首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydrothermal manganese and ferromanganese deposits associated with Neyriz ophiolite colored mélange occurred as small ore deposits in the Abadeh-Tashk area, SE of Fars Province, SW Iran. The deposits are found in three types: a) banded syngenetic ores, b) massive boudin and lens shaped diagenetic ores and c) vein and veinlet epigenetic ores. Microtextural, geochemical and mineralogical data associated with petrographic Raman, FTIR and SEM studies indicated that the primary Fe compounds formed series of microbially mediated biomats and Mn compounds were precipitated as an amorphous oxide on an active oxide surface accompanying silica gels. Field relationships between ore and host rock, high Mn/Fe ratio (17.43 to 40.79), ΣLREE, positive Eu and negative Ce anomalies in syngenetic ore types reveal that the ores were formed by hydrothermal fluid in an oceanic floor environment. Manganese was fractionated from iron due to physicochemical changes as well as microbial activities in the sedimentary environment. Microbial remains as filamentous beads with regular circular shapes, vermiform structures, series of Fe-rich biomats, traces of embedded organic material besides trace metals and REE concentrations in Mn ores emphasize the role of microorganisms in Fe and Mn precipitation. Syngenetic mineralization took place under suboxic neutrophilic conditions, while diagenetic processes resulted in variably reduced Fe- and Mn-oxides via organic matter decomposition, forming rhodochrosite as the end product. Braunite formation occurred most probably as a biogeochemically mediated early diagenetic product. Diagenetic and epigenetic Mn ores were formed when primary Mn deposits underwent subsequent diagenetic and remobilization–redeposition events respectively.  相似文献   

2.
Abstract. Inorganic chemical compositions are determined for a series of rocks crossing an Early Jurassic stratiform manganese ore deposit in a chert‐dominant sequence at Katsuyama, in the Mino Terrane of central Japan. The lithology in the vicinity of the manganese ore bed is classified into lower bedded chert, black shale, massive chert, manganese ore and upper bedded chert, in ascending order. The rocks surrounding the manganese deposit are anomalously high in certain elements: Pb (max. 29 ppm), Ni (1140) and Co (336) in the lower bedded chert, Mo (438), As (149), Tl (29) and U (12) in the black shales, V (210) and Cr (87) in the massive chert, and MnO and W (24) in the manganese ore. The aluminum‐normalized profiles reveal a distinct zonation of redox‐sensitive elements: Pb‐Zn, Ni‐Co‐Cu(‐Zn) and U‐Cr in the lower bedded chert, Mo‐As‐Tl in the black shale, V(‐Cr) in the massive chert, and Mn‐Fe‐Ba‐W in the manganese ore, in ascending order. The lower and upper bedded cherts and manganese ore generally exhibit flat rare earth element patterns with positive Ce anomalies, whereas the uppermost part of the lower bedded chert, the black shale and massive chert have flat patterns with weak or nonexistent negative Ce anomalies and weak positive Eu anomalies. The strong enrichment in Ni, Co, W, Tl and As detected in the Katsuyama section is not recognized in other sediments, including those of anoxic deposition origin, but is identified in modern ferromanganese nodules, suggesting that metal enrichment in the Katsuyama section is essentially due to the formation of ferromanganese nodules rather than to deposition in an anoxic environment. The observed elemental zonation is well explained by equilibrium calculations, reflecting early diagenetic formation and associated gradual reduction with depth. The concentration profiles in combination with litho‐ and biostratigraphical features suggest that formation of these bedded manganese deposits was triggered by an influx of warm, saline and oxic water into a stagnant deep ocean floor basin in Panthalassa at the end of the middle Early Jurassic. Paleoceanographic environmental controls thus appear to be important factors in the formation and preservation of this type of stratiform manganese deposit.  相似文献   

