首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Positive-displacement piston pumps that minimize sample agitation have no apparent advantage over centrifugal submersible pumps when used to collect ground water samples for analysis of low concentrations of purge-able organic compounds. Analytical uncertainties inherent in laboratory environments appear to influence analytical results of low-concentration purgeable organic compound samples more than either pump type or sampling team. Centrifugal submersible pumps are at least equally efficient as positive-displacement piston pumps in the recovery of carbon tetrachloride, 1,1,1-trichloroethane, trichloroethylene, and chloroform after sampling and analytical influences are made constant.  相似文献   

2.
As part of an agricultural non-point-source study in the Conestoga River head waters area in Pennsylvania, different methods for collecting ground water samples from a fractured carbonate-rock aquifer were compared. Samples were collected from seven wells that had been cased to bedrock and drilled as open holes to the first significant water-bearing zone. All samples were analyzed for specific conductance, dissolved oxygen, and dissolved-nitrogen species. Water samples collected by a point sampler without pumping the well were compared to samples collected by a submersible pump and by a point sampler after pumping the well. Samples collected by using a point sampler, adjacent to major water-bearing zones in an open borehole without pumping the well, were not statistically different from samples collected from the pump discharge or from point samples collected adjacent to major water-bearing zones after pumping the well. Samples collected by using a point sampler without pumping the well at depths other than those adjacent to the water-bearing zones did not give the same results as the other methods, especially when the water samples were collected from within the well casings. It was concluded that, for the wells at this site, sampling adjacent to major water-bearing zones by using a point sampler without pumping the well provides samples that are as representative of aquifer conditions as samples collected from the pump discharge after reaching constant temperature and specific conductance, and by using a point sampler after pumping the well.  相似文献   

3.
Four state-of-the-art ground water sampling systems were analyzed to determine their reliability in providing representative samples of the volatile chlorinated hydrocarbons trichloroethylene (TCE), perchloroethylene (PCE), and 1,1,1-trichloroethane (TCA) from a simulated monitoring well. The sampling systems studied represent four commonly used devices, including a stainless steel and Teflon® piston pump, a Teflon bailer, a Teflon bladder pump, and a PVC air-lift pump.
Controlled laboratory sampling experiments were conducted in a tank and well test chamber designed to approximate field conditions. A well purging and sampling procedure was used in the test apparatus to determine the accuracy and precision of each device for detecting low concentrations of the compounds in ground water. The compounds selected are some of the most ubiquitous hazardous contaminants found in shallow aquifers near hazardous waste sites throughout the United States.
No significant statistical difference was found among the four sampling systems in detecting the compounds.  相似文献   

4.
Eighteen sites in South Carolina under investigation by the Superfund program were sampled to determine ambient ground water quality. Samples from 11 of 15 monitoring wells sampled with a bailer contained either caprolactam or Santowhite® (a registered trademark of the Monsanto Co.) or both organic compounds. A maximum of 540 μg/L of caprolactam and 780 μg/L of Santowhite was observed in the samples from the monitoring wells. None of the samples collected using dedicated submersible pumps at 28 other wells contained either compound.
Caprolactam is used in the manufacturing of nylon cord, and Santowhite is used as an antioxidant in latex gloves. Therefore, it was suspected that the nylon cord used to raise and lower the bailer and the latex gloves that were worn during sampling may have contributed the caprolactam and Santowhite to the sample.
An experiment using pH-adjusted distilled water and private well water revealed that the nylon cord and the latex gloves may contribute contaminants to ground water samples. Research is needed into the potential for caprolactam and Santowhite to interfere with laboratory analyses in addition to the potential for absorption of contaminants by nylon cord. Until additional information is available, alternative materials or sampling techniques should be considered to minimize the potential impact of nylon cord and latex gloves on the quality of bailed samples.  相似文献   

