首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mesoscale variability in the Caribbean Sea. Part II: Energy sources   总被引:1,自引:0,他引:1  
The processes which drive the production and the growth of the strong mesoscale eddy field in the Caribbean Sea are examined using a general circulation model. Diagnostics of the simulations suggest that:(1) The mean currents in the Caribbean Sea are intrinsically unstable. The nature of the instability and its strength vary spatially due to strong differences of current structure among basins.(2) The greatest and most energetic eddies of the Caribbean Sea originate in the Venezuela Basin by mixed barotropic-baroclinic instability of an intense jet, formed with waters mostly from the surface return flow of the Meridional Overturning Circulation and the North Equatorial Current which converge and accelerate through the Grenada Passage. The vertical shear of this inflow is enhanced by an eastward undercurrent, which flows along the south American Coast between 100 and 250 m depth. The shallow eddies (less than 200 m depth) formed in the vicinity of the Grenada Passage get rapidly deeper (down to 1000 m depth) and stronger by their interaction with the deep interior flow of the Subtropical Gyre, which enters through passages north of St. Lucia. These main eastern Caribbean inflows merge and form the southern Caribbean Current, whose baroclinic instability is responsible for the westward growth and strengthening of these eddies from the Venezuela to the Colombia Basin.(3) Eddies of lesser strength are produced in other regions of the Caribbean Sea. Their generation and growth is also linked with instability of the local currents. First, cyclones are formed in the cyclonic shear of the northern Caribbean Current, but appear to be rapidly dissipated or absorbed by the large anticyclones coming from the southern Caribbean. Second, eddies in the Cayman Sea, which impact the Yucatan region, are locally produced and enhanced by barotropic instability of the deep Cayman Current.(4) The role of the North Brazil Current (NBC) rings is mostly to act as a finite perturbation for the instability of the mean flow. Their presence near the Lesser Antilles is ubiquitous and they appear to be linked with most of the Caribbean eddies. There are some evidences that the frequency at which they form near the Grenada Passage is influenced by the frequency at which the NBC rings impinge the Lesser Antilles. But large Caribbean eddies also form without a close influence of any ring, and comparison between simulations shows that mean eddy kinetic energy and eddy population in the Caribbean Sea are not substantially different in absence or presence of NBC rings: their presence is not a necessary condition for the generation and growth of the Caribbean eddies.  相似文献   

2.
3.
An investigation of the circulation patterns and thermohaline structures in the Delagoa Bight, Mozambique, was undertaken during May 2004, August 2004, April 2005, and April 2006, using hydrographic surveys, surface drifters and satellite imagery. Hydrographic and satellite data during May 2004 illustrated a cyclonic eddy centred at 26° S, 34.25° E in the Bight. A surface drifter remained trapped in this eddy for six weeks between 8 May and 20 June 2004 before moving southward in the Agulhas Current. During August 2004, the core of a cyclonic eddy was located south of the Bight, while no cyclonic eddy was observed during April 2005 or in April 2006. The Delagoa Bight eddy appeared to be more transient than previously thought. Important observations were the recurrent northward current (25–30 cm s?1) occurring subsurface on the shelf, and the prominence of cooler upwelled water at various locations due to the interaction of passing eddies with the bottom topography of the Bight.  相似文献   

4.
Mesoscale eddies, particularly anticyclonic ones, are dominant features in the Kuril Basin of the Okhotsk Sea. In 1999, both surface drifter and hydrographic observations caught the same anticyclonic eddy northwest of Bussol’ Strait, which has a diameter of ∼100 km, typical surface velocity of 0.2–0.3 m s−1, and less dense core extending to a depth of ∼1200 m. Based on an idea that the generation of mesoscale eddies is caused by strong tidal mixing in and around Kuril Straits, we have conducted a series of three-dimensional numerical model experiments, in which strong tidal mixing is simply parameterized by increasing coefficients of vertical eddy viscosity and diffusivity along the eastern boundary. Initially, a regular series of disturbances with a wavelength of ∼70 km starts to develop. The disturbances can be clearly explained by a linear instability theory and regarded as the baroclinic instability associated with the near-surface front formed in the region between the enhanced mixing and offshore regions. In the mature phase, the disturbances grow large enough that some eddies pinch off and advect offshore (westward), with the scale of disturbances increasing gradually. Typical eddy scale and its westward propagation speed are ∼100 km and ∼0.6 km day−1, respectively, which are consistent with the observations by satellites. The westward propagation can be explained partly due to nonlinear effect of self-offshore advection and partly due to the β-effect. With the inclusion of the upper ocean restoring, the dominance of anticyclonic eddy, extending from surface to a depth of ∼1200 m, can be reproduced.  相似文献   