3.
Abstract. Chemistry and sulfur isotopes are analyzed for a series of rocks in the chert‐dominant sequence around the stratiform manganese ore deposit of the Noda‐Tamagawa mine in the northern Kitakami Terrane, northeast Japan. The sequence is litholog‐ically classified into six units in ascending order: lower bedded chert, lower black shale, massive chert, manganese ore, upper black shale, and upper bedded chert. The rocks around the manganese ore deposit exhibit anomalous enrichment in Ni (max. 337 ppm), Zn (102) and U (30) in the upper part of lower bedded chert, Mo (122), Tl (79) and Pb (33) in the lower black shale, MnO, Cu (786) and Co (62) in the manganese ore, and As (247) and Sb (17) in the upper black shale. The aluminum‐normalized profiles reveal zonal enrichment of redox‐sensitive elements around the manganese bed: Zn‐Ni‐Fe‐Mo‐U(‐Co), Tl‐Pb(‐Mo), Mn‐Fe‐Cu‐V‐Cr‐Co(‐Zn) and As‐Sb in ascending order. The uppermost part of the lower bedded chert and black shale exhibit negative Ce/Ce* values, whereas the massive chert, manganese ore and lower part of the upper bedded chert display positive values. The isotopic δ34S values are 0±6 % in the lower part of the lower bedded chert, ‐19 to ‐42 % in the upper part of the lower bedded chert, ‐36 to ‐42 % in the lower black shale, ‐28 to ‐35 % in the massive chert, manganese ore and upper black shale, and ‐23±5 % in the upper bedded chert. Thus, there is a marked negative shift in δ34S values in the lower bedded chert, and an upward‐increasing trend in δ34S through the manganese ore horizon. The present data provide evidence for a change in the paleoceanographic environmental resulting from inflow of oxic deepwater into the stagnant anoxic ocean floor below the manganese ore horizon. This event is likely to have triggered the precipitation of manganese oxyhydroxides. The redistribution of redox‐sensitive elements through the formation of metalliferous black shale and manganese carbonate ore may have occurred in association with bacterial decomposition of organic matter during early diagenesis of initial manganese oxyhydroxides.  相似文献   

4.
The Godar Sabz Mn deposit is located in the Nain-Baft ophiolitic belt in the northeast margin of the Sanandaj-Sirjan zone, Iran. The Nain-Baft back-arc extensional basin resulted from the subduction of the oceanic crust of Neo-Tethys under the southern margin of the Iranian Plate in the Early Cretaceous and hosts several mineral deposits, including volcanogenic massive sulfide, chromite, and Mn deposits. The mineralization in the Godar Sabz Mn deposit occurred predominantly as stratabound, massive, banded, layered, and lenticular orebodies in radiolarian cherts within Baft ophiolitic complex. The main ore minerals are pyrolusite, braunite, with minor amounts of todorokite. The significant geochemical features of the Godar Sabz ores, such as the high MnO content (21.82–80.65 wt%, average = 64.91 wt%), high Mn/Fe (average = 278), Si/Al ratios (average = 92.6), high Ba contents (average = 4495.6 ppm), the low average contents of Cu (81.8 ppm), Ni (106.2 ppm), Co (29.4 ppm), LREE > HREE, and trace element discrimination diagrams indicate a hydrothermal-exhalative source for mineralization. Chondrite-normalized REE patterns of studied ores have negative Ce and slightly positive Eu anomalies, which are similar to hydrothermal Mn deposits. The REE patterns of Mn ores coincide with basaltic lavas, suggesting that the Mn-mineralization in the Godar Sabz deposit was genetically related to the leaching of basaltic lavas. The Godar Sabz Mn deposit has many similarities with the main characteristics of the hydrothermal exhalative Mn deposits, including tectonic setting, host rock type, the morphology of orebodies, ore textures, mineralogy, and chemical features of ores.  相似文献   