5.
This paper reviews both field and laboratory studies that tested or compared the ability of various types of sampling devices to deliver representative ground water samples. Several types of grab samplers, positive displacement devices, and suction-lift devices were evaluated, Gas-lift and inertial-lift pumps were also evaluated. This study found that most of these devices can. under certain circumstances, alter the chemistry of ground water samples, das-lift pumps, older types of submersible centrifugal pumps, and suction-lift devices are not recommended when sampling for sensitive constituents such as volatile organics and inorganics, or inorganics that are subject to oxidation/precipitation reactions. In general, of the devices reviewed in this paper, bladder pumps gave the best recovery of sensitive constituents. However, better performance could be achieved for several devices if improved operational guidelines were developed by additional testing, especially at lower flow rates. Clearly, further research is warranted. Future studies should focus on pumping rate, flow control mechanisms, and dedication or decontamination of sampling devices.  相似文献   

6.
A suction side sample collector (SSSC) is a contrivance installed hydraulically ahead of the intake port of a pumping device. This paper describes construction and operational details of SSSCs fitted to a submersible pump with packer for use in a 6-inch cased borehole, an air lift pump with packer for use in a 1-inch or 2.5-inch cased borehole, a bladder pump for use in a casing of 2-inch or greater diameter, and a jet pump with packer for use in a 2-inch cased borehole.
Each form of SSSC has been thoroughly tested in ground water quality sampling for volatile organic chemicals. Comparative data for samples collected with the SSSCs and conventional sample collecting gear are presented. The SSSC is demonstrated to be superior to other methods of collecting volatile organic chemical samples owing to its freedom from contamination by the pump delivery line and to its mode of collecting the sample from a position in the well remote from disturbance by the pumping technique.
SSSCs are conveniently decontaminated, easily transported, and can be used to deliver samples to the laboratory while still at formation pressure. The air-lift pumps, described in this paper for use with SSSCs in 1- and 2.5-inch casings, have pumping capacities greater than obtained by other methods that can operate in these small casings. Discharge rates of up to 2 gpm are routinely achieved with the 1-inch model and higher rates are common With the 2.5-inch model. The use of packers with these pumps reduces the time needed to replace the water in the casing with fresh water from the formation.  相似文献   

7.
Volatile organic compounds delected in ground water from wells at Test Area North (TAN) at the Idaho National Engineering Laboratory (INEL) prompted RCRA facility investigations in 1989 and 1990 and a CERCLA-driven RI/FS in 1992. In order to address ground water treatment feasibility, one of the main objectives, of the 1992 remedial investigation was to determine the vertical extent of ground water contamination, where the principle contaminant, of concern is trichloroethylene (TCE). It was hypothesized that a sedimentary interbed at depth in the fractured basalt aquifer could be inhibiting vertical migration of contaminants to lower aquifers. Due to the high cost of drilling and installation of ground water monitoring wells at this facility (greater than $100,000 per well), a real time method was proposed for obtaining and analyzing ground water samples during drilling to allow accurate placement of well screens in zones of predicted VOC contamination. This method utilized an inflatable pump packer pressure transducer system interfaced with a datalogger and PC at land surface. This arrangement allowed for real lime monitoring of hydraulic head above and below the packer to detect leakage around the packer during pumping and enabled collection of head data during pumping for estimating hydrologic properties. Analytical results were obtained in about an hour from an on-site mobile laboratory equipped with a gas chromalograplvmass spectrometer (GC/MS). With the hydrologic and analytical results in hand, a decision was made to either complete the well or continue drilling to the next test zone. In almost every case, analytical results of ground water samples taken from the newly installed wells closely replicated the water quality of ground water samples obtained through the pump packer system.  相似文献   

8.
A standpipe system was developed for testing the reliability of ground water samplers. The unit consists of a stainless steel pipe 5 inches (13 centimeters) in diameter and 100 feet (30.5 meters) in height. It has 14 sampling ports from which control samples can be withdrawn at the same time and position as the samples are collected by a sampler lowered to that position. Test solutions were made in two mixing tanks, totaling 260 gallons (980 liters), by diluting the concentrate of five volatile chlorohydrocarbons in water at two levels of concentration: 10-to-30 and 100-to-200 parts per billion (micrograms per liter).
A gas chromatograph interfaced with a purge-and-trap system was used to perform the analyses. Comparisons of the control samples with the sampler-collected samples have indicated that the three non-pumping samplers had recoveries in the range of 92.4 to 103.5 percent and the three pumping samplers had recoveries ranging from 97.7 to 101.5 percent.  相似文献   

