首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The Tal y Fan Intrusion is a 110 m thick sub-concordant metabasite sheet intruded into volcaniclastic and pyroclastic rocks of Ordovician age in North Wales. Despite low grade metamorphism, primary textural zones resulting from initial cooling of the sheet are preserved and retain primary mineralogical and chemical variations which influenced the nature and extent of metamorphic recrystallization. This has resulted in a vertical sequence of secondary mineral assemblages through the intrusion. During early hydrothermal alteration K-feldspar replaced plagioclase micropheno-crysts in the marginal and contact zones, and olivine in the central zone was replaced by saponite. Subsequent regional metamorphism resulted in the development of (metastable) prehnite-pumpellyite-epidote assemblages in two sub-zones characterized by high Fe2O3. Elsewhere the assemblage prehnite-actinolite-epidote developed except in the contact and marginal zones where activity of CO2 suppressed both prehnite and pumpellyite. Both assemblages contain excess albite, quartz and chlorite and, on the basis of uniform mineral compositions over the area of an individual thin section, are considered to represent buffered equilibrium assemblages indicative of prehnite-pumpellyite and prehnite-actinolite facies conditions. A metamorphic temperature of 310° C at 1.85 kbar is obtained using the P-T-X grid of Liou, Maruyama & Cho (1985), which implies a field gradient of ~ 44° C km-1. Assuming that metamorphism relates to burial, an overburden thickness of ~ 7 km is indicated. Total maximum thicknesses, however, of Ordovician, Silurian and Lower Devonian strata, in the area, do not exceed 6 km indicating a field gradient of 52° C km-1. These relatively high gradients may possibly be related to concealed late Caledonian intrusions, or alternatively may result from high heat flow as a consequence of crustal thinning, rapid sedimentation and intense magmatic activity in a marginal basin setting.  相似文献   

2.
麻粒岩相变质流体及麻粒岩相岩石成因   总被引:2,自引:0,他引:2  
余能  金巍  龙晓平 《世界地质》2004,23(4):321-325
流体在麻粒岩相地钵形成过程中所扮演的角色是有争议的。麻粒岩相变质流体目前的研究成果可归纳为碳变质模式、无流体变质模式和高盐度流体变质模式。碳变质模式强调幔源CO2在麻粒岩形成过程中起着非常重要的作用,这一模式在许多麻粒岩相地体得到了肯定。但碳、氧稳定同位素的不均一现象、峰期矿物组合热力学计算结果以及富CO2流体对硅酸盐的搬运能力低使碳变质受到了质疑。无流体变质模式强调部分熔融降低H2O活度的绝对重要性,但却无法解释普遍存在的麻粒岩相原生富CO2包裹体。而高盐度流体变质模式的确有潜在的优势,如低H2O活度、较强的碱金属、LILE及硅酸盐的搬运能力,但这一理论需要进一步证实。  相似文献   

3.
A quartz-absent magnesian paragneiss layer from Mount Sones, in the Archaean Napier complex of Enderby Land, Antarctica, contains the stable divariant FMAS assemblage sapphirine (X Mg=78) — cordierite (X Mg=87) — garnet (X Mg=51) — sillimanite. Rare green spinel (X Mg=53.5, ZnO=2.65wt%) occurs as inclusions mainly within sapphirine, but also within sillimanite and garnet. Late thin coronas of cordierite (X Mg=90.5) mantle sapphirine in contact with extensively exsolved anorthoclase. The mineral textures are interpreted to indicate the former stability of a hypersthene-quartz absent assemblage followed by the development of the FMAS equilibrium assemblage sapphirine-cordierite-garnet-sillimanite (sp, hy, qz) and further divariant reaction involving the consumption of sapphirine. The (sp, hy, qz) assemblage uniquely defines the stable P-T reaction topology appropriate to granulites from the Napier Complex, as this paragenesis is allowed in the grids of Hensen (1971, 1986) but is not possible in other grids which assume the stability of a sapphirine-absent ([sa]) FMAS invariant point involving the phases spinel, garnet, hypersthene, cordierite, sillimanite and quartz. The observed mineral assemblages and textures are consistent with peak metamorphism between the [sp] and [hy] invariant points of Hensen (1971), at temperatures of 930–990° C, followed by cooling on a lower dP/dT trajectory towards the (sp, qz) univariant line. The initial spinel-bearing assemblage was stabilized by Zn and to a lesser extent by Ni and Cr, and hence does not require a marked decrease in temperature and increase in pressure to produce the (sp, hy, qz) assemblage. It is inferred that fO 2 conditions substantially lower than those used in the experiments of Annersten and Seifert (1981) prevailed in the high-grade metamorphism in the Napier Complex.  相似文献   

