首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Ultramafic xenoliths were found in recent alkali basalts from São Tomé Island. These include spinel peridotites (lherzolites, harzburgites and dunites) and pyroxenites (orthopyroxenites and clinopyroxenites). Textures and mineral compositions indicate that pyroxenites originated from crystal/liquid separation processes operating on magmas similar to those giving rise to their present host rocks whereas spinel peridotite xenoliths had an accidental origin; Fo (>89) and Ni (>0.36 wt.%) contents in olivines, Mg# (91–95) of orthopyroxenes and low Ti in clinopyroxene (primary crystals: TiO2<0.06 wt.%) and in spinel (TiO2<0.1 wt.%) are within the range reported for abyssal peridotites, indicating São Tomé spinel peridotites represent refractory residues of melting. Nevertheless, the lack of correlation between mineral chemistry and modal composition suggests that spinel peridotite xenoliths are not simple residues and were affected by infiltration of fluid/melts within the mantle. The wide temperature range obtained for spinel peridotites (700 to >1150 °C) is compatible with a long period of pre-entrainment cooling supporting Fitton's [Tectonophysics 94 (1983) 473] hypothesis that proposes oceanic lithosphere uprising in the Cameroon Volcanic Line prior to the initiation of the current thermal regime, related to São Tomé magmatism. The association of upper mantle (peridotite) xenoliths with igneous cumulates (pyroxenites) suggests that the spinel peridotite suite originated in the uppermost mantle above the São Tomé magma storage zone(s), probably in a region of high strain rate, near the boundary between the mantle and the overlying oceanic crust.  相似文献   

2.
The Tocantins Province in Central Brazil is composed of a series of SSW–NNE trending terranes of mainly Proterozoic ages, which stabilized in the Neoproterozoic in the final collision between the Amazon and São Francisco cratons. No previous information on crustal seismic properties was available for this region. Several broadband stations were used to study the regional patterns of crustal and upper mantle structure, extending the results of a recent E–W seismic refraction profile. Receiver functions and surface wave dispersion showed a thin crust (33–37 km) in the Neoproterozoic Magmatic Arc terrane. High average crustal Vp/Vs ratios (1.74–1.76) were consistently observed in this unit. The foreland domain of the Brasília foldbelt, on the other hand, is characterized by thicker crust (42–43 km). Low Vp/Vs ratios (1.70–1.72) were observed in the low-grade foreland fold and thrust zone of the Brasília belt adjacent to the São Francisco craton. Teleseismic P-wave tomography shows that the lithospheric upper mantle has lower velocities beneath the Magmatic Arc and Goiás Massif compared with the foreland zone of the belt and São Francisco craton. The variations in crustal thickness and upper mantle velocities observed with the broadband stations correlate well with the measurements along the seismic refraction profile. The integration of all seismic observations and gravity data indicates a strong lithospheric contrast between the Goiás Massif and the foreland domain of the Brasília belt, whereas little variation was found across the foldbelt/craton surface boundary. These results support the hypothesis that the Brasília foreland domain and the São Francisco craton were part of a larger São Francisco-Congo continental plate in the final collision with the Amazon plate.  相似文献   

3.
The São Luís Craton, northern Brazil, is composed of a few granitoid suites and a metavolcano-sedimentary succession. New single zircon Pb evaporation ages and Nd isotope data, combined with other available information, show that the metavolcano-sedimentary succession developed from 2240 Ma to approximately 2200-2180 Ma from juvenile protoliths. The subduction-related calc-alkaline suites of granitoids, spatially associated with the metavolcano-sedimentary sequence, formed in an oceanic island arc setting between 2168-2147 Ma. Most of these granitoids are tonalitic and formed from juvenile, mantle- or oceanic plate-derived protoliths, whereas minor true granites are the product of the reworking of the juvenile island arc material. These arc-related successions represent an accretionary event around 2.20±0.05 Ga, which is coincident with one of the main periods of crustal growth in the South American Platform. This accretionary orogen has subsequently been involved in a collision episode, at ca. 2100-2080 Ma, which is mainly recorded in the nearby Gurupi Belt. The rock associations, inferred geological settings, and the crustal evolution detected in the São Luís Craton are similar to what is described in Paleoproterozoic domains of major geotectonic units of the South American Platform, such as part of the São Francisco Craton, southeastern Guyana Shield, and of the West African Craton.  相似文献   