5.
The semi-permanent Durban Eddy is a mesoscale, lee-trapped, cold-core cyclonic circulation that occurs off the east coast of South Africa between Durban in the north and Sezela, some 70 km to the south. When present, strong north-eastward countercurrents reaching 100 cm s–1 are found inshore. It is hypothesised that the cyclone is driven by the strong south-westward flowing Agulhas Current offshore of the regressing shelf edge near Durban. Analysis of ADCP data and satellite imagery shows the eddy to be present off Durban approximately 55% of the time, with an average lifespan of 8.6 days, and inter-eddy periods of 4 to 8 days. After spin-up the eddy breaks loose from its lee position and propagates downstream on the inshore boundary of the Agulhas Current. The eddy is highly variable in occurrence, strength and downstream propagation speeds. There is no detectable seasonal cycle in eddy occurrence, with the Natal Pulse causing more variability than any seasonal signal. A thermistor array deployed in the eddy centre, together with ship CTD data, indicates upward doming of the thermal structure in the eddy core associated with cooler water and nutrients being moved higher in the water column, stimulating primary production. Together with the use of satellite imagery, our findings indicate a second mechanism of upwelling, viz. divergent upwelling in the northern limb of the eddy. Satellite-tracked surface drifters released in the eddy demonstrated the potential for nutrient-rich eddy water to be transported northwards along the inshore regions of the KwaZulu-Natal (KZN) Bight, thus contributing to the functioning of the bight ecosystem, as well as southwards along the KZN and Transkei coasts – both by the eddy migrating downstream and by eddy water being recirculated into the inshore boundary of the Agulhas Current itself.  相似文献   

6.
The northward flowing Antarctic Intermediate Water (AAIW) is a major contributor to the large-scale meridional circulation of water masses in the Atlantic. Together with bottom and thermocline water, AAIW replaces North Atlantic Deep Water that penetrates into the South Atlantic from the North. On the northbound propagation of AAIW from its formation area in the south-western region of the Argentine Basin, the AAIW progresses through a complex spreading pattern at the base of the main thermocline. This paper presents trajectories of 75 subsurface floats, seeded at AAIW depth. The floats were acoustically tracked, covering a period from December 1992 to October 1996. Discussions of selected trajectories focus on mesoscale kinematic elements that contribute to the spreading of AAIW. In the equatorial region, intermittent westward and eastward currents were observed, suggesting a seasonal cycle of the AAIW flow direction. At tropical latitudes, just offshore the intermediate western boundary current, the southward advection of an anticyclonic eddy was observed between 5°S and 11°S. Farther offshore, the flow lacks an advective pattern and is governed by eddy diffusion. The westward subtropical gyre return current at about 28°S shows considerable stability, with the mean kinetic energy to eddy kinetic energy ratio being around one. Farther south, the eastward deeper South Atlantic Current is dominated by large-scale meanders with particle velocities in excess of 60 cm s-1. At the Brazil–Falkland Current Confluence Zone, a cyclonic eddy near 40°S 50°W seems to act as injector of freshly mixed AAIW into the subtropical gyre. In general, much of the mixing of the various blends of AAIW is due to the activity of mesoscale eddies, which frequently reoccupy similar positions.  相似文献   

7.
Warm eddy movements in the eastern Japan Sea   总被引:1,自引:0,他引:1  
Warm eddy movements and their areal extent in the eastern Japan Sea were described by presenting space-time diagrams for the warm eddy locations and magnitudes. The analyzed data were compiled from Japan Maritime Safety Agency thermal maps at 200 m depth from 1985 to 1992. Two to four warm eddies always existed in the eastern Japan Sea and exhibited both internnual and annual signals. We found that warm eddies were generated in spring around Oki Spur at least three times during the analyzed period of eight years, moved eastward, and interacted with neighboring warm eddies, which were involved in coalescences or separations. The warm eddy distributions off Noto Peninsula have clear seasonal preference. Warm eddies moved eastward from Noto Peninsula in winter-spring to North Japan in the next winter, with mean translation speeds of 0.5–2 cm s–1. Warm eddies reaching North Japan typically decayed during a few month after splitting into two or three mesoscale warm eddies.  相似文献   