5.
Abstract. Chemical and sulfur isotopic compositions were obtained for a series of rocks within the chert‐clastic sequence surrounding the Kajika massive sulfide ore horizon at Shibukawasawa in the Ashio copper‐mining district, Ashio Terrane, central Japan. The sequence is lithologically classified into three units: chert, siliceous shale with basic volcanics, and sandstone‐shale, in ascending stratigraphic order. The Kajika ore horizon corresponds to the lowermost part of the unit that contains siliceous shale with basic volcanics. The rocks around the Kajika ore horizon are enriched in P2O5 (max. 0.22 %), Ba (max. 2400 ppm), Cu (595 ppm), V (323 ppm), Pb (168 ppm), Zn (124 ppm), and Mo (24 ppm) in siliceous shale; and Ba (4220 ppm), Zr (974 ppm), Cr (718 ppm), Ni (492 ppm), V (362 ppm), Zn (232 ppm), Nb (231 ppm), and Co (71 ppm) in the basic volcanics. The siliceous shale is enriched in a number of redox‐sensitive elements such as Cu, V, Pb, Zn, and Mo, which are known to be enriched in black shale and anoxic and hydrothermal sediments. The δ34S values of sulfides in the chert and sandstone‐shale lie in the range of 0±2 %, and those in the siliceous shale range from ‐5 to ‐14 %. The measured δ34S values in the basic volcanics are ‐0.3, ‐2.7, and ‐31.5 %. These heavier δ34S signatures (around 0 %) recorded throughout the sequence indicate that the rocks formed under anoxic bottom‐water conditions. Slightly lighter δ34S values recorded in siliceous shale might reflect significant mixing of sulfides that formed by sulfate‐reducing bacteria in an overlying oxic environment. The long‐term duration of anoxic conditions indicated by the heavier δ34S signature is considered to have played an important role in protecting the Kajika sulfide ores from oxidative decomposition and preserving the ores in sedimentary accumulations.  相似文献   

6.
Abstract. Several meso‐scale manganese ore bodies, scattered within Jone's horse‐shoe shaped synclinorium, in Bonai‐Keonjhar region of north Orissa are well known in the mineral map of India. Different grades of manganese ores are being exploited from this region by various agencies over a few decades. However, deceptive nature of ore bodies and complexity in control of mineralisation greatly confuse the exploration geologists for evaluation of these resources. In a recent study, the authors have classified Mn‐ore bodies of this region into three broad categories such as stratiform, stratabound (‐replacement) and lateritoid types based on mode of occurrence and their other chemical characteristics. Mn‐ore bands occur in close association with BIF and iron ores. Volcaniclastic shale in large geographic extension encloses these ore bodies. In the stratiform category of ore bodies (BMnF, analogous of BIF), manganese and shale bands, in variables thickness, alternate with each other and extend to a great depth. Such ore bodies generally constitute marginal to low‐grade ores, are characterised by low Mn/Fe ratio (~2) and have relatively lower abundance of trace (1500 to 2500 ppm) and relatively higher REE constituents. The stratabound‐replacement types of ore bodies are of intra‐stratal nature, occurring within tuffaceous shale. These are mostly shear‐controlled ore bodies extending along a zone of certain width. Increase in average Mn/Fe ratio (~6) and trace content (5000 to 8500 ppm) by 5 to 2.5 order of magnitude respectively or more above stratiform category are characteristic of these deposits. The lateritoid ore bodies have limited depth persistency. Such deposits are usually very low in Mn/Fe ratio (<1), trace (<2000 ppm) and REE contents. Different methods of exploration techniques are suggested for various categories of Mn‐ore bodies. In this context, the above findings would be the database for the exploration geologists to evaluate the potential of newer/existing Mn‐ore resources in this part of north Orissa.  相似文献   