9.
In this study a field‐sampling technique for dissolved hydrogen (H2) in groundwater will be presented which allows the transport of gaseous samples into the laboratory for further analysis. The method consists of transferring the headspace trapped in a gas‐sampling bulb which is continuously purged by groundwater into previously evacuated vials using a gas‐tight syringe. Three transfer steps with preceding evacuation of the vial led to a H2‐recovery of 100 % in laboratory experiments. The method has been applied to determine H2 concentrations in an aquifer contaminated with chlorinated solvents. Tests concerning the effect of different pumping techniques on H2 concentrations revealed that most reliable values were obtained with a bladder pump, while an electrically driven submersible pump generated considerable amounts of hydrogen due to electrochemical interactions with the sampled water. Concentrations of dissolved hydrogen in field and laboratory samples were about two orders of magnitude higher when sampling was performed with the electrically driven submersible pump compared to sampling with the bladder pump and a peristaltic pump. Lab experiments with a Plexiglas reservoir to produce H2‐enriched water were used to study the effect of two tubing materials (PVC, polyamide) on H2 losses. PVC tubing turned out to allow transfer of H2‐enriched water over 25 m without significant losses, while PA‐tubing was not suitable for sampling of H2.  相似文献   

10.
A field experiment was conducted to examine the effect of short-term (one minute) contact of pesticide-laden water with a polyvinyl chloride (PVC) bailer on quantitative laboratory measurements of seven pesticide concentrations in distilled water samples subsequently decanted from the bailer. Pesticides were tested at two initial concentrations (low. based on current FPA maximum contaminant levels, or MCL: and high, based on a multiple of approximately lour times the MCL). Pesticide species included bromoxynil, diclofop-m, dimethoate. MCPA, methyl parathion, propiconazole, and trifluralin. Dimethoate recoveries were poor for all treatments. For all other pesticides there was no systematic difference between pesticide concentrations measured before and after bailer contact. Effectiveness of bailer decontamination treatments consisting of distilled water rinse alone was related to water solubility (S) for each species. Distilled water samples decanted from a rigid PVC bailer following initial bailer contact with pesticide-spiked water, and after the bailer had been cleaned with a single distilled water rinse, had measured pesticide concentrations of less than 2 percent of the pesticide concentration in the initial pesticide-spiked water, regardless of S. A single distilled water rinse effectively removed all trace of contaminants having S> 500 mg/L. Multiple distilled water rinses, and multiple distilled water rinses followed by 15 bailings of a well, effectively removed all trace of contaminants having S> 50 mg/L. Below threshold S, cleaning effectiveness decreased as a power function of S.  相似文献   

11.
Loss of volatile organics during sampling is a well-recognized source of bias in ground water monitoring; sampling protocols attempt to minimize such loss. Such bias could be enhanced for ground water highly charged with dissolved gases such as methane. Such ground water was the object of this study. A positive-displacement bladder pump, a momentum-lift pump and a suction-lift, peristaltic pump were employed in sampling both methane-charged ground water for volatile aromatic hydrocarbons and a CO2-charged reservoir water for volatile chlorinated hydrocarbons. In both cases, the suction-lift pump produced samples with a significant negative bias (9 to 33 percent) relative to the other methods. Little difference between samples produced by the other pump Systems was noted at the field site, but in sampling the reservoir, the bladder pump produced samples that were 13 to 19 percent lower in halocarbon concentration than were samples from the momentum-lift pump.
These negative biases are tentatively interpreted as losses due to volatilization during sampling. Slightly greater negative biases occur for compounds of higher volatility as estimated from their Henry's law constants. Additional studies appear to be warranted in order to adequately establish the scientific basis for recommending protocols for sampling ground water in which degassing could enhance the loss of volatile organics during sampling.  相似文献   

12.
为解决聊古1井断流问题,聊城地震水化试验站先后引进、开发了人工激发引流观测技术和潜水泵变频稳流抽水技术.对天然自流观测系统、人工激发引流观测系统和潜水泵变频稳流抽水观测系统等3种不同取水模式下产出的气体观测数据进行一致性分析.结果表明,人工激发引流观测系统下气体观测动态特征年变比较明显,潜水泵变频稳流抽水观测系统下气体观测动态特征与天然自流状态下的动态特征基本一致.  相似文献   

