首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
城市建成区的提取对城市发展规划有着重要的作用.为了找出能兼顾效率和识别准确率的基于卷积神经网络的遥感影像城市建成区提取方法,从神经网络结构的原理出发,对多种语义分割网络的内部结构进行对比分析,并针对语义分割网络分别进行训练及结果比较.实验结果表明,ShelfNet-50网络能够在训练速度最快的同时保证很高的识别准确率,...  相似文献   

2.
针对多模态、多尺度的高分辨率遥感影像分割问题,提出了结合空洞卷积的FuseNet变体网络架构对常见的土地覆盖对象类别进行语义分割。首先,采用FuseNet变体网络将数字地表模型(digital surface model,DSM)图像中包含的高程信息与红绿蓝(red green blue,RGB)图像的颜色信息融合;其次,在编码器和解码器中分别使用空洞卷积来增大卷积核感受野;最后,对遥感影像逐像素分类,输出遥感影像语义分割结果。实验结果表明,所提算法在国际摄影测量与遥感学会(International Society for Photogrammetry and Remote Sensing, ISPRS)提供的Potsdam、Vaihingen数据集上的mF1得分分别达到了91.6%和90.4%,优于已有的主流算法。  相似文献   

3.
从卫星遥感影像中自动提取建筑物在国民经济社会发展中具有广泛的应用价值,由于卫星遥感影像存在地物遮挡、光照、背景环境等因素的影响,传统方法难以实现高精度建筑物提取.采用一种基于注意力增强的特征金字塔神经网络方法(FPN-SENet),利用多源高分辨率卫星影像和矢量成果数据快速构建大规模的像素级建筑物数据集(SCRS数据集...  相似文献   

4.
遥感影像建筑物提取具有重要的应用价值。然而,高分辨率遥感影像中细节信息繁多、特征复杂,增加了建筑物提取难度。针对这一问题,本文提出一种基于多尺度SLIC-GMRF和FCNSVM的建筑物提取方法,一定程度上提高了高分辨率遥感影像建筑物提取能力。首先,利用多尺度SLIC-GMRF分割算法确定初始建筑物区域,然后,充分利用FCN神经网络在语义分割中的优势抽取建筑物特征,最后,结合提取出的建筑物特征训练SVM分类器细化建筑物提取结果,通过3种控制实验,两种对比方法得出以下结论:SLIC分割算法影响初始分割结果;SVM分类器影响建筑物细部提取;FCN特征影响SVM分类器性能。对于特征清晰、遮挡干扰较少的研究区,本文方法能够较好提取影像中的建筑物,查准率、查全率、质量指标均优于对比方法,对建筑物复杂分布的研究区同样能够取得较好的提取效果。  相似文献   

5.
针对道路目标特点,设计实现了用于遥感影像道路提取的Encoder-Decoder深度语义分割网络。首先,针对道路目标局部特征丰富、语义特征较为简单的特点,设计了较浅深度、分辨率较高的Encoder-Decoder网络结构,提高了分割网络的细节表示能力。其次,针对遥感影像中道路目标所占像素比例较小的特点,改进了二分类交叉熵损失函数,解决了网络训练中正负样本严重失衡的问题。在大型道路提取数据集上的试验表明,所提方法召回率、精度和F1-score指标分别达到了83.9%、82.5%及82.9%,能够完整准确地提取遥感影像中的道路目标。所设计的Encoder-Decoder网络性能优良,且不需人工设计提取特征,因而具有良好的应用前景。  相似文献   

6.
李冠东  张春菊  王铭恺  张雪英  高飞 《测绘科学》2019,44(4):116-123,174
针对基于人工提取特征的传统分类方法无法有效表达高空间分辨率遥感影像高层语义信息,且需要大量高质量训练数据,而带标签样本数据匮乏的问题。迁移学习运用已有知识对不同但相关领域问题进行求解,可有效解决目标领域中仅有少量标签样本数据的学习问题。该文提出利用迁移学习,基于卷积神经网络的深度学习模型进行高分影像场景分类。首先,基于ImageNet预训练的卷积神经网络Inception-v3模型提取高分影像数据的特征向量;然后,将特征向量作为输入数据训练一个新的单层全连接神经网络,经少量带标签影像场景数据训练后得到最终分类结果。该方法在UC Merced、AID和Wuhan 7类场景影像数据集上分别取得99%、93.3%和96.6%的准确率,相比已有方法,有效提高高分影像场景分类精度,同时说明知识迁移在高分影像场景分类领域的可行性。  相似文献   