4.
Charnockitic alteration (arrested orthopyroxene formation in biotite- and amphibole-bearing rocks) occurs in high-grade terranes of all ages. Three criteria are used to show that this alteration was produced in many locations by a migrating fluid phase: (i) diffuseness of the alteration—the alteration zones are often quite unlike discrete migmatitic veins; (ii) relation to deformation—most occurrences show alteration closely associated with warping of foliation or dilation cracks; (iii) open-system alteration—whilst some occurrences represent nearly isochemical alteration, slight changes in bulk composition, often loss of mafic constituents and gain of Na and Si, are evident in detailed mass-balance analysis. Y and sometimes Rb are characteristically depleted. Partial melting sometimes accompanied volatile infiltration, as evidenced by more discrete veins and euhedral orthopyroxene. It is quite unlikely, however, that open-system alteration was produced by escape of viscous quartzo-feldspathic melts. Pervasive migration of low-T lamprophyric (mafic–alkaline, CO2-charged) interstitial liquids is a possibility by virtue of their extreme fluidity, but CO2 infiltration was needed to generate these liquids. Vapour-deficient dehydration melting is another feasible mechanism of orthopyroxene formation which may have operated in conjunction with CO2 infiltration. Characteristic development of charnockitic alteration in some prograde amphibolite to granulite facies transitions, as in the Dharwar Craton of South India, suggests that the alteration is a fundamental feature of the granulite facies metamorphism, implying active and causal participation of migrating fluids. In other high-grade terranes like the Adirondack Mountains of New York, this kind of alteration is rare, and fluid action does not seem to have been important in the metamorphism. A vapour phase participating in charnockitic metamorphism was necessarily one of relatively low H2O, therefore presumably rich in CO2. Consideration of possible large CO2 sources leads to the conclusion that emanations from volatile-rich basalts emplaced in the lower crust are the most probable source of charnockitizing fluids. The ultimate source would therefore be enriched subcontinental lithosphere or asthenosphere. The Rb-depleted pyroxene gneiss (charnockitic) terranes may be characteristic of zones of large-scale transcurrent or oblique-motion faults which tap such great depths.  相似文献   

5.
We have investigated the effects of different Fe2O3 bulk contents on the calculated phase equilibria of low‐T/intermediate‐P metasedimentary rocks. Thermodynamic modelling within the MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNKFMASHTO) chemical system of chloritoid‐bearing hematite‐rich metasedimentary rocks from the Variscan basement of the Pisani Mountains (Northern Apennines, Italy) fails to reproduce the observed mineral compositions when the bulk Fe2O3 is determined through titration. The mismatch between observed and computed mineral compositions and assemblage is resolved by tuning the effective ferric iron content by P–XFe2O3 diagrams, obtaining equilibration conditions of 475 °C and 9–10 kbar related to a post‐compressional phase of the Alpine collision. The introduction of ferric iron affects the stability of the main rock‐forming silicates that often yield important thermobaric information. In Fe2O3‐rich compositions, garnet‐ and carpholite‐in curves shift towards higher temperatures with respect to the Fe2O3‐free systems. The presence of a ferric‐iron oxide (hematite) prevents the formation of biotite in the mineral assemblage even at temperatures approaching 550 °C. The use of P–T–XFe2O3 phase diagrams may also provide P–T information in common greenschist facies metasedimentary rocks.  相似文献   