8.
Observations of the Labrador Sea eddy field   总被引:2,自引:0,他引:2  
This paper is an observational study of small-scale coherent eddies in the Labrador Sea, a region of dense water formation thought to be of considerable importance to the North Atlantic overturning circulation. Numerical studies of deep convection emphasize coherent eddies as a mechanism for the lateral transport of heat, yet their small size has hindered observational progress. A large part of this paper is therefore devoted to developing new methods for identifying and describing coherent eddies in two observational platforms, current meter moorings and satellite altimetry. Details of the current and water mass structure of individual eddy events, as they are swept past by an advecting flow, can then be extracted from the mooring data. A transition is seen during mid-1997, with long-lived boundary current eddies dominating the central Labrador Sea year-round after this time, and convectively formed eddies similar to those seen in deep convection modeling studies apparent prior to this time. The TOPEX / Poseidon altimeter covers the Labrador Sea with a loose “net” of observations, through which coherent eddies can seem to appear and disappear. By concentrating on locating and describing anomalous events in individual altimeter tracks, a portrait of the spatial and temporal variability of the underlying eddy field can be constructed. The altimeter results reveal an annual “pulsation” of energy and of coherent eddies originating during the late fall at a particular location in the boundary current, pinpointing the time and place of the boundary current-type eddy formation. The interannual variability seen at the mooring is reproduced, but the mooring site is found to be within a localized region of greatly enhanced eddy activity. Notably lacking in both the annual cycle and interannual variability is a clear relationship between the eddies or eddy energy and the intensity of wintertime cooling. These eddy observations, as well as hydrographic evidence, suggest an active role for boundary current dynamics in shaping the energetics and water mass properties of the interior region.  相似文献   

9.
The upper ocean large-scale circulation of the western tropical Atlantic from 11.5°S to the Caribbean in November and December 2000 is investigated from a new type of shipboard ADCP able to measure accurate velocities to 600 m depth, combined with lowered ADCP measurements. Satellite data and numerical model output complement the shipboard measurements to better describe the large-scale circulation. In November 2000 the North Brazil Undercurrent (NBUC) was strongly intensified between 11 and 5°S by inflow from the east, hence the NBUC was formed further to the north than in the mean. The NBUC was transporting 23.1 Sv northward at 5°S, slightly less than the mean of six cruises (Geophysical Research Letters (2002) 29 (7) 1840). At 35°W the North Brazil Current (NBC) transported 29.4 Sv westward, less than the mean of 13 cruises (Geophysical Research Letters (2003) 30 (7) 1349). A strong retroflection ring had just pinched off the NBC retroflection according to the satellite information. The inflow into the Caribbean south of 16.5°N originated in part of a leakage from the NBC retroflection zone and in part from the North Equatorial Current. A thermocline intensified ring with a transport of about 30 Sv was located off Guadeloupe carrying South Atlantic Central Water towards the north. Observed deviations of the November/December 2000 flow field from the November long-term mean flow field were related to an enhanced Intertropical Convergence Zone (ITCZ) associated with an increased North Equatorial Countercurrent (NECC), as well as to boundary current rings and Rossby waves with zonal wavelength of the order of 1000 km. At 44°W the presence of a Rossby wave associated with an anticyclonic circulation led to a strongly enhanced NBC of 65.0 Sv as well as to a combined NECC and Equatorial Undercurrent transport of 52.4 Sv, much stronger than during earlier cruises. While the 1/3°-FLAME model is unable to reproduce details of the vertical distribution of the observed horizontal flow at 44 °W for November 2000 as well as the horizontal distribution of some of the observed permanent current bands, a climatological simulation with the 1/12°-FLAME agrees much better with the observations and provides information on the spreading path between the sections. E.g., the interpretation that the widening in the Antarctic Intermediate Water layer of the westward flowing NBC at 44°W in November was caused by water from the Equatorial Intermediate Current was further supported by the model results.  相似文献   

10.
Aspects of the South-West Indian Ocean circulation, such as currents and their meanders and eddies, are chromatographically identified in the area 20–40°S, 30–40°E from the level-2 images of the Nimbus-7 Coastal Zone Colour Scanner (CZCS). Notwithstanding the inescapable obstruction presented by the extensive cloud-cover over this subtropical region, CZCS imagery is especially useful in areas of weak thermal gradients. Other regions where colour imagery is fruitful are those where oceanographic features originate from deep-sea water masses with large phytoplanicton concentrations or where coastal waters with distinct colour signals are entrained.  相似文献   