7.
针对植被目标特点,本文提出了基于注意力网络的遥感影像植被提取方法。首先,针对不同环境地形气候条件下植被差异化的特点和植被与其他地物共生混杂导致植被出现错分的特点,设计了空间注意力模型,对上下文信息进行适配推理以优化网络提取边界。然后,建立完整的注意力网络模型,将影像特征输入softmax分类器进行分类,获取植被提取结果。通过植被数据集进行试验表明,本文提取方法性能优良,且具有较好的泛化能力。  相似文献   

8.
作为遥感信息分析领域的重要工作之一,高分辨率遥感影像道路提取对于地理信息建库、城市建设规划、城市地形分析与三维表达等方面具有重要的研究意义。本文提出了多种改进算法组成的遥感影像道路网络提取方法,首先使用超像素分割(Simple Linear Iterative Clustering, SLIC)算法对高分辨率遥感影像进行分割处理并使用改进K-means算法对分割后影像进行分类;其次根据绿色植被指数(Green Vegetation Index, CVI)值滤除非人工区域并使用OTSU算法分割提取得到初始道路网络;最后对提取道路网络进行优化处理得到精细化道路网络。使用广州市某地高分辨遥感影像对本文提取算法进行验证,结果表明,本文算法能够有效地提取道路信息,提高道路网络提取精度。  相似文献   

9.
卷积神经网络在高分遥感影像分类中的应用   总被引:8,自引:0,他引:8  
针对目前应用于高分辨率遥感影像分类的常用算法,其精度已无法满足大数据环境下的分类要求的问题,该文提出了卷积神经网络分类算法。卷积神经网络模型降低了因图像平移、比例缩放、倾斜或者共他形式的变形而引起的误差。在大数据环境下,采用卷积神经网络算法对高分辨率遥感影像进行分类,避免了特征提取和分类过程中数据重建的复杂度,提高了分类精度。通过实验比对分析,证明了卷积神经网络在高分辨率遥感影像分类中的可行性及精度优势,对遥感图像处理领域等相关工作提供了参考价值。  相似文献   

10.
高分辨率遥感影像包含丰富的土地利用类型信息,针对单一卷积神经网络提取图像特征信息不足的问题,提出了一种多结构卷积神经网络(convolutional neural network,CNN)特征级联的分类方法。首先,选择CaffeNet(convolutional architecture for fast feature embedding)、VGG-S(visual geometry group-slow)、VGG-F(visual geometry group-fast)为实验初始模型,对网络全连接层进行参数微调,采用随机梯度下降法(stochasticgradient descent,SGD)更新网络的权重;然后以微调后的网络分别作为特征提取器对图像提取特征,级联上述3种网络的第二个全连接层输出特征作为图像表达;最后,以多类最优边界分配机(multi-class optimal margindistribution machine,mcODM)获得最终分类结果。实验采用UC Merced land-use数据集进行分类效果检验,结果表明,多结构卷积神经网络级联的方法能够达到97.55%的总体分类精度,相较于CaffeNet、VGG-S和VGG-F等,分类精度分别提升了5.71%、2.72%和5.1%。因此多结构卷积神经网络特征级联的方法能够有效提取目标特征信息,提升土地利用分类精度。  相似文献   