7.
甘肃北山地区红山铁矿区硅质岩与铁矿体紧密伴生,且有些硅质岩本身就是铁矿石。常量元素分析表明:硅质岩普遍具有高Si、高Fe、低Al特征,K2O含量普遍高于Na2O,且Fe/Ti值为57.14~218.74,(Fe+Mn)/Ti值为57.54~224.16,Al/(Al+Fe+Mn)值为0.05~0.14,均符合热水沉积硅质岩的特征,但存在少量陆源物质介入。稀土微量元素分析表明:硅质岩大部分微量元素相对于克拉克值亏损,稀土元素总量低,经北美页岩标准化后,Ce异常明显或微明显,Eu呈现明显的正异常,重稀土相对轻稀土富集;δCe值为0.93~1.05,平均为0.99;La/Ce值为0.43~0.49,平均为0.44,更接近于大陆边缘硅质岩的特征。综合以上地球化学特征,硅质岩具有明显的热水沉积成因属性,同时有陆源组分的加入,进而得出红山铁矿为与热水沉积成因有关的铁矿床,当时形成环境为大陆边缘环境。  相似文献   

8.
陕南屈家山锰矿属于"巴山锰矿带"中段,赋存于上震旦统陡山沱组第3岩性段(Z2d3)紫红色钙质页岩中.矿石具有粒状(纤维)变晶、微粒泥质、微晶质(含碎屑)、胶状及条带状、微细纹层理、顺层揉皱、脉状、网脉状等热水同生沉积组构.含矿岩系中矿石的Fe/Ti、(Fe+Mn)/Ti及Al/(Al+Fe+Mn)值依次为14.53~2...  相似文献   

9.
塔里木下寒武统富有机质沉积层段地球化学特征及意义   总被引:1,自引:0,他引:1  
塔里木盆地寒武系下统玉尔吐斯组底部富有机质沉积层段分布广泛,层位稳定,其中的硅质岩发育,并伴有磷矿产出.硅质岩的Al(Al Fe Mn)和Si/(Si Al Fe)比值分别在0.0023~0.0046和0.965~0.98之间,表明其形成于海底热水沉积环境,远离陆源区.富有机质沉积层段明显富集As、Hg、Pb、Zn、Cu、Co、P、V、Ba等微量元素,富集系数F(N)远大于1.Ba/Sr比值远远大于1,与现代海底热水沉积物中的Ba/Sr比值相似,具有明显的海底热水沉积特征;Th/U和V/Sc比值显示其形成与海洋缺氧事件有关,而导致缺氧事件发生的主要原因则是海底火山作用及其与之相伴的海底热水流体活动.  相似文献   

10.
The major, trace and rare earth element (REE) composition of Late Archean manganese, ferromanganese and iron ores from the Iron Ore Group (IOG) in Orissa, east India, was examined. Manganese deposits, occurring above the iron formations of the IOG, display massive, rhythmically laminated or botryoidal textures. The ores are composed primarily of iron and manganese, and are low in other major and trace elements such as SiO2, Al2O3, P2O5 and Zr. The total REE concentration is as high as 975 ppm in manganese ores, whereas concentrations as high as 345 ppm and 211 ppm are found in ferromanganese and iron ores, respectively. Heavy REE (HREE) enrichments, negative Ce anomalies and positive Eu anomalies were observed in post‐Archean average shale (PAAS)‐normalized REE patterns of the IOG manganese and ferromanganese ores. The stratiform or stratabound shapes of ore bodies within the shale horizon, and REE geochemistry, suggest that the manganese and ferromanganese ores of the IOG were formed by iron and/or manganese precipitation from a submarine, hydrothermal solution under oxic conditions that occurred as a result of mixing with oxic seawater. While HREE concentrations in the Late Archean manganese and ferromanganese ores in the IOG are slightly less than those of the Phanerozoic ferromanganese ores in Japan, HREE resources in the IOG manganese deposits appear to be two orders of magnitude higher because of the large size of the deposits. Although a reliable, economic concentration technique for HREE from manganese and ferromanganese ores has not yet been developed, those ores could be an important future source of HREE.  相似文献   

