首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The water quality in Biscayne Bay has been significantly affected by past and continuing coastal and watershed development. The nutrient concentrations in the Bay have been dramatically changed by the conversion of natural creeks and sheet flow freshwater inputs to rapid and episodic canal inputs from the large and rapidly expanding Miami metropolitan area. This study is an evaluation of nutrient loadings to Biscayne Bay for 1994-2002 from canal, atmospheric, and groundwater sources. Dissolved inorganic nitrogen (DIN, as nitrate, nitrite, and ammonium) and total phosphorus (TP) loadings by the canals were influenced by their geographic locations relative to discharge amount, watershed land use, stormwater runoff, and proximity to landfills. Annual budgets showed that canals contributed the bulk of N loading to the bay as 1687.2 metric ton N yr(-1) (88% total load). Direct atmospheric DIN load for Biscayne Bay was only 231.7 ton N yr(-1), based on surface area. Of the canal DIN load, nitrate+nitrite (NO(x)(-)) loading (1294.5 ton N yr(-1)) made up a much greater proportion than that of ammonium (NH(4)(+), 392.6 ton N yr(-1)). In the urbanized north and central Bay, canal DIN load was evenly split between NO(x)(-) and NH(4)(+). However, in the south, 95% of the DIN load was in the form of NO(x)(-), reflecting the more agricultural land use. Contrary to N, canals contributed the only 66% of P load to the bay (27.5 ton P yr(-1)). Atmospheric TP load was 14 ton Pyr(-1). In the north, canal P load dominated the budget while in the south, atmospheric load was almost double canal load. Groundwater inputs, estimated only for the south Bay, represented an important source of N and P in this zone. Groundwater input of N (141 ton N yr(-1)) was about equal to atmospheric load, while P load (5.9 ton P yr(-1)) was about equal to canal load.  相似文献   

2.
Ecologically relevant estimates of seasonal variability in nitrogen uptake and allocation in two species of temperate seagrasses were obtained using in situ isotope-labelling approach. Significantly higher uptake rates of ammonium by leaves, roots and epiphytes of Amphibolis than Posidonia were observed. Overall, root uptake rates were lower than other components. Effect of season was not significant for leaves, roots or epiphytes of the two species. However, plankton uptake varied seasonally with higher rates in winter (0.98 mg N g−1 DW h−1). In contrast, nitrate uptake rates for various components were significantly affected by seasons. Uptake rates by plankton were highest ranging from 0.003 mg N g−1 DW h−1 (summer, Amphibolis) to 0.69 mg N g−1 DW h−1 (winter, Posidonia). Uptake of nitrate by roots was negligible. Biotic uptake rates for nitrate were an order of magnitude slower than ammonium, demonstrating an affinity for ammonium over nitrate as a preferred inorganic nitrogen source. Adelaide coastal waters have lost over 5000 ha of seagrasses, much of this attributed to nutrient inputs from wastewater, industrial and stormwater. Managing these inputs into future requires better understanding of the fate of nutrients, particularly biological uptake. This study attempts to quantify uptake rates of nitrogen by seagrasses.  相似文献   

3.
Low concentrations of herbicides (up to 70 ng l(-1)), chiefly diuron (up to 50 ng l(-1)) were detected in surface waters associated with inter-tidal seagrass meadows of Zostera muelleri in Hervey Bay, south-east Queensland, Australia. Diuron and atrazine (up to 1.1 ng g(-1) dry weight of sediment) were detected in the sediments of these seagrass meadows. Concentration of the herbicides diuron, simazine and atrazine increased in surface waters associated with seagrass meadows during moderate river flow events indicating herbicides were washed from the catchment to the marine environment. Maximum herbicide concentration (sum of eight herbicides) in the Mary River during a moderate river flow event was 4260 ng l(-1). No photosynthetic stress was detected in seagrass in this study during low river flow. However, with moderate river flow events, nearshore seagrasses are at risk of being exposed to concentrations of herbicides that are known to inhibit photosynthesis.  相似文献   

4.
To test and refine methods to detect nutrient enrichment and resulting eutrophication, we applied the Waquoit Bay nitrogen loading model (NLM) and Estuarine loading model (ELM) to estuaries of Pleasant Bay that receive increasing but low N loads (25-199 kg N ha(-1) yr(-1)) from land. Contributions of wastewater to these estuaries increased from 7% to 63% as N loads increased, and modeled estimates of dissolved inorganic nitrogen in the water were within approximately 27% of measured values. N isotopic signatures in suspended and benthic organic matter and in tissue of quahogs increased as wastewater contributions to N loads increased, with clams approximately 4 per thousand heavier than organic matter, indicating that even at these low N loads, N from land-derived sources moved detectably up the food web. These results extend the application of NLM and ELM to detect incipient levels of N enrichment and demonstrate that these models can be used in conjunction with isotope measurements as the basis for food web analyses in a system exposed to relatively lower N loads than previously studied.  相似文献   