11.
准确获取塑料大棚的空间分布及其动态变化信息对农业发展规划、粮食评估、生态环境监测具有重要意义。高分辨率遥感影像可提供精细的塑料大棚形状、边界等细节信息,符合精准农业的发展需求,在重点区域塑料大棚精准调查中具有不可替代的优势。然而,目前基于高分辨率影像的塑料大棚解译模型面临先验信息不足、难以兼顾解译精度和模型复杂度的难题。针对此问题,提出一种融合新型塑料大棚指数(advanced plastic greenhouse index, APGI)与高分红绿蓝(red green blue,RGB)影像的塑料大棚语义分割模型。该模型主要由APGI语义分支、RGB语义分支和RGB细节分支等组成,并使用注意力机制,融合APGI指数包含的可靠先验信息和高分RGB影像提供的空间细节信息。此外,提出一种边界信息引导的模型训练机制,提升模型对塑料大棚边界像素的精确识别能力。研究发现,在注意力机制引导的融合框架下,中分辨率的APGI指数可有效提升高分影像的塑料大棚识别能力。实验证明,所提模型在明显提升塑料大棚解译精度的基础上,大幅精简了语义分割模型的参数量和计算复杂度,满足高分辨率影像塑料大棚快速、精准解译...  相似文献   

12.
季顺平  魏世清 《测绘学报》2019,48(4):448-459
从遥感图像中自动化地检测和提取建筑物在城市规划、人口估计、地形图制作和更新等应用中具有极为重要的意义。本文提出和展示了建筑物提取的数个研究进展。由于遥感成像机理、建筑物自身、背景环境的复杂性,传统的经验设计特征的方法一直未能实现自动化,建筑物提取成为30余年尚未解决的挑战。先进的深度学习方法带来新的机遇,但目前存在两个困境:①尚缺少高精度的建筑物数据库,而数据是深度学习必不可少的"燃料";②目前国际上的方法都采用像素级的语义分割,目标级、矢量级的提取工作亟待开展。针对于此,本文进行以下工作:①与目前同类数据集相比,建立了一套目前国际上范围最大、精度最高、涵盖多种样本形式(栅格、矢量)、多类数据源(航空、卫星)的建筑物数据库(WHU building dataset),并实现开源;②提出一种基于全卷积网络的建筑物语义分割方法,与当前国际上的最新算法相比达到了领先水平;③将建筑物提取的范围从像素级的语义分割推广至目标实例分割,实现以目标(建筑物)为对象的识别和提取。通过试验,验证了WHU数据库在国际上的领先性和本文方法的先进性。  相似文献   

13.
耕地资源的快速、精准提取是支撑耕地保护和耕地用途管制的重要基础。随着高分辨率遥感和人工智能技术的快速发展,高分辨率遥感耕地提取已逐渐由传统的基于像元和面向对象的分类算法过渡至以深度学习为代表的智能化耕地提取新阶段,并取得不少成果,但也同样面临着诸多挑战。首先,梳理和分析了传统耕地提取算法和基于深度学习的智能化耕地提取算法的研究现状,阐述了深度学习支持下的耕地提取研究的必要性;然后,结合全卷积神经网络的发展历程,介绍了深度语义分割技术的基本原理以及在耕地提取应用中的实验流程,并归纳了主要的智能耕地提取算法;最后,围绕智能化耕地提取研究存在的不足,探讨了智能化耕地提取技术的发展趋势。  相似文献   

14.
高分辨率遥感影像语义分割的半监督全卷积网络法   总被引:1,自引:0,他引:1  
耿艳磊  陶超  沈靖  邹峥嵘 《测绘学报》2020,49(4):499-508
在遥感领域,利用大量的标签影像数据来监督训练全卷积网络,实现影像语义分割的方法会导致标签绘制成本昂贵,而少量标签数据的使用会导致网络性能下降。针对这一问题,本文提出了一种基于半监督全卷积网络的高分辨率遥感影像语义分割方法。通过采用一种集成预测技术,同时优化有标签样本上的标准监督分类损失及无标签数据上的非监督一致性损失,来训练端到端的语义分割网络。为验证方法的有效性,分别使用ISPRS提供的德国Vaihingen地区无人机影像数据集及国产高分一号卫星影像数据进行试验。试验结果表明,与传统方法相比,无标签数据的引入可有效提升语义分割网络的分类精度并可有效降低有标签数据过少对网络学习性能的影响。  相似文献   