13.
Several detergent-washing/air-drying decontamination protocols were tested to determine their ability to remove residual contamination from two types of ground water sampling devices. We tested a relatively simply constructed device, a bailer, and a much more complex, and theoretically more difficult to decontaminate, bladder pump. The devices were decontaminated after sampling ground water that was contaminated with organics that varied in their hydrophobic nature and propensity to be sorbed by the materials in the devices. These studies showed that a hot-detergent wash, hot-water rinse, and hot-air drying protocol was effective.  相似文献   

14.
The relative precision and accuracy of sampling and analysis methods for the determination of trace concentrations of volatile organic compounds (VOCs) in ground water were compared. Samples were collected from a well containing nanogram-per-liter (ng/L) to microgram-per-liter (μg/L) levels of VOCs. A Keck helical rotor submersible pump was used to collect samples at the surface for analysis by purge and trap (P&T) and for analysis by adsorption/thermal desorption (ATD). Downhole samples were collected by passing water through an ATD cartridge. Although slight spontaneous bubble outgassing occurred when the water was brought to the surface, the relative precisions and comparabilities of the surface and downhole methods were generally found to be equivalent from a statistical point of view. A main conclusion of this study is that bringing sample water to the surface for placement in VOC vials (and subsequent analysis by P&T) can be done reliably under many circumstances. However, care must still be taken to prevent adsorption losses and cross contamination. Samples subject to strong bubble outgassing will need to be handled in a special fashion (e.g., by downhole ATD) to minimize volatilization losses. Additionally, the higher sensitivity of the ATD method allows lower detection limits than are possible with P&T. For example, several compounds present at the ng/L level could be determined with confidence by ATD, but not by P&T.  相似文献   

15.
The authors have recently used several innovative sampling techniques for ground water monitoring at hazardous waste sites. Two of these techniques were used for the first time on the Biscayne Aquifer Super-fund Project in Miami, Florida. This is the largest sampling program conducted so far under the U.S. Environmental Protection Agency (EPA) Superfund Program.
One sampling technique involved the use of the new ISCO Model 2600 submersible portable well sampling pump. A compressed air source forces water from the well into the pump casing and then delivers it to the surface (through a pulsating action). This pump was used in wells that could not be sampled with surface lift devices.
Another sampling technique involved the use of a Teflon manifold sampling device. The manifold is inserted into the top of the sampling bottle and a peristaltic pump creates a vacuum to draw the water sample from the well into the bottle. The major advantage of using this sampling technique for ground water monitoring at hazardous waste sites is the direct delivery of the water sample into the collection container. In this manner, the potential for contamination is reduced because, prior to delivery to the sample container, the sample contacts only the Teflon, which is well-known for its inert properties.
Quality assurance results from the Superfund project indicate that these sampling techniques are successful in reducing cross-contamination between monitoring wells. Analysis of field blanks using organic-free water in contact with these sampling devices did not show any concentration at or above the method detection limit for each priority pollutant.  相似文献   

16.
This study tests the feasibility of an aquifer remediation concept proposed by Gvirtzman and Gorelick (1992) that involves the removal of volatile organic compounds (VOCs) dissolved in ground water. The principal is 10 inject air into a well, creating airlift pumping, which is used as a means of in-well vapor stripping. The partially treated water is diverted away from the well and infiltrates back to the water table, thus allowing remediation of a larger aquifer volume.
A remediation well prototype, constructed in a laboratory aquifer model, was used to demonstrate the processes involved. The removal rates of trichloroethylene, toluene, and chloroform were monitored using eight triple-level observation wells. The continuous decrease of VOC concentrations during the short-term experiment has yielded macroscopic evidence that the process offers some promise. It was found that the flow field in the saturated zone. involving the continuous water circulation between the pumping well and the recharging area, caused temporal and spatial variation in remediation efficiency.  相似文献   