11.
A Large-Scale Seasonal Modeling Study of the California Current System   总被引:1,自引:0,他引:1  
A high-resolution, multi-level, primitive equation ocean model has been used to investigate the combined role of seasonal wind forcing, seasonal thermohaline gradients, and coastline irregularities on the formation of currents, meanders, eddies, and filaments in the entire California Current System (CCS) region, from Baja to the Washington-Canada border. Additional objectives are to further characterize the meandering jet south of Cape Blanco and the seasonal variability off Baja. Model results show the following: All of the major currents of the CCS (i.e., the California Current, the California Undercurrent, the Davidson Current, the Southern California Countercurrent, and the Southern California Eddy) as well as filaments, meanders and eddies are generated. The results are consistent with the generation of eddies from instabilities of the southward current and northward undercurrent via barotropic and baroclinic instability processes. The meandering southward jet, which divides coastally-influenced water from water of offshore origin, is a continuous feature in the CCS, and covers an alongshore distance of over 2000 km from south of Cape Blanco to Baja. Off Baja, the southward jet strengthens (weakens) during spring and summer (fall and winter). The area off southern Baja is a highly dynamic environment for meanders, filaments, and eddies, while the region off Point Eugenia, which represents the largest coastline perturbation along the Baja peninsula, is shown to be a persistent cyclonic eddy generation region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
This paper describes the westward movement of a cyclonic eddy across the Mozambique Channel and the subsequent south-westward propagation of the eddy along the east coast of South Africa and its interaction with the shelf. A hydrographic survey on 13 September 2006 off Nine-mile Reef (NMR), Sodwana Bay, showed a well-developed Agulhas Current along the continental shelf inshore of a cyclonic eddy flanked by two anti-cyclonic eddies, further offshore. A satellite-tracked drifter and complementary altimetry data confirmed the dimensions of the eddy and tracked its movement towards the coast. Shelf-edge upwelling was measured at NMR by an underwater temperature recorder (UTR) when the cyclonic eddy first came into contact with the shelf and again when the cyclonic eddy interacted with the leading edge of the anti-cyclonic eddy moving onto the shelf. Further shelf–eddy interactions off Aliwal Shoal, south of Durban, and consequent upwelling were similarly caused by the same cyclonic eddy as it progressed south-westward along the east coast. Analysis of UTR data between 2004 and 2006 indicated that between two and five cyclonic eddies impact the shelf off NMR per year.  相似文献   

13.
Along the downwelling coast off Western Australia, late-autumn/early-winter chlorophyll a blooms are observed on the continental shelf south of Shark Bay (26°S), in contrast with summer blooms in the north. The late-autumn/early-winter blooms are in phase with seasonal strengthening of the Leeuwin Current and its eddy field. Anticyclonic eddies entrain the high phytoplankton biomass waters from the shelf and transport offshore into the oligotrophic, subtropical marine environment, as revealed by coalescing the finite-size Lyapunov exponent (FSLE) of the surface geostrophic flow field and the satellite chlorophyll a images.  相似文献   

14.
Statistics of the near-surface circulation in the northeast Pacific Ocean were derived from the trajectories of nearly 100 surface drifters tracked between August 1990 and December 1995 as part of the World Ocean Circulation Experiment's (WOCE) Surface Velocity Program (SVP). Drifters were drogued within the mixed layer (15 m drogue depth) or near the top of the permanent halocline (120 m). All branches of the Alaskan Gyre were well-sampled at both depths, revealing a weak Subarctic Current, a bifurcation of the Subarctic Current near 48°N, 130°W at 15 m depth, and strong, variable flow in the Alaska Current and Alaskan Stream. At 120 m depth, northward flow in the Alaska Current occurred much farther offshore than within the mixed layer. The drifter trajectories revealed interannual variability, with evidence of an intensified Alaskan Gyre during the winters of 1991–92 and 1992–93 and more southerly transport during winter 1994–95. A minimum in eddy kinetic energy was found at both depths within the northern branch of the Subtropical Gyre. Eddy kinetic energies were nearly twice as high in the mixed layer compared to below, and were 2–3 times larger in winter than in summer throughout most of the near-surface Alaskan Gyre. High eddy energies observed near the eastern perimeter of the Alaskan Gyre may be due to the offshore intrusion of eddies formed by coastal current instabilities.Taylor's theory of single-particle dispersion was applied to the drifter ensembles to estimate Lagrangian decorrelation scales and eddy diffusivities. Both the initial dispersion and random walk regimes were identified in the dispersion time series computed for several regions of both ensembles. The integral time scales and eddy diffusivities computed from the dispersion scale linearly with r.m.s. velocity, which is consistent with drifter studies from the Atlantic. An exception is the meridional integral time scales, which were nearly constant throughout the study area and at both drogue depths. The magnitudes of the derived eddy statistics are comparable to those derived from surface drifters in other parts of the world ocean. These are the first Lagrangian estimates of particle dispersion over a broad region of the near-surface North Pacific, and the consistency of the results with previous studies from the Atlantic lends credence to the idea that the simplifying assumptions of Taylor (1921) (Proceedings of the London Mathematical Society Series A 20, 196–221) are reasonably valid throughout the upper ocean. This bodes well for the effective parameterization of near-surface diffusivities in general circulation models. Finally, the drifter-derived velocity statistics were used to speculate on the source regions of waters of possible coastal origin observed at offshore stations during the field studies of the Canadian Joint Global Ocean Flux Study.  相似文献   