15.
高空间分辨率遥感影像拥有丰富的空间细节信息和多光谱信息。研究表明,二维卷积神经网络适于提取空间信息,而三维卷积神经网络更适于提取光谱信息。为了更好地利用空谱信息,本文提出一种双通道并行混合卷积神经网络(DPHCNN)方法,充分联合二维与三维卷积神经网络在空谱信息提取上的优势,同时引入混合注意力机制、多尺度卷积增强空间细节特征的提取能力,实现高分影像的精准分类。试验中利用高分二号影像数据集进行验证,与当前先进的深度学习分类方法相比,本文提出的DPHCNN方法在保证分类精度高、分类效率较好的同时,能在多时相影像分类中保持最高的稳健性,在综合评价上更具优势。  相似文献   

16.
针对全卷积网络进行遥感影像语义分割时存在的空间信息和上下文信息缺失问题,本文提出一种基于对象上下文信息的无人机遥感影像建筑物提取方法。该方法首先采用高分辨率网络(HRNet)作为主干网络提取空间信息完整的多尺度高分辨率特征;然后依据主干网络提取的特征在真实标签的监督下划分对象区域,并计算每个像素与对象区域之间的关系得到像素与对象区域的上下文信息;最后将主干网络提取的高分辨率特征与对象上下文信息组合实现特征增强,依据增强后的特征实现无人机遥感影像中建筑物的提取。两个数据集的实验结果均表明,本文方法有效提高建筑物提取精度。  相似文献   

17.
面向对象的多尺度多特征高分遥感影像建筑物提取   总被引:2,自引:3,他引:2  
建筑物作为地理信息基础数据,是衡量城市发展的主要指标,如何对遥感影像对建筑物进行的提取是遥感图像处理的热点。本文研究了基于面向对象的高分遥感影像建筑物提取,首先对影像进行多尺度分割,然后对分割以后形成的有意义的图斑进行处理。结合建筑物的光谱、形状等特征对建筑物进行提取,实验结果表明该方法提取结果较好,精度可以达到90.3%。  相似文献   

18.
高分辨率遥感影像因其所含较为丰富的影像信息,在城市规划、环境评价、林业测量等领域得到了广泛应用。然而,由于遥感影像具有背景复杂、地物结构多样、细节丰富等特点,往往存在分割精度低的问题。此外,遥感影像中目标如建筑物、河流和林地等地物通常存在尺寸大小不一致的问题,难以做到精细化分割。针对以上问题,本文提出了基于多特征融合的卷积神经网络模型。该模型分为编码器和解码器两部分。在编码阶段,本文使用跨卷积层级的多尺度特征融合策略提取特征;在解码阶段,为了准确地恢复影像的细节信息,本文设计了能够融合不同层级卷积特征的解码器。同时,本文对成都市的高分系列遥感卫星影像标注,设计对比实验验证了本文模型的有效性。  相似文献   

19.
联合显著性和多层卷积神经网络的高分影像场景分类   总被引:1,自引:2,他引:1  
何小飞  邹峥嵘  陶超  张佳兴 《测绘学报》2016,45(9):1073-1080
高分辨率遥感影像中的场景信息,对于影像解译和现实世界的理解具有重要意义。传统的场景分类方法多利用中、低层人工特征,但是高分辨率遥感影像的信息丰富,场景构成复杂,需要高层次的特征来表达。本文提出了一种联合显著性和多层卷积神经网络的方法,首先利用显著性采样获取包含影像主要信息的有意义的块,将这些块作为样本集输入卷积神经网络中进行训练,获得不同层次的特征表达,最后联合多层特征利用支持向量机进行分类。两组高分影像场景数据UC Merced 21类和Wuhan 7类试验表明,显著性采样能够有效地获取主要目标,减弱其他无关目标的影响,降低数据冗余;卷积神经网络能够自动学习高层次的特征,相比已有方法,本文方法能够有效提高分类精度。  相似文献   

20.
为了实现高分辨率光学遥感图像的语义分割,提出了一种基于深度卷积融合条件随机场的图像语义分割方法.该方法在全卷积神经网络模型的基础上增加反卷积融合结构结合不同深度的池化层结果,将浅层的细节信息和高层的语义信息融入网络模型,同时将条件随机场的参数推断以迭代层的形式嵌入网络架构,搭建网络模型,在模型训练的正反向传播过程中综合...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号