11.
Several small Mn–Fe oxide and Mn-oxide ore bodies associated with Precambrian Iron Ore Group of rocks are located within Koira-Noamundi province of north Orissa, India. These deposits are classified into in situ (stratiform), remobilized (stratabound) and reworked categories based on their field disposition. Volcaniclastic/terrigenous shale in large geographic extension is associated with these ore bodies.The in situ ore bodies are characterised by cryptomelane-, romanechite- and hematite-dominating minerals, low Mn/Fe ratio (1.1) and relatively lower abundance of trace (1500–2500 ppm) constituents. In such type of deposits the stratigraphic conformity of oxides with the tuffaceous shale suggests precipitation of Mn and Fe at a time of decreased volcaniclastic/terrigenous contribution. The minor and trace elements were removed from solution by adsorption rather than by precipitation. Both Mn and Fe oxides when precipitated adsorb trace elements strongly but the partitioning of elements takes place during diagenesis. The inter-elemental relationship reveals that Cu, Co, Ni, Pb and Zn were adsorbed on precipitating hydrous Mn oxides and form manganates. Some of these elements probably get desorbed from Fe oxide because of their inability to substitute for Fe3+ in the lattice of its oxide. However, P, V, As and Mo were less partitioned and retained in Fe-oxide phase. Positive correlation between Al2O3 and SiO2, MgO, Na2O, TiO2 and some traces like Li, Nb, Sc, Y, Zr, Th and U points to their contribution through volcaniclastic/terrigenous detritus of both mafic and acidic composition.The remobilized ore bodies are developed in a later stage through dissolution, remobilization and reprecipitation of Mn oxides in favorable structural weak planes under supergene environment. Increase in average Mn/Fe ratio (8) and trace content (5000–8500 ppm) by 5–2.5 orders of magnitude, respectively, or more above its abundance in adjoining/underlying protore is characteristic of these deposits. The newly formed Mn ores constituting lithiophorite, cryptomelane/romanechite and goethite get quantitatively enriched in traces like Cu, Co, Ni, Pb and Zn. Positive correlation between Mn, Li, Co and Zn is due to the formation of mineral of lithiophorite–chalcophanite group during redistribution and reconcentration of Mn oxide. P and V, which were present in Fe oxide, also get dissolved and reprecipitate with Fe oxyhydroxide in these ores. Some other elements like Y, Th and U show positive relation with Fe. This is probably due to leaching of these elements during chemical weathering of associated shale and getting re-adsorbed in Fe-oxyhydroxide phase.However, under oxidizing environment selective cations like Ba, K, etc. resorb from Mn-structure, resulting in the development of pyrolusite (Mn/Fe>20). In such transformation, trace metals from pyrolusitic structure expels out, resulting thereby in a considerable reduction in total trace value (<3000 ppm).The reworked ore bodies are allochthonous in nature and developed through a number of stages during terrain evolution and lateritisation. Secondary processes such as reworking of pre-existing crust; solution and remobilization; precipitation and cementation and transport, etc. are responsible for their development. Such deposits are usually very low in Mn/Fe ratio (3) and trace content (<2000 ppm).  相似文献   

12.
在滇东南麻栗坡地区广泛分布的榴江组薄层状硅质岩中.发现包含放射虫动物群Helenifor robustum和Heleniore laticlavium的重要分子,地质时代为晚泥盆世弗拉斯早期.硅质岩SiO2含量在80.2%-95.72%之间,Al2O3含量集中在0.32%-3.83%之间,平均为2.07%,Si/Al值...  相似文献   