6.
Metamorphic rutile from granulite facies metapelitic rocks of the Archean Pikwitonei Granulite Domain (PGD; Manitoba, Canada) provides constraints on the systematics of trace elements in rutile during high‐temperature conditions and subsequent slow cooling. Compositional profiles and maps of the Zr concentrations in rutile grains (120–600 μm) from three metapelitic gneisses were acquired by electron probe micro‐analysis, using a spatial resolution of down to 2 μm. Simultaneously, profiles were analysed for Nb, Cr and V, which have significantly different diffusion characteristics in rutile. The profiles of all elements show relatively homogeneous concentrations within most grains, but significant inter‐grain differences even within a single thin section. Some rutile grains display a slight concentration decrease from a neighbouring garnet towards the matrix for all measured elements. The lack of diffusion profiles for all analysed elements shows that these are highly immobile in rutile and that distributions of these elements are primary and preserve prograde information. The Nb and Cr concentrations overlap with ranges that are ascribed to different provenances indicating that source discrimination based on these elements is not possible in all cases. High retentiveness for Zr implies that the Zr‐in‐rutile geothermometer is highly robust to diffusive re‐equilibration, even during very slow cooling (<2 °C Ma?1) from granulite facies conditions. Most grains have high Zr contents (3000–4600 ppm). Differences between high Zr contents suggest that during growth under vapour‐absent conditions there may not be saturation of Zr in rutile, even if zircon is present. Therefore, several rutile grains need to be analysed in a sample to obtain a useful minimum peak temperature. The highest Zr concentrations correspond to ~900 °C. This is significantly higher than previous peak temperature estimates of 820 °C based on two‐feldspar thermometry. On a regional scale this implies that part of the PGD was affected by ultra‐high temperature (UHT) metamorphism. It also implies that rutile is able to preserve primary compositions even to UHT conditions. This study shows that, if combined with textural information, Zr‐in‐rutile has the potential to be a very useful tool for estimating rutile crystallization temperatures and peak metamorphic conditions. For granulite facies rocks, Zr‐in‐rutile yields more reliable peak metamorphic temperatures than most other exchange geothermometers, which tend to partially re‐equilibrate by diffusion during cooling.  相似文献   

7.
The Whitestone Anorthosite (WSA), located in southern Ontario, underwent granulite facies metamorphism during the Grenville orogeny at 1.16 Ga. During the waning stages of metamorphism fluids infiltrated the outer portions of the anorthosite and promoted the formation of an envelope comprised of upper amphibolite facies mineral assemblages. Also, this envelope corresponds to portions of the anorthosite that underwent deformation related to movement along a high-grade ductile shear zone. Samples from this portion of the anorthosite (the margin) contain CO2-rich inclusions in plagioclase porphyroclasts (relict igneous phenocrysts), matrix plagioclase and garnet. These inclusions have features which normally are interpreted as indicating that they are texturally primary, but they have relatively low CO2 densities (0.61–0.95 g cm-3). Plagioclase from the anorthosite interior contains texturally secondary inclusions with relatively high CO2 densities (generally from 0.99 to 1.10 g cm-3). The high CO2 densities suggest that the inclusions in the plagioclase of the anorthosite core formed prior to inclusions in porphyroclast minerals of the outer portions of the anorthosite, an interpretation that is apparently inconsistent with inclusion textures. This apparent paradox indicates that most fluid inclusions from the anorthosite margin were formed during, or were modified by, the dynamic recrystallization that affected this portion of the WSA. In either case, late formation or modification, the texturally primary fluid inclusions do not contain pristine samples of the peak metamorphic fluid. Furthermore, because shear-related deformation is apparently associated with entrapment of the lowest fluid densities, some strain localization persisted to relatively low temperatures (e.g. less than approximately 500° C). These results constrain a part of the retrograde P–T path for this portion of the Grenville Orogen to temperatures of approximately 400–500° C at pressures of approximately 1–2 kbar.  相似文献   