17.
The objective of this study was to confirm if MTBE, which is not intentionally added to fuels other than gasoline, is a contaminant in heating oil and diesel fuel. The study entailed conducting a statewide sampling program of heating oil and diesel fuel in Connecticut. An analytical method was developed to conduct analyses of heating oil and diesel fuel for MTBE in the milligram per liter (mg/L) range. The method involved equilibrating product with water to extract MTBE followed by static head-space analysis on aliquots of the water. Analyses were conducted using a gas chromatograph with a MTBE specific column. The statewide sampling program confirmed the widespread occurrence of MTBE in heating oil and diesel fuel. MTBE was detected in all samples collected during our sampling program at concentrations ranging from 9.7 to 906 mg/L in heating oil (26 samples), and from 74 to 120 mg/L in diesel fuel (five samples). Based on these ranges. MTBE concentrations in ground water in the vicinity of heating oil and diesel fuel releases could exceed thousands of micrograms per liter. Our analysis would suggest that the levels of heating oil and diesel fuel contamination observed could result from the commingling of only a few parts gasoline with thousands of parts of these fuels. The extent to which MTBE occurs in heating oil and diesel fuel nationwide is not known, but our data suggests that it may be widespread.  相似文献   

18.
The objective of most ground water quality monitoring programs is to obtain samples that are "representative" or that retain the physical and chemical properties of the ground water in an aquifer. Many factors can influence whether or not a particular sample is representative, but perhaps the most critical factor is the method or type of sampling device used to retrieve the sample.
The sampling equipment available today ranges from simple to highly sophisticated, and includes bailers, syringe devices, suction-lift pumps, gas-drive devices, bladder (Middelburg-type) pumps, gear-drive and helical rotor electric submersible pumps and gas-driven piston pumps. New devices are continually being developed for use in small-diameter wells in order to meet the needs of professionals engaged in implementing elaborate ground water monitoring programs.
In selecting a sampling device for a monitoring program, the professional must consider a number of details. Among the considerations are: the outside diameter of the device, the overall impact of the device on ground water sample integrity (including the materials from which the sampling device and associated equipment are made and the method by which the device delivers the sample), the capability of the device to purge the well of stagnant water, the rate and the ability to control the rate at which the sample is delivered, the depth limitations of the device, the ease of operating, cleaning and maintaining the device, the portability of the device and required accessory equipment, the reliability and durability of the device, and the initial and operational cost of the device and accessory equipment. Based on these considerations, each of the devices available for sampling ground water from small-diameter wells has its own unique set of advantages and disadvantages that make it suitable for sampling under specific sets of conditions. No one sampling device is applicable to all sampling situations.  相似文献   

19.
The collection of water samples from springs, streams, and wells is a critical component of field hydrogeological studies. Fieldwork, especially in mountainous terrain, often involves hiking to remote springs and streams. It is logistically and physically difficult to carry bulky, heavy sampling equipment such as large peristaltic pumps with built‐in batteries in these areas. To address this problem, researchers at the University of Montana designed the Montana Drill Pump (MDP) roughly 30 years ago to provide a compact, low‐cost and portable option for sampling with a peristaltic pump in the backcountry (Woessner 2007 ). Although the MDP is popular, with the advent of 3D printing techniques, a more robust and precise fitting pump design can be inexpensively created that can be quickly assembled in the lab or field. This new pump design was tested on multiple backpacking sampling campaigns in the Panamint Mountains of southern California, Mount Hood in Oregon, and Glacier National Park in northern Montana during the summer of 2017. The design was proven to be easy to use and durable in the field and offers a rugged, updated, more precisely fitting option to the MDP.  相似文献   

20.
Woessner WW 《Ground water》2007,45(6):795-797
Hydrogeologic research often involves obtaining water quality samples in field settings without vehicle access. Such conditions often require the use of a sampling pump. Researchers at The University of Montana have been using a handheld peristaltic pump powered by a rechargeable variable-speed drill. This Montana Drill Pump (MDP) is highly portable and can be inexpensively built for about $225 to $295 (US). Over the last two decades, the pump has been used to sample and filter (as appropriate) surface water and ground water for analyses of general inorganic and organic chemistry, stable and radioactive isotopes, pathogens, and trace pharmaceuticals and to develop small-diameter wells and sample suction lysimeters. The MDP provides researchers and educators with an economical tool to pump water in classrooms, laboratories, and field settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号