13.
Using trace elements to reconstruct paleoenvironment is a current hot topic in geochemistry. Through analytical tests of oil yield, ash yield, calorific value, total sulfur, major elements, trace elements, and X-ray diffraction, the quality, mineral content, occurrence mode of elements, and paleoenvironment of the Zhangjiatan oil shale of the Triassic Yanchang Formation in the southern Ordos Basin were studied. The analyses revealed relatively high oil yield (average 6.63%) and medium quality. The mineral content in the oil shale was mainly clay minerals, quartz, feldspar, and pyrite; an illite–smectite mixed layer comprised the major proportion of clay minerals. Compared with marine oil shale in China, the Zhangjiatan oil shale had higher contents of quartz, feldspar, and clay minerals, and lower calcite content. Silica was mainly in quartz and Fe was associated with organic matter, which is different from marine oil shale. The form of calcium varied. Cluster analyses indicated that Fe, Cu, U, V, Zn, As, Cs, Cd, Mo, Ga, Pb, Co, Ni, Cr, Sc, P, and Mn are associated with organic matter while Ca, Na, Sr, Ba, Si, Zr, K, Al, B, Mg, and Ti are mostly terrigenous. Sr/Cu, Ba/Al, V/(V + Ni), U/Th, AU, and δU of oil shale samples suggest the paleoclimate was warm and humid, paleoproductivity of the lake was relatively high during deposition of the shale—which mainly occurred in fresh water—and the paleo-redox condition was dominated by reducing conditions. Fe/Ti ratios of the oil shale samples suggest clear hydrothermal influence in the eastern portion of the study area and less conspicuous hydrothermal influence in the western portion.  相似文献   

14.
在西藏阿里地区夏浦沟野外调查发现放射虫硅质岩、熔岩组合.放射虫硅质岩SiO2含量在89.47%~92.94%之间, Si/Al在43~67之间, Al/ (Al+Fe+Mn) 比值在0.68~0.74之间, MnO/TiO2平均比值为0.60, Ce/Ce*平均值为0.89, LaN/CeN平均值1.09, 指示它位于洋盆和大陆边缘过渡的环境, 总体更接近大陆边缘环境.伴生的火山熔岩以安山质为主, 具低TiO2 (0.75%~0.98%)、轻稀土弱富集和源自板片流体的易溶元素如Ba、U、Pb相对轻稀土富集, 亏损高场强元素(HFSE) Nb、Ta、Ti等, 指示形成于岛弧环境, 很可能是中生代新特提斯洋洋内俯冲系统的组分.放射虫动物群主要包括Alievium cf.regulare、Alievium cf.fatuum、Archaeospongoprunum cf.patricki、Archaeodictyimitra mitra Dumitrica等早白垩世分子, 其提供了岛弧活动时间上限的约束.   相似文献   

15.
藏南彭错林硅质岩地球化学特征及沉积环境分析   总被引:4,自引:3,他引:1  
通过野外地质调查和系统的岩石化学、常量元素、微量元素以及稀土元素等研究,探讨了藏南彭错林硅质岩的地球化学特征及其沉积环境。研究表明,呈厚层状产出的绿色、棕褐色硅质岩具有较高的SiO2含量,局部受Fe、Mn矿化,Al/(Al+Fe+Mn)比值小,在Fe-Mn-Al三角成因判别图解中,大部分硅质岩样品落入热水沉积区域,微量元素Sr、Zr、Cu、Zn和Ba含量较高,稀土元素∑REE较低,Ce负异常,Eu正异常,北美页岩标准化后配分模式稍向左倾,体现出热水沉积特征;在沉积环境判别图100×Fe2O3/SiO2-100×Al2O3/SiO2、Fe2O3/(100-SiO2)-Al2O3/(100-SiO2)和Fe2O3/TiO2-Al2O3/(Al2O3+Fe2O3)中,硅质岩样品投影到洋中脊和深海区域,说明形成于大洋中脊和深海盆地环境;硅质岩常量和稀土参数变化特征图显示,在剖面中PCL-1、PCL-5和PCL-7采样位置更接近热液中心;硅质岩的形成与板块的汇聚消减产生的以洋中脊和海底热点为中心的洋壳热水系统有关。  相似文献   