8.
Linking ages to metamorphic stages in rocks that have experienced low‐ to medium‐grade metamorphism can be particularly tricky due to the rarity of index minerals and the preservation of mineral or compositional relicts. The timing of metamorphism and the Mesozoic exhumation of the metasedimentary units and crystalline basement that form the internal part of the Longmen Shan (eastern Tibet, Sichuan, China), are, for these reasons, still largely unconstrained, but crucial for understanding the regional tectonic evolution of eastern Tibet. In situ core‐rim 40Ar/39Ar biotite and U–Th/Pb allanite data show that amphibolite facies conditions (~10–11 kbar, 530°C to 6–7 kbar, 580°C) were reached at 210–180 Ma and that biotite records crystallization, rather than cooling, ages. These conditions are mainly recorded in the metasedimentary cover. The 40Ar/39Ar ages obtained from matrix muscovite that partially re‐equilibrated during the post peak‐P metamorphic history comprise a mixture of ages between that of early prograde muscovite relicts and the timing of late muscovite recrystallization at c. 140–120 Ma. This event marks a previously poorly documented greenschist facies metamorphic overprint. This latest stage is also recorded in the crystalline basement, and defines the timing of the greenschist overprint (7 ± 1 kbar, 370 ± 35°C). Numerical models of Ar diffusion show that the difference between 40Ar/39Ar biotite and muscovite ages cannot be explained by a slow and protracted cooling in an open system. The model and petrological results rather suggest that biotite and muscovite experienced different Ar retention and resetting histories. The Ar record in mica of the studied low‐ to medium‐grade rocks seems to be mainly controlled by dissolution–reprecipitation processes rather than by diffusive loss, and by different microstructural positions in the sample. Together, our data show that the metasedimentary cover was thickened and cooled independently from the basement prior to c. 140 Ma (with a relatively fast cooling at 4.5 ± 0.5°C/Ma between 185 and 140 Ma). Since the Lower Cretaceous, the metasedimentary cover and the crystalline basement experienced a coherent history during which both were partially exhumed. The Mesozoic history of the Eastern border of the Tibetan plateau is therefore complex and polyphase, and the basement was actively involved at least since the Early Cretaceous, changing our perspective on the contribution of the Cenozoic geology.  相似文献   

9.
In the Austroalpine Mont Mary nappe (Italian Western Alps) discrete zones of mylonites–ultramylonites developed from coarse-grained, upper amphibolite facies metapelites of pre-Alpine age. The syn–mylonitic mineral assemblage is quartz–biotite–muscovite–plagioclase–garnet–sillimanite–ilmenite–graphite, and formed via the model hydration reaction: Grt1+Kfs+H2O=Bt2+Ilm2+Qtz+Ms± Sil .Grain-size reduction of about three orders of magnitude was accompanied by extensive recrystallization of all minerals except sillimanite, and by compositional changes of garnet and biotite. Deformation took place at temperatures of 510–580  °C under low-pressure conditions (0.25–0.45 GPa) and corresponds to the latest stages of pre-Alpine metamorphic evolution. The pre-Alpine mylonitization conditions were close to the brittle-ductile transition, as indicated by syn–mylonitic generation of pseudotachylytes and high differential stress inferred from quartz grain-size piezometry. The brittle-ductile behaviour at a relatively high temperature, and the absence of annealing textures in quartz aggregates, are suggestive of water-deficient conditions during mylonitization. These were accomplished through progressive consumption of water by syn–kinematic hydration reaction and by adsorption onto the greatly increased grain boundary area resulting from dynamic recrystallization.  相似文献   

