共查询到12条相似文献,搜索用时 62 毫秒
1.
目前海上拖缆地震采集只有道间距满足采样条件,而炮间距、炮线距和缆间距都不能满足采样条件,造成了地震数据的采样不足,导致频谱产生混叠效应。近年来发展了海上拖缆随机采集技术,为了分析该采集技术抗假频特性,以简谐信号和合成地震记录为研究对象,在空间规则采样的条件下,分别分析了充足采样和不充足采样情况下的频谱特征,分析了空间假频产生的原因。同时,在规则采样分析的基础上,对简谐信号和合成地震记录进行了随机抽样和频谱分析,研究了随机采样对空间假频的压制作用,数据分析结果表明海上拖缆地震随机采样可以降低频谱的混叠效应。 相似文献
2.
在简要回顾几种插值方法的基础上 ,提出了基于信号重构的地震道插值方法。这种方法无需任何地质和地球物理假设 ,主要用于恢复缺失的地震道。本方法的基础是傅立叶变换理论和最小平方反演技术。文中给出了原理、算法、实现步骤及简要的流程框图。如果对变换域的参数进行规则采样 ,则该方法可以用高效、快速的算法来实现。本插值方法适用于规则和非规则采样的数据。文中给出了理论合成数据和实际数据的试验结果 ,并对结果进行了讨论。同时 ,本方法对于 AVO分析、DMO处理、三维叠前偏移成像等研究也将是有益的 相似文献
3.
地质灾害启动及演进过程中对途经的村庄、植被、基础设施等均会造成不同程度的破坏,而深入研究灾害的演进过程有助于灾害预警和防治工作,能减少灾区人员伤亡、降低经济损失。然而由于地质灾害的强破坏性和突发性,使得现场的监测仪器和设备易受灾害的影响,甚至被破坏,导致难以完整且准确地监测到灾害过程,这限制了对地质灾害过程的深入研究,因此亟需一种新的方法来进行灾害过程的重构。随着科技的发展,现有高精度地震仪能够记录伴随地质灾害而产生的地震动信号,并且已有不少研究者进行了基于地震动信号的灾害分析研究。基于现有研究的基础,本文提出一套基于地震动信号的地质灾害重构研究思路和方法体系:通过运用带通滤波器(BP-filter)、经验模态分解(EMD)、快速傅里叶变换(FFT)、短时傅里叶变换(STFT)、功率谱密度计算(PSD)等方法对灾害过程产生的地震动信号进行处理和分析,然后结合灾害现场调查结果进行对比分析以反演灾害的基本特征,进而与数值模拟结果进行耦合,最终实现灾害过程的重构。本文基于地震动信号对堰塞湖、滑坡、泥石流等不同灾种进行案例研究与分析,旨在为地质灾害演进过程的研究提供一种新的研究思路和方法体系。 相似文献
4.
岩土细观特征的识别与分析是岩土力学研究的重要内容。基于傅里叶变换原理,将任意岩土颗粒的二维轮廓变换为傅里叶描述符与相位进行分析,建立了基于复数傅里叶分析的细观特征表征与重构方法。通过两组不同颗粒的傅里叶细观特征统计,研究了不同阶傅里叶描述符与细观特征参量的对应关系。结果表明:-12~0及16~20阶对应的傅里叶描述符决定颗粒的形状;-23~-11及1~15阶对应的傅里叶描述符与颗粒粗糙度密切联系;傅里叶描述符曲线峰值与颗粒的粒径显著线性相关;高阶傅里叶系数与阶数近似呈对数线性关系,低阶系数则由不同颗粒形状决定。采用建立的傅里叶描述符对应关系进行颗粒相似重构研究,发现重构颗粒的外轮廓及傅里叶统计参量与实际颗粒十分接近,且反映颗粒的粗糙度、纹理等细部特征,其成果可用于大量岩土颗粒与力学特性的相关性研究。 相似文献
5.
6.
7.
8.
将一个矿床的产出抽象化为一个随机信号的发生,由此导出一递推微分方程组,解之得普阿松分布。证明矿床的产出过程是一个普阿松过程,进而用Γ—分布表述了其参数λ,引出了负二项分布,给出了一个完整的推导过程。 相似文献
9.
10.
11.
《地学前缘(英文版)》2018,9(6):1679-1687
New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed. 相似文献
12.
The main purpose of this study is to highlight the conceptual differences of produced susceptibility models by applying different sampling strategies: from all landslide area with depletion and accumulation zones and from a zone which almost represents pre-failure conditions. Variations on accuracy and precision values of the models constructed considering different algorithms were also investigated. For this purpose, two most popular techniques, logistic regression analysis and back-propagation artificial neural networks were taken into account. The town Ispir and its close vicinity (Northeastern part of Turkey), suffered from landsliding for many years was selected as the application site of this study. As a result, it is revealed that the back-propagation artificial neural network algorithms overreact to the samplings in which the presence (1) data were taken from the landslide masses. When the generalization capacities of the models are taken into consideration, these reactions cause imprecise results, even though the area under curve (AUC) values are very high (0.915 < AUC < 0.949). On the other hand, the susceptibility maps, based on the samplings in which the presence (1) data were taken from a zone which almost represents pre-failure conditions constitute more realistic susceptibility evaluations. However, considering the spatial texture of the final susceptibility values, the maps produced using the outputs of the back-propagation artificial neural networks could be interpreted as highly optimistic, while of those generated using the resultant probabilities of the logistic regression equations might be evaluated as pessimistic. Consequently, it is evident that, there are still some needs for further investigations with more realistic validations and data to find out the appropriate accuracy and precision levels in such kind of landslide susceptibility studies. 相似文献