16.
In Pakistan manganese and ferromanganese ores have been reported from the Hazara area of North West Frontier Province, Waziristan agencies in the Federally Administered Tribal Areas and the Lasbela-Khuzdar regions of Baluchistan. This study is focused on comparison of mineralogy and geochemistry of the continental ferromanganese ores of Hazara and the ophiolitic manganese ores of the Waziristan area of Pakistan. In the Hazara area, ferromanganese ores occur at Kakul, Galdanian and Chura Gali, near Abbottabad, within the Hazira Formation of the Kalachitta-Margala thrust belt of the NW Himalayas of the Indo-Pakistan Plate. The Cambrian Hazira Formation is composed of reddish-brown ferruginous siltstone, with variable amounts of clay, shale, ferromanganese ores, phosphorite and barite. In Waziristan, manganese ores occur at Shuidar, Mohammad Khel and Saidgi, within the Waziristan ophiolite complex, on the western margin of the Indo-Pakistan Plate in NW Pakistan. These banded and massive ores are hosted by metachert and overlie metavolcanics.The ferromanganese ores of the Hazara area contain variable amount of bixbyite, partridgeite, hollandite, pyrolusite and braunite. Bixbyite and partridgeite are the dominant Mn-bearing phases. Hematite dominates in Fe-rich ores. Gangue minerals are iron-rich clay, alumino-phosphate minerals, apatite, barite and glauconite are present in variable amounts, in both Fe-rich and Mn-rich varieties. The texture of the ore phases indicates greenschist facies metamorphism. The Waziristan ores are composed of braunite, with minor pyrolusite and hollandite. Hematite occurs as an additional minor phase in the Fe-rich ores of the Shuidar area. The only silicate phase in these ores is cryptocrystalline quartz.The chemical composition of the ferromanganese ores in Hazara suggests that the Mn–Fe was contributed by both hydrogenous and hydrothermal sources, while the manganese ores of Waziristan originated only from a hydrothermal source. It is suggested that the Fe–Mn ores of the Hazara area originated from a mixed hydrothermal–hydrogenetic source in shallow water in a ontinental shelf environment due to the transgression and regression of the sea, while the Mn ores of Waziristan were formed at sea-floor spreading centers within the Neo-Tethys Ocean, and were later obducted as part of the Waziristan ophiolite complex.  相似文献   

17.
Horizons of several types of Upper Jurassic to Lower Cretaceous manganese nodules occur locally in sequences of radiolarian cherts within the Nicoya Ophiolite Complex (NW Costa Rica). Field studies, X-ray diffraction analysis, petrographic, chemical and experimental studies give evidence of a sedimentary, early diagenetic origin of the nodules, in contrast to earlier suggestions. Smooth, discoidal, compact and very dense nodules with diameters of some mm to 9 cm dominate. They are characterized by braunite, hollandite, pyrolusite and quartz as well as 39–61% Mn, 0.9–1.6% Fe, 5–26% SiO2, 1.3–1.9% A12O3, 1.5–3.0% Ba, 460–5400 ppm Cu, 85–340 ppm Ni and 40–130 ppm Co, among others. It is suggested that the original mineralogy (todorokite?) was altered during thermometamorphic (braunite) and hydrothermal (hollandite, pyrolusite) events. Petrographic similarities between the fossil nodules and modern deep-sea nodules are striking. Using standard hydrothermal techniques in an experimental study it is shown that under special conditions, braunite can be produced from modern nodule material.  相似文献   