10.
邸英龙  曾令森  陈晶  高利娥  张立飞 《岩石学报》2021,37(11):3435-3444

方柱石是一种含挥发分的架状铝硅酸盐矿物,其成因一直有争议。对喜马拉雅造山带定结地区基性麻粒岩中方柱石及其出溶物的矿物化学和纳米结构分析表明:(1)方柱石为富S类型;(2)内部出溶矿物为陨硫铁,晶胞参数为a=b=0.5968nm,c=1.174nm,α=β=90°,γ=120°;(3)陨硫铁的(001)面平行于方柱石的(100)面。出溶前的方柱石在榴辉岩相条件下形成,其稳定压力上限与Fe含量呈正相关关系。在麻粒岩相作用时,无水条件下方柱石内的SO42-发生自氧化还原反应而产生出溶矿物和O2,反应方程式为:Fe2++SO42-=FeS+2O2。类似反应可能导致下地壳氧逸度高于中上地壳。方柱石的形成与分解记录了喜马拉雅造山带的形成过程,在大陆俯冲与折返过程中扮演重要角色,对地壳深部挥发分的调节起到了重要作用,并对地球深部氧逸度调节机制的研究开拓了新的思路。

  相似文献   

11.
When graphite is present, carbon‐bearing species dissolve in the C‐O‐H fluid and lower the activity of water (). Accordingly, metamorphic reactions that involve water, namely dehydration and partial melting reactions, adjust their P–T positions to accommodate the change of . In this modelling study, pseudosections are calculated for graphite‐bearing systems that are either closed or that progressively lose fluid and/or melt. The diagrams incorporate a new model of CO2 solubility in felsic melts that we derived to be compatible with a recently published melt model. As the result of the lowered in the carbon‐bearing systems, the temperature displacements of the solidus can be as large as 50 °C at low pressures in cordierite‐bearing zones (<4 kbar), but are smaller than 15 °C at mid‐pressure P–T conditions (4–9 kbar). In the supersolidus region, the phase relations among silicate minerals + melt are very close to those in carbon‐free systems. The fluid CO2 content increases as temperature increases in the supersolidus assemblages. The CO2‐rich fluid can be stable in granulite facies conditions in an oxidized system. In graphitic systems, melt and/or cordierite dominate the CO2 budget of high‐grade rocks. During cooling, the fluid that exsolves from such crystalizing melt is CO2‐rich. In addition to the phase relations, the pseudosections presented in this study enable researchers to quantitatively investigate the evolution of phase modes, including graphite, along specific metamorphic P–T paths. At low pressures in the cordierite stability field, graphite is predicted to precipitate as the pressure increases or temperature decreases in the subsolidus assemblages, or temperature increases in the region of melt + fluid coexistence. On the other hand, the graphite abundance remains nearly constant along the mid‐pressure P–T series, but the graphite mode in the supersolidus region may increase due to residual enrichment if the melt is extracted. The modelling results show that metamorphic processes in closed systems lead to only small changes in graphite mode (a few tenths of a per cent). This strongly suggests that open‐system behaviours are required for large amounts of graphite deposition, including fluid infiltration and mixing or residual enrichment processes in high‐grade rocks. In addition to P–T pseudosections, P/T–XO diagrams (XO = O/(H + O) in the fluid) illustrate the thermodynamic features of internal buffering from another perspective, and explore the dependence of phase relations on the externally imposed redox state. If the system is equilibrated with CO2 or CH4‐rich infiltrating fluid, the temperature displacements of metamorphic reactions can be larger than 50 °C, compared with carbon‐free systems.  相似文献   

12.
Mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) using thermocalc and its internally consistent thermodynamic dataset constrain the effect of TiO2 and Fe2O3 on greenschist and amphibolite facies mineral equilibria in metapelites. The end‐member data and activity–composition relationships for biotite and chloritoid, calibrated with natural rock data, and activity–composition data for garnet, calibrated using experimental data, provide new constraints on the effects of TiO2 and Fe2O3 on the stability of these minerals. Thermodynamic models for ilmenite–hematite and magnetite–ulvospinel solid solutions accounting for order–disorder in these phases allow the distribution of TiO2 and Fe2O3 between oxide minerals and silicate minerals to be calculated. The calculations indicate that small to moderate amounts of TiO2 and Fe2O3 in typical metapelitic bulk compositions have little effect on silicate mineral equilibria in metapelites at greenschist to amphibolite facies, compared with those calculated in KFMASH. The addition of large amounts of TiO2 to typical pelitic bulk compositions has little effect on the stability of silicate assemblages; in contrast, rocks rich in Fe2O3 develop a markedly different metamorphic succession from that of common Barrovian sequences. In particular, Fe2O3‐rich metapelites show a marked reduction in the stability fields of staurolite and garnet to higher pressures, in comparison to those predicted by KFMASH grids.  相似文献   