5.
A comprehensive study aimed at evaluating the occurrence, significance of concentrations and spatial distribution of priority pollutants (PPs) along the Comunidad Valenciana coastal waters (Spain) was carried out in order to fulfil the European Water Framework Directive (WFD). Additionally, PP concentrations were also analysed in the effluent of 28 WWTPs distributed along the studied area. In coastal waters 36 organic pollutants of the 71 analysed, including 26 PPs were detected although many of them with low frequency of occurrence. Only 13 compounds, which belong to four different classes (VOCs, organochlorinated pesticides, phthalates and tributyltin compounds (TBT)) showed a frequency of occurrence above 20% in coastal waters. In the results obtained until now, octylphenol, pentachlorobenzene, DEHP and TBT exceeded the annual average concentration (EQS-AAC), and only TBT surpassed the maximum allowable concentration (EQS-MAC). The most frequent contaminants determined in coastal waters were also present in WWTP effluents.  相似文献   

6.
7.
Increased sediment and nutrient losses resulting from unsustainable grazing management in the Burdekin River catchment are major threats to water quality in the Great Barrier Reef Lagoon. To test the effects of grazing management on soil and nutrient loss, five 1 ha mini-catchments were established in 1999 under different grazing strategies on a sedimentary landscape near Charters Towers. Reference samples were also collected from watercourses in the Burdekin catchment during major flow events. Soil and nutrient loss were relatively low across all grazing strategies due to a combination of good cover, low slope and low rainfall intensities. Total soil loss varied from 3 to 20 kg ha(-1) per event while losses of N and P ranged from 10 to 1900 g ha(-1) and from 1 to 71 g ha(-1) per event respectively. Water quality of runoff was considered moderate across all strategies with relatively low levels of total suspended sediment (range: 8-1409 mg l(-1)), total N (range: 101-4000 microg l(-1)) and total P (range: 14-609 microg l(-1)). However, treatment differences are likely to emerge with time as the impacts of the different grazing strategies on land condition become more apparent. Samples collected opportunistically from rivers and creeks during flow events displayed significantly higher levels of total suspended sediment (range: 10-6010 mg l(-1)), total N (range: 650-6350 microg l(-1)) and total P (range: 50-1500 microg l(-1)) than those collected at the grazing trial. These differences can largely be attributed to variation in slope, geology and cover between the grazing trial and different catchments. In particular, watercourses draining hillier, grano-diorite landscapes with low cover had markedly higher sediment and nutrient loads compared to those draining flatter, sedimentary landscapes. These preliminary data suggest that on relatively flat, sedimentary landscapes, extensive cattle grazing is compatible with achieving water quality targets, provided high levels of ground cover are maintained. In contrast, sediment and nutrient loss under grazing on more erodable land types is cause for serious concern. Long-term empirical research and monitoring will be essential to quantify the impacts of changed land management on water quality in the spatially and temporally variable Burdekin River catchment.  相似文献   

8.
Over the last 50 years, about one-third of the original area of the seagrass Posidonia australis has been lost from Port Hacking (Australia) due to anthropogenic impacts. To assess the feasibility of restoring these seagrass meadows, healthy Posidonia rhizomes were transplanted to four impact sites and one control site. Survival rates of transplanted shoots were monitored in situ bi-monthly for 16 months and, at the end of the experiment, rhizome growth, shoot growth, shoot production and growth architecture were assessed by harvesting tagged rhizomes. A total of 575 shoots were transplanted and after 16 months 650 shoots were present. Four of the five sites exhibited high survival rates in the short term (less than six months) but only two impact sites, Burraneer Bay (BB) and Red Jacks Point (RJP), and the control site (CS) survived to the end of the experiment. Total number of shoots increased by 61% at CS, tripled at BB, but decreased by 22% at RJP. Rhizome growth varied significantly between site, from 22.3 +/- 1.4 cm yr(-1) at BB to 9.1 +/- 1.0 cm yr(-1) at RJP. Shoot growth did not vary significantly between sites and was approximately 2-3 cm yr(-1). At BB and CS there was substantial colonisation of the surrounding substrate, with new rhizomes, orthotropic shoots and transitional shoots produced. Survival of transplants appeared to depend on whether the factors that had caused the original loss of Posidonia were still operating in the study area.  相似文献   