18.
Abstract. Inorganic chemical compositions are determined for late Early Triassic siliceous claystone ('Toishi-type' shale) and associated chert from Oritate area, Sambosan Belt, Kyushu, southwest Japan. The siliceous claystone is similar in chemical composition to Post-Archean Australian Shale (PAAS), but is depleted in Ca, Sr, Mn, and Fe and slightly enriched in Cu, Zn, P, and rare earth elements (REEs). The siliceous claystone and associated chert have flat REE patterns with positive Eu anomalies and no distinct Ce anomaly. The siliceous claystone and associated chert have largely constant Ti/Al, Th/Al, and Nb/Al ratios compared to the variable ratios found in siliceous shale and sandstone deposited close to land in a trench setting. This suggests that the claystone and chert were deposited in a deep-sea pelagic environment and were derived mainly from the suspended fraction, including eolian dust and material transported from distant lands, rather than from turbidity currents that occurred close to land. The low Ca contents of the analyzed rocks indicate deposition below the calcium-carbonate compensation depth. The depletion of Mn and Fe, and no distinct Ce anomaly in the Oritate siliceous claystone are also evident, being similar to those in samples from the Sasayama and Kinkazan sections in the Mino-Tanba Belt, where oceanic anoxia developed during the Late Permian to earliest Triassic. This might suggest that oceanic anoxia prevailed through to the late Early Triassic.  相似文献   

19.
The specific chemical and mineral composition of discoid, cake-shaped, and platy ferromanganese nodules (FMNs) from the Chukchi Sea are considered. The main ore components of these FMNs are Fe, Mn, and P. The contents of trace elements (except for Ba and Sr) do not exceed hundredths of percent. Maximum concentrations of most of these elements are specific for the cake-shaped nodules. In general, Mn accumulates most intensely in FMNs. Next (in order of decrease) are Ag(?), Co, and Pb; Sr, Fe, P, Y, and Ca; and Ni, La, Zn, and Cu. As for Ba, Cr, Mg, and K, they do not accumulate in the FMNs. “Dilution” is typical of Si, Al, Na, and Ti. The main ore phases are strengite and amorphous Mn hydroxides. It has been revealed for the first time for the Chukchi Sea that Cu, Zn, Sn, Ni, Pb, W, Bi, Cr, Fe, Ti, Ag, Au, Y, Zr, and La–Nd lanthanides form individual mineral microphases in FMNs: native elements, intermetallic compounds, oxides, and, much more seldom, tungstates, silicates, and phosphates. Accessory ore mineralization is the best pronounced and most diverse in the platy nodules. Though the FMNs from the Chukchi Sea are diagenetic, high-temperature fluids are, most likely, the source of microinclusions of various accessory ore minerals.  相似文献   

20.
Geochemical stream sediment survey in Winder Valley, Balochistan, Pakistan   总被引:1,自引:0,他引:1  
A pilot scale geochemical survey of sediments from the Winder Stream (SW Pakistan) and its tributaries was carried out. The Winder Stream mainly receives sediment from the southern extensions of the Mor and Pab Ranges in the District of Lasbela (Balochistan). In these two mountain ranges, rocks from Jurassic to Cretaceous age are exposed. Rocks of the Ferozabad Group comprise of carbonates and siliciclastics of Lower–Middle Jurassic age and occupy the dominant part of the Mor Range. These strata host syngenetic and epigenetic Zn–Pb–Ba mineralizations of Stratiform Sediment-Hosted (SSH) and Mississippi Valley Type (MVT) deposits.Quantitative estimates of mobile and immobile elements were made from active stream sediments of the Winder stream and its tributaries. The samples were analyzed for Ag, Zn, Pb, Cu, Ni, Co, V, Mn, Fe and Ba using atomic absorption spectroscopy. The abundance of these elements is discussed in relation to local geological conditions such as bedrock, climate, weathering, mobility and pH of the dispersing waters. A number of Zn anomalies have been distinguished in the study area. Kharrari (Zn, 360 ppm), Sand (Zn, 340 ppm) and Draber (Zn, 210 ppm) are demarcated as new areas for Zn mineralization. The present study also indicates prospects of Ag, Cu and V in the rocks of the Mor Range.Relationships between various elements have been identified from scattergrams and reflect genetic associations. Whereby the positive correlation between Cu–Zn (0.55, n=18) and Cu–Pb (0.63) is related to possible sulphide mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号