13.
卫巍  庞绪勇  王宇  徐备 《岩石学报》2009,25(3):689-698
准噶尔西北部沙尔布尔提山地区下泥盆统到下石炭统的沉积可划分为滨海相和海岸平原相。其中下泥盆统和布克赛尔组底部的乌图布拉克亚组为滨海碎屑岩相,曼格尔亚组为滨海碎屑岩和碳酸盐岩相,芒克鲁亚组为滨海碳酸盐岩相。中泥盆统呼吉尔斯特组为海岸平原相。上泥盆统洪古勒楞组底部为海岸平原相,向中部过渡为滨海碳酸盐岩相,顶部为滨海碎屑岩相。下石炭统黑山头组为滨海碎屑岩相。下泥盆统和下石炭统的古流向总体从北向南,显示研究区以北地区为物源区,即成吉斯-塔尔巴哈台褶皱带。结合沉积相的研究成果,本区可能属成吉斯-塔尔巴哈台褶皱带以南的晚古生代陆缘区。物源演变趋势分析揭示早泥盆世成吉斯-塔尔巴哈台带中的早古生代岛弧发生隆起,为乌图布拉克亚组提供成熟度很低的碎屑物质。随着岛弧被剥蚀殆尽,中、晚泥盆世呼吉尔斯特组和洪古勒楞组沉积时转而接受岩屑型再旋回造山带的物源供应,而早石炭世的物源则为过渡型再旋回造山带区。这种物源变化反映了成吉斯-塔尔巴哈台褶皱带的建造特征和隆起过程。  相似文献   

14.
The Mallee Bore area in the northern Harts Range of central Australia underwent high-temperature, medium- to high-pressure granulite facies metamorphism. Individual geothermometers and geobarometers and average P–T  calculations using the program Thermocalc suggest that peak metamorphic conditions were 705–810 °C and 8–12 kbar. Partial melting of both metasedimentary and meta-igneous rocks, forming garnet-bearing restites, occurred under peak metamorphic conditions. Comparison with partial melting experiments suggests that vapour-absent melting in metabasic and metapelitic rocks with compositions close to those of rocks in the Mallee Bore area occurs at 800–875 °C and >9–10 kbar. The lower temperatures obtained from geothermometry imply that mineral compositions were reset during cooling. Following the metamorphic peak, the rocks underwent local mylonitization at 680–730 °C and 5.8–7.7 kbar. After mylonitization ceased, garnet retrogressed locally to biotite, which was probably caused by fluids exsolving from crystallizing melts. These three events are interpreted as different stages of a single, continuous, clockwise P–T  path. The metamorphism at Mallee Bore probably occurred during the 1745–1730 Ma Late Strangways Orogeny, and the area escaped significant crustal reworking during the Anmatjira and Alice Springs events that locally reached amphibolite facies conditions elsewhere in the Harts Ranges.  相似文献   

15.
为了精细描述碳酸盐岩储层展布,对滩相沉积刻画的精度要求日益增高。针对川东地区茅口组地层因抬升遭受剥蚀,难以统计颗粒滩真实厚度的问题,提出结合滩地比技术刻画碳酸盐岩滩相类型及分布范围,进而开展碳酸盐岩沉积相描述。利用丰富的钻井资料,通过滩相识别标志建立、连井沉积对比、滩地比统计以及沉积相平面展布等一系列研究,揭示川东地区茅二a亚段从南西到北东沉积相带展布依次为开阔台地-台地边缘-斜坡-盆地,其中台地边缘在邻水县-丰都县-忠县一带近似呈东西条带状展布;台内低能滩和斜坡低能滩主要分布在滩地比0.3~0.5的区域,台内高能滩在滩地比0.5~0.6的区域发育,台缘滩主要分布在滩地比0.6~0.8的区域,钻井试气结果表明滩相沉积对油气产能具有一定的控制作用,且台缘滩比台内高能滩更具有勘探潜力。本次研究表明在碳酸盐岩地层被剥蚀地区,相比滩体厚度,利用滩地比能够更准确的分析颗粒滩的类型及展布范围,从而判断研究层段颗粒滩发育情况。  相似文献   