15.
Northern Norwegian shelf regions are highly productive, supporting fisheries rich in commercially important species such as cod, herring and capelin. It has been long recognized that the mesoscale jets, meanders and eddies associated with interactions between the North Atlantic Current, Norwegian Coastal Current and regional bottom topographic features such as troughs, banks and shelfbreaks play important roles in transporting and retaining zooplankton. To investigate zooplankton distributions and their correspondence with the physical fields, three large-scale surveys with mesoscale resolutions on physical and biological fields were conducted in northern Norwegian shelf regions between latitudes 68°15′N and 70°15′N in springs of 2000–2002. Survey results provide insights into the relationships between zooplankton distributions and the physical features such as fronts, the Norwegian Coastal Current and eddies related to topographic features. The physical and biological data are integrated and analyzed focusing on water types, estimation of geostrophic currents from direct current measurements, along-shelf transport of zooplankton, and retention of zooplankton by the mesoscale meander–eddy over a typical bank area on the shelf. The estimated mean transport in the upper 100 m on the shelf in the survey region is approximately 6.4×103 tonnes wet weight day−1 northward. High zooplankton abundances were found over both Malangsgrunnen and Sveinsgrunnen banks. The specific accumulation rate from northward–southward transport in the upper 100 m over Malangsgrunnen was approximately 0.08 day−1, while variable currents with an offshore gradient of zooplankton abundance over Sveinsgrunnen implies an offshore dispersion of coastal-originated zooplankton cohort.  相似文献   

16.
Sea Surface Height (SSH) variability in the Indian Ocean during 1993-1995 is studied using TOPEX/POSEIDON (T/P) altimetry data. Strong interannual variability is seen in the surface circulation of the western Arabian Sea, especially in the Somali eddy structure. During the Southwest (SW) monsoon, a weak monsoon year is characterized by a single eddy system off Somalia, a strong or normal monsoon year by several energetic eddies. The Laccadive High (LH) and Laccadive Low (LL) systems off southwest India are observed in the altimetric SSH record. The variability of the East India Coastal Current (EICC), the western boundary current in the Bay of Bengal, is also detected. Evidence is found for the propagation of Kelvin and Rossby waves across the northern Indian Ocean; these are examined in the context of energy transfer to the western boundary currents, and associated eddies. A simple wind-driven isopycnal model having three active layers is implemented to simulate the seasonal changes of surface and subsurface circulation in the North Indian Ocean and to examine the response to different wind forcing. The wind forcing is derived from the ERS-1 scatterometer wind stress for the same period as the T/P altimeter data, enabling the model response in different (active/weak) monsoon conditions to be tested. The model output is derived in 10-day snapshots to match the time period of the T/P altimeter cycles. Complex Principal Component Analysis (CPCA) is applied to both altimetric and model SSH data. This confirms that long Rossby waves are excited by the remotely forced Kelvin waves off the southwest coast of India and contribute substantially to the variability of the seasonal circulation in the Arabian Sea.  相似文献   