4.
Magnetic measurements were performed on apparently undeformed limestones and carbonate shales from 44 sites in nearly horizontal stratigraphic layers mainly from the basal units of the Neoproterozoic Bambui Group in the southern part of the São Francisco Basin. Rock magnetism, cathodoluminescence, transmitted and reflected light microscopy analyses reveal that there is a mix of ferromagnetic minerals, mainly magnetite and pyrrhotite, in most sites. In some sites, however, the ferromagnetic minerals are magnetite and hematite. Fine-grained pyrrhotite and pyrite accompany rare fine-grained graphite and probably amorphous carbon in some of stylolites, while pyrrhotite is also present as larger interstitial masses in coarse-grained domains outside, but close to the stylolites. Magnetic fabrics were determined applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanence magnetization (AAR). The AAR tensor was less well defined than the AMS fabric due to the low ferromagnetic mineral content. The analysis at the individual-site scale defines three AMS fabric types. The first type (two sites) shows Kmin perpendicular to the bedding plane, while Kmax and Kint are scattered within bedding plane itself. This fabric is usually interpreted as primary (sedimentary-compactional), typical of totally undeformed sediments. The second type shows the three well-clustered AMS axes with Kmin still perpendicular to the bedding plane. This fabric is the most important since it was found in the majority of the sites. The third type (two sites) is characterized by well-clustered Kmax in the bedding plane, while Kmin and Kint are distributed along a girdle. The second and third fabric types are interpreted as combinations of sedimentary-compactional and tectonic contributions at the earliest, and at a slightly later stage of deformation, respectively. AMS represents the contribution of all the rock-forming minerals, while AAR isolates the contribution of remanence-bearing minerals from the matrix minerals. However, rock magnetism shown that anhysteretic remanence only reaches grains with coercivity < 100 mT because the maximum AF in the majority of the available instruments is 100 mT. Therefore, hematite and pyrrhotite probably do not contribute to AAR, which is due to the shape-preferred orientation of magnetite grains. For some sites, the AMS and AAR fabric orientations are different, mainly with respect to the lineation orientations (Kmax and Amax, respectively). In general, Kmax is well developed and follows the trend of the main regional thrusts, fold axes and faults generated in the first deformational phase, while Amax follows both this trend and that of structural lineaments formed during the second deformational phase. These deformation phases arose from the compression, which occurred during the evolution of the Brasília fold belt during the last stages of the Brasiliano event. The magnetic fabrics of the apparently undeformed Bambui limestones are typical of very weakly deformed sediments, in which the depositional-compaction fabric has been partly overprinted by a tectonic one, with minimum susceptibility direction remaining perpendicular to bedding. This result is in agreement with the textures given by the petrographic observations.  相似文献   

5.
The Tromaí Intrusive Suite is the predominant exposed unit of the São Luís cratonic fragment in northern Brazil. The suite forms batholiths and stocks of granitoids that were emplaced between 2168 ± 4 Ma and 2149 ± 4 Ma and intruded a 2240 ± 5 Ma old metavolcano-sedimentary sequence. The batholiths are composed of a variety of petrographic types that have been grouped in three sub-units, based on the predominant petrographic type, and named Cavala Tonalite, Bom Jesus Granodiorite, and Areal Granite, from the more primitive to the more evolved phases, in addition to subordinate shallow felsic intrusions. The Tromaí Suite is an expanded magmatic association comprising minor mafic rocks to predominantly intermediate and felsic, low- to high-K, and metaluminous to weakly peraluminous granitoids that follow a Na-enriched calc-alkaline trend. Combined rock association, geochronology, Nd isotopes, and geochemical signature indicate that the Tromaí Suite formed from magmas derived from juvenile protoliths modified by fractional crystallization. The juvenile protoliths included ocean plate, mantle wedge, and minor sediments. The data also indicate an intra-oceanic arc setting that possibly transitioned to a continental margin and that the Tromaí Intrusive Suite records the main accretionary stage of the Rhyacian orogen (ca. 2.24–2.15 Ma) that culminated with a collision stage at about 2.1 Ga and gave rise to the present day São Luís cratonic fragment. This time interval is coincident with the main period of crustal growth in the South American Platform and in the Paleoproterozoic terranes of the West African Craton. The beginning of this period is also coincident with the end of a period in which only minor amounts of juvenile crust is found worldwide.The Negra Velha Granite is a distinct unit that forms a few stocks that intruded the granitoids of the Tromaí Suite between 2076 and 2056 Ma ago. Negra Velha is an association of monzogranite and subordinate quartz–monzonite and syenogranite with an alkaline signature that shows high Rb–Sr–Ba enrichments, resembling shoshonitic associations. This granite represents the post-orogenic phase of the Rhyacian orogenesis.  相似文献   

6.
The Proterozoic sediment-hosted Zn–(Pb) sulfide and non-sulfide deposits of the São Francisco Craton, Brazil, are partially syn-diagenetic and epigenetic and were probably formed during extensional events. The majority of the deposits occur within shallow water dolomites. The Pb isotopic data of sulfides are relatively homogeneous for individual deposits and plot above the upper crust evolution curve of the Plumbotectonic model. Some of the deposits are characterized by highly radiogenic lead (206Pb/204Pb ≥ 21) originating from the highly radioactive crust of the São Francisco Craton. Pb and S isotopic data suggest the sources of metal and sulfur for the deposits to be the basement rocks and seawater sulfates in the sediments, respectively. The relatively high temperatures of formation (100 to 250 °C) and moderate salinity (3% to 20% NaCl equiv.) of the primary fluid inclusions in the sphalerite crystals suggest the participation of basinal mineralizing fluids in ore formation. The steep paleo-geothermal gradient generated by the radioactively enriched basement rocks probably assisted in heating up the circulating mineralizing fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号