16.
Abstract The orthopyroxene-clinopyroxene, garnet-orthopyroxene and garnet-clinopyroxene geothermometers, and the garnet-orthopyroxene-plagioclase, garnet-clinopyroxene-plagioclase and anorthite-ferrosilite-grossular-almandine-quartz geobarometers are applied to metabasites and the garnetplagioclase-sillimanite-quartz geobarometer is applied to a metapelite from the Proterozoic Arendal granulite terrain, Bamble sector, Norway. P–T conditions of metamorphism were 7.3 ± 0.5 kbar and 800 ± 60°C.
This terrain shows a regional gradation from the amphibolite facies, into normal LILE content granulite facies rocks and finally strongly LILE deficient granulite facies gneisses. Neither P nor T vary significantly across the entire transition zone. The change in 'grade'parallels the increasing dominance of CO2 over H2O in the fluid phase.
LILE-depletion is not a pre-condition of granulite facies metamorphism: granulites may have either 'depleted'or 'normal'chemistries. The results presented herein show that LILE-deficiency in granulite facies orthogneisses is not necessarily related to variations in either P or T . The important mechanisms in the Arendal terrain were (a) direct synmetamorphic crystallization from magma, with primary LILE-poor mineralogies imposed by the prevailing fluid regime, and (b) metamorphic depletion, involving scavenging of LILEs during flushing by mantle-derived CO2-rich fluids. The latter process is constrained by U–Pb and Rb–Sr isotopic work to have occurred no later than 50 Ma after intrusion of the acid-intermediate gneisses, and was probably associated with contemporary basic magmatism in a tectonic environment similar to a present day cordilleran continental margin.  相似文献   

17.
The Mesaverde Group consists of a thick wedge of fluvial, littoral-deltaic and shallow marine clastics shed into the Cretaceous Western Interior Seaway of North America. The western parts of the seaway lay within the strongly subsiding foredeep of the active Sevier fold and thrust belt further to the west. The study area is located east of the axis of maximum subsidence and is thus in a favourable position to record competing effects of eustasy, sediment supply and thrust-load induced subsidence. Facies and sequence analysis carried out on high quality outcrop and well log data led to the recognition of a complex depositional cycle hierarchy within the typical storm- and wave-dominated inner shelf/shoreface/strand plain and delta systems of the Mesaverde. Fourth-order parasequences and parasequence bundles of estimated 100–400 ka duration are the best recognizable, ubiquitous and most useful stratigraphic units. Their arrangement with respect to sequence boundaries, however, varies with their overall stratigraphic position and also differs from the Exxon models. Mesaverde progradation was interrupted by a major transgression that occurred out of phase with the aggradational to progradational stacking trend of third-order sequences. A proposed genetic model relates large-scale (second-order) sequence architecture to tectonics: a Sevier thrust event as well as Laramide uplift within the foredeep controlled non-linear changes in the accommodation/supply ratio. Parasequence stacking patterns and sequence boundary formation, in contrast, were the product of (global?) eustasy enhanced by short-term, perhaps local, changes in the rates of subsidence and detrital influx.  相似文献   