9.
Hydrogen peroxide concentrations [H(2)O(2)] have been measured over the last two decades in multiple studies in surface waters in coastal, estuarine and oceanic systems. Diurnal cycles consistent with a photochemical production process have frequently being observed, with [H(2)O(2)] increasing by two orders of magnitude over the course of the day, from low nM levels in the early morning to 10(2)nM in late afternoon. Production rates range from <10 for off-shore ocean waters to 20-60nMh(-1) for near-shore coastal and estuarine environments. Slow night-time loss rates (<10nMh(-1)) have been attributed to biological and particle mediated processes. Diurnal cycles have also frequently been observed in fecal indicator bacteria (FIB) levels in surf zone waters monitored for microbial water quality. Measured peak peroxide concentrations in surface coastal seawaters are too low to directly cause FIB mortality based on laboratory studies, but likely contribute to oxidative stress and diurnal cycling. Peroxide levels in the surf zone may be increased by additional peroxide production mechanisms such as deposition, sediments and stressed marine biota, further enhancing impacts on FIB in marine bathing waters.  相似文献   

10.
Due to the reduction and degradation of coastal areas in Japan by land reclamation and anthropogenic perturbations, from the point of view of conservation of the coastal environment, the restoration of Sargassum beds is essential. Between 1978 and 1991, 6400 ha of seagrass and seaweed beds have been lost along the Japanese coast, of which Sargassum beds were 22%. New techniques for Sargassum bed restoration are summarized based on three coastal engineering techniques. (1) Construction of shallow and gentle sloping bottom substrata have been shown to be effective for the reestablishment of 'management-free seagrass and Sargassum beds' on developed coasts. (2) Seeding or transplanting using artificial substratum for extension of nursery and fishing grounds around natural Sargassum beds. (3) Periodic transplanting of Sargassum plants using artificially produced seedlings is effective to produce niches to allow faunal re-colonization in severely polluted and sparsely vegetated area. However, prior to implementation, the suitability and limitations of these three techniques requires to be ascertained for effective Sargassum bed restoration.  相似文献   

11.
Information is presented on the concentrations of organochlorine pesticides (HCHs and DDT residues) and trace metals (Fe, Cu, Zn and Ni) in waters of 15 large Russian rivers flowing to the Arctic Ocean during 1990-1996. Estimates of the corresponding annual fluxes are made. Other contaminants (Hg, Pb, Cr, Mn, beta-HCH and dihydroheptachlor) were examined briefly. Concentration data are presented as averaged annual means for each of the seven years with the ranges, standard deviations and numbers of samples. Also given are data on locations, the methods of analysis and limited quality assurance data. Data on discharges to the Northern Seas for the more frequently monitored contaminants are given for rivers accounting for >70% of the total northerly flows. Scaled-up fluxes to account for unmonitored rivers as well are given for each sea; totals over the period were: Fe, 1452; Cu, 15; Zn, 59 (x 10(3) t yr(-1)); alpha-HCH, 25; gamma-HCH, 44 (t yr(-1)). Ni was monitored at too few rivers to estimate its total Russian flux. The fluxes for the HCHs considerably exceed previous estimates and indicate that the Arctic Ocean is not in balance as much as was previously believed.  相似文献   

12.
Erosion leading to sedimentation in surface water may disrupt aquatic habitats and deliver sediment-bound nutrients that contribute to eutrophication. Land use changes causing loss of native vegetation have accelerated already naturally high erosion rates in New Zealand and increased sedimentation in streams and lakes. Sediment-bound phosphorus (P) makes up 71–79% of the 17–19 t P y−1 delivered from anthropogenic sources to Lake Rotorua in New Zealand. Detainment bunds (DBs) were first implemented in the Lake Rotorua catchment in 2010 as a strategy to address P losses from pastoral agriculture. The bunds are 1.5–2 m high earthen stormwater retention structures constructed across the flow path of targeted low-order ephemeral streams with the purpose of temporarily ponding runoff on productive pastures. The current DB design protocol recommends a minimum pond volume of 120 m3 ha−1 of contributing catchment with a maximum pond storage capacity of 10 000 m3. No previous study has investigated the ability of DBs to decrease annual suspended sediment (SS) loads leaving pastoral catchments. Annual SS yields delivered to two DBs with 20 ha and 55 ha catchments were 109 and 28 kg SS ha−1, respectively, during this 12-month study. The DBs retained 1280 kg (59%) and 789 kg (51%) of annual SS loads delivered from the catchments as a result of the bunds' ability to impede stormflow and facilitate soil infiltration and sediment deposition. The results of this study highlight the ability of DBs to decrease SS loads transported from pastures in surface runoff, even during large storm events, and suggests DBs are able to reduce P loading in Lake Rotorua.  相似文献   

