.This multi-hazard map may yield valuable insight for land-use planning,sustainable development of infrastructure,and also integrated watershed management in Fars Province.  相似文献   

17.
B. Sirangelo  G. Braca   《Engineering Geology》2004,73(3-4):267-276
Mathematical models for forecasting landslides and mudflow movements triggered by heavy rainfalls are useful tools to develop warning systems and hazard mitigation strategy for loss reduction.

In the present paper, an application of Forecasting of Landslides Induced by Rainfalls (FLaIR) hydrological model, correlating the rainfall amount and landslide or mudflow movement occurrences, will be performed. Model application presented here refers to the mudflows of Sarno, Southern Italy, and is based on hourly precipitation data available from a real-time rain gauge installed immediately after the catastrophic event that occurred on May 1998.

The application is extended from October 1998 to May 2002. The main objective is to perform a backanalysis in order to verify the reliability of the proposed scheme for use in a warning system.

Among the most interesting results of the application, the relatively few false alarms for populations given by the model may be highlighted.

The FLaIR model is more useful when it is integrated with a probabilistic model for forecasting precipitation depths during a storm event at an hourly scale. By stochastic modelling of hourly precipitation, it is possible to estimate the probability of reaching the alarm threshold before allowing civil protection actions.  相似文献   


18.
Landslide risk perception in Frosinone (Lazio,Central Italy)   总被引:1,自引:0,他引:1  
Landslides are recurrent phenomena in Italy, but little is known regarding the public perception of related risk. In order to investigate landslide risk perception of recent phenomena, we decided to perform a qualitative investigation in Frosinone (Lazio, Central Italy) where, during 2013, a relevant landslide (“Viaduct Biondi”) occurred. Survey results highlighted that Frosinone population have been experiencing landslides but do not consider themselves threatened and prepared in occurrence of this type of emergency. This study pointed out that Frosinone municipality and surrounding town populations behave as an inactive actor in land conservation and management, addressing major responsibility to institutions. For this reason, realization of a purposed designed dissemination campaign would be useful in order to improve citizen knowledge and to enhance their participation in landslide risk reduction activities.  相似文献   

19.
提出了村镇滑坡灾害的评估方法,依据滑坡的可能性和灾害等级,将滑坡灾害危险性分为危险性小、危险性中等和危险性大等3级; 依据危险性和村镇治理滑坡的能力,将村镇场地划分为不适宜、适宜性差、基本适宜和适宜等4类。提出了村镇滑坡灾害监测的简易方法,包括位移简易监测及滑坡破坏宏观前兆监测。在村镇滑坡灾害评估及监测基础上,探讨了防治村镇滑坡灾害的有效方法。  相似文献   

20.
姚智  况顺达  刘沛 《贵州地质》2002,19(3):184-187
首次通过实例对贵州的高速滑坡进行了讨论,肯定了高速滑坡在贵州的存在,说明了高速滑坡的识别方法。印江岩口等高速滑坡是人类活动引起的;赫章洞头上、盘县水、大方安家寨、大方化露寨等高速滑坡是自然产生的,并由此可初步分析出贵州高速滑坡发育地质、地貌背景。对高速滑坡的认识,因其直接涉及滑体的移动路径和破坏区域而在地质灾害的预测、预报中显得极为重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号