18.
The eastern Himalayan syntaxis in southeastern Tibet consists of the Lhasa terrane, High Himalayan rocks and Indus‐Tsangpo suture zone. The Lhasa terrane constitutes the hangingwall of a subduction zone, whereas the High Himalayan rocks represent the subducted Indian continent. Our petrological and geochronological data reveal that the Lhasa terrane has undergone two stages of medium‐P metamorphism: an early granulite facies event at c. 90 Ma and a late amphibolite facies event at 36–33 Ma. However, the High Himalayan rocks experienced only a single high‐P granulite facies metamorphic event at 37–32 Ma. It is inferred that the Late Cretaceous (c. 90 Ma) medium‐P metamorphism of the southern Lhasa terrane resulted from a northward subduction of the Neo‐Tethyan ocean, and that the Oligocene (37–32 Ma) high‐P (1.8–1.4 GPa) rocks of the High Himalayan and coeval medium‐P (0.8–1.1 GPa) rocks of the Lhasa terrane represent paired metamorphic belts that resulted from the northward subduction of the Indian continent beneath Asia. Our results provide robust constraints on the Mesozoic and Cenozoic tectonic evolution of south Tibet.  相似文献   

19.
Abstract Fluid inclusion studies of rocks from the late Archaean amphibolite-facies to granulite-facies transition zone of southern India provide support for the hypothesis that CO2,-rich H2O-poor fluids were a major factor in the origin of the high-grade terrain. Charnockites, closely associated leucogranites and quartzo-feldspathic veins contain vast numbers of large CO2-rich inclusions in planar arrays in quartz and feldspar, whereas amphibole-bearing gray gneisses of essentially the same compositions as adjacent charnockites in mixed-facies quarries contain no large fluid inclusions. Inclusions in the northernmost incipient charnockites, as at Kabbal, Karnataka, occasionally contain about 25 mol. % of immiscible H2O lining cavity walls, whereas inclusions from the charnockite massif terrane farther south do not have visibile H2O Microthermometry of CO2 inclusions shows that miscible CH4 and N2 must be small, probably less than 10mol.%combined. Densities of CO2 increase steadily from north to south across the transitional terrane. Entrapment pressures calculated from the CO2 equation of state range from 5 kbar in the north to 7.5 kbar in the south at the mineralogically inferred average metamorphic temperature of 750°C, in quantitative agreement with mineralogic geobarometry. This agreement leads to the inference that the fluid inclusions were trapped at or near peak metamorphic conditions. Calculations on the stability of the charnockite assemblage biotite-orthopyroxene-K-feldspar-quartz show that an associated fluid phase must have less than 0.35 H2O activity at the inferred P and T conditions, which agrees with the petrographic observations. High TiO2 content of biotite stabilizes it to lower H2O activities, and the steady increase of biotite TiO2 southward in the area suggests progressive decrease of aH2O with increasing grade. Oxygen fugacities calculated from orthopyroxene-magnetite-quartz are considerably higher than the graphite CO2-O2 buffer, which explains the absence of graphite in the charnockites. The present study quantifies the nature of the vapours in the southern India granulite metamorphism. It remains to be determined whether CO2-flushing of the crust can, by itself, create large terranes of largeion lithophile-depleted granulites, or whether removal of H2O-bearing anatectic melts is essential.  相似文献   

20.
Electrical borehole image logs yield high-resolution information about variations in micro-resistivity along the borehole wall. To interpret these variations in terms of sedimentary structures and lithofacies types, calibration with real rock is needed. Normally, the only real rock available is core, and this only provides one-dimensional information. In this paper, the interpretation of fluvial facies types from borehole image logs was established by direct comparison with outcrops. Four fluvial facies associations were established in an outcrop study of a low net-to-gross fluvial succession: (i) meandering rivers, (ii) braided rivers, (iii) crevasse deltas, and (iv) crevasse splays. The lithofacies characteristics and palaeocurrent distributions of each fluvial facies association were established. Two 200 m deep wells were drilled behind the cliff face outcrops. One well was cored to a depth of 150 m and borehole image logs were recorded in both wells. The wells were correlated with the outcrop. The borehole image logs were analysed by their vertical colour succession and the dipmeter pattern. Image log facies were established, and these were interpreted in terms of the fluvial facies associations encountered in the corresponding outcrops. The study of borehole image logs yields a set of diagnostic criteria for a detailed fluvial facies interpretation and the establishment of depositional trends, and thus provides a powerful tool for the direct interpretation of fluvial facies in a reservoir setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号