13.
The aim of this study was to quantify the N removal efficiency of an Ulva-based phytotreatment system receiving wastewaters from a land-based fish farm (Orbetello, Italy), to identify the main biogeochemical pathways involved and to provide basic guidelines for treatment implementation and management. Fluxes of O2 and nutrients in bare and in Ulva colonised sediments were assessed by light/dark core incubations; denitrification by the isotope pairing technique and Ulva growth by in situ incubation of macroalgal disks in cages. O2 and nutrient budgets were estimated as sum of individual processes and further verified by 24-h investigations of overall inlet and outlet loads. Ulva uptake (up to 7.8 mmol Nm(-2) h(-1)) represented a net sink for water column and regenerated NH4+ whilst N removal via denitrification (10-170 micromol Nm(-2) h(-1)) accounted for a small percentage of inorganic nitrogen load (<5%). Laboratory experiments demonstrated a high potential for denitrification (over 800 microM Nm(-2) h(-1)) indicating that N loss could be enhanced. The control of Ulva standing stocks by optimised harvesting of surplus biomass may represent an effective strategy to maximise DIN removal and could result in the assimilation of approximately 50% of produced inorganic nitrogen.  相似文献   

14.
Forest soil is an important component of the natural environment, and is a primary medium for many biological activities. In this study, soil loss and displacement by excavator and bulldozer (heavy equipments) were measured on cut and fills slopes of forest roads located in Mazandaran province, lran. The volumes of soil losses were estimated by prismoidal analyses of cut and fill slopes deformation between two time treatments (under subgrading and two years later) in slope classes of 30-50% and 50-70%. Weights of soil losses were calculated by multiplying the volumes of soil losses (cm^3) to the general bulk density (1.3g/cm^3). Soil displaced area by heavy equipment was evaluated according to earth working width. Results indicated that heavy equipment has significant effect on deformation of cut slope gradient and fill slope length (p〈0.0001). During the two-year period, the cut (p〈0.0002) and fill (p〈0.0001) slope gradients were significantly deformed in different slope classes. The average soil loss by excavator and bulldozer were 160.35 t/ha·yr and 429.09 t/ha·yr, respectively. Moreover, the soil displaced area during the subgrading process by bulldozer was greater than excavator in both two slope classes (p〈0.05). Soil loss and displacement in forest roads can be rednced by applying powerful excavators in subgrading project, especially in steep terrains.  相似文献   

15.
Due to increasing development Southeast Asia’s coastlines are undergoing massive changes, but the associated impacts on marine habitats are poorly known. Singapore, a densely populated island city–state, is a quintessential example of coastal modification that has resulted in the (hitherto undocumented) loss of seagrass. We reconstructed the historic extent and diversity of local seagrass meadows through herbarium records and backwards extrapolation from contemporary seagrass locations. We also determined the current status of seagrass meadows using long-term monitoring data and identified the main threats to their presence in Singapore. Results show that, even though ∼45% of seagrass has been lost during the last five decades, species diversity remains stable. The main cause of seagrass loss was, and continues to be, land reclamation. We conclude that strict controls on terrestrial runoff and pollution have made it possible for seagrass to persist adjacent to this highly urbanised city–state.  相似文献   

16.
Digested sludge from the Port Adelaide Sewage Treatment Works has been discharged to Gulf St. Vincent, a marine embayment in South Australia, since 1978. The outfall is sited in seagrass meadows dominated by Posidonia spp. and Amphibolis spp. By 1982 the discharge had affected an area of approximately 1900 ha, 365 ha of which were completely denuded of these seagrasses. A monitoring programme conducted over summers 1983–1985, inclusive, was based on the above-ground biomass (standing crop) of Posidonia at fourteen sites around the outfall. All sites were surveyed in the first two summers and eight sites were surveyed in the third. The results indicate that there was no ongoing reduction in the standing crop of Posidonia at any of the sites. These data also suggested that excessive growth of epiphytes on the leaves of Posidonia was a likely cause of the observed impact on the seagrass beds.  相似文献   

17.
Fish farms represent a growing source of anthropogenic disturbance to benthic communities, and efficient