17.
Sea Surface Height (SSH) variability in the Indian Ocean during 1993-1995 is studied using TOPEX/POSEIDON (T/P) altimetry data. Strong interannual variability is seen in the surface circulation of the western Arabian Sea, especially in the Somali eddy structure. During the Southwest (SW) monsoon, a weak monsoon year is characterized by a single eddy system off Somalia, a strong or normal monsoon year by several energetic eddies. The Laccadive High (LH) and Laccadive Low (LL) systems off southwest India are observed in the altimetric SSH record. The variability of the East India Coastal Current (EICC), the western boundary current in the Bay of Bengal, is also detected. Evidence is found for the propagation of Kelvin and Rossby waves across the northern Indian Ocean; these are examined in the context of energy transfer to the western boundary currents, and associated eddies. A simple wind-driven isopycnal model having three active layers is implemented to simulate the seasonal changes of surface and subsurface circulation in the North Indian Ocean and to examine the response to different wind forcing. The wind forcing is derived from the ERS-1 scatterometer wind stress for the same period as the T/P altimeter data, enabling the model response in different (active/weak) monsoon conditions to be tested. The model output is derived in 10-day snapshots to match the time period of the T/P altimeter cycles. Complex Principal Component Analysis (CPCA) is applied to both altimetric and model SSH data. This confirms that long Rossby waves are excited by the remotely forced Kelvin waves off the southwest coast of India and contribute substantially to the variability of the seasonal circulation in the Arabian Sea.  相似文献   

18.
An oceanographic survey of the Tasman Front   总被引:1,自引:1,他引:0  
Results of a detailed expendable bathythermograph survey in the northern Tasman Sea are presented. The Tasman Front, with its origin in the edge of an East Australian Current eddy, extended throughout the survey region. The front marked a coherent, meandering, zonal jet which crosses the Tasman Sea and hence links at least part of the East Australian Current to the other western boundary currents in the subtropical gyre. The frontal meandering derives from both the variability of the East Australian Current system and the topographic effects of the major ridge systems in the north Tasman Sea. The front is less distinct over the crests of these ridges. The flow field in the survey area contained a number of anticyclonic eddies, and current records show that the oceanic eddies are long‐lived features similar to the eddies in the East Australian Current.  相似文献   

19.
Major plastered drift sequences were imaged using high-resolution multichannel seismics during R/V Meteor cruises M63/1 and M75/3 south of the Mozambique Channel along the continental margin of Mozambique off the Limpopo River. Detailed seismic-stratigraphic analyses enabled the reconstruction of the onset and development of the modern, discontinuous, eddy-dominated Mozambique Current. Major drift sequences can first be identified during the Early Miocene. Consistent with earlier findings, a progressive northward shift of the depocenter indicates that, on a geological timescale, a steady but variable Mozambique Current existed from this time onward. It can furthermore be shown that, during the Early/Middle Miocene, a coast-parallel current was established off the Limpopo River as part of a lee eddy system driven by the Mozambique Current. Modern sedimentation is controlled by the interplay between slope morphology and the lee eddy system, resulting in upwelling of Antarctic Intermediate Water. Drift accumulations at larger depths are related to the reworking of sediment by deep-reaching eddies that migrate southward, forming the Mozambique Current and eventually merging with the Agulhas Current.  相似文献   

20.
Year-long moorings were deployed across the Alaskan Stream near Samalga Pass (169°W) on two occasions, first in 2001–2002 (5 moorings) and again in 2003–2004 (3 moorings). Currents were measured throughout the water column, and temperature and salinity were measured at selected depths. Satellite altimetry and satellite-tracked drifters revealed a well defined Alaskan Stream, with the largest near-surface average speeds (>60 cm s−1) and highest eddy kinetic energy just upstream from the mooring sites. Excluding periods when large eddies disrupted the flow, transport in the Alaskan Stream ranged from 10 to 30×106 m3 s−1. The estimated mean transport in 2001–2002 was 19×106 m3 s−1, and in 2003–2004 was 21×106 m3 s−1. Large (diameter>200 km), anti-cyclonic eddies were not uncommon in the vicinity of Samalga Pass (14 times in 20 year period, 1992–2012). Although there were no such eddies observed during the period 2000–2003, one of the largest ever recorded eddies occurred in spring 2004. In addition, smaller eddies occurred on several occasions. Eddies disrupted the flow, shifting the Alaskan Stream farther off shore and were clearly evident in both the satellite imagery and the mooring data. Other energetic events, which were less evident in the satellite records, but clearly evident in the mooring measurements, also disrupted the flow. In addition to the moorings in the Alaskan Stream, pressure gauges were placed in Samalga Pass and a single mooring measuring currents was placed in the Aleutian North Slope Current (ANSC) in the Bering Sea. The alongshore, near-surface flow measured at the moorings deployed on the 1000-m isobaths in the Alaskan Stream and the ANSC were significantly correlated with the bottom pressure time series. In addition, at periods longer than 14 days, the bottom pressure measured at the mooring sites in Samalga Pass was significantly correlated with the sea surface height measured by the satellites. The eddy kinetic energies measured from the satellites and from moorings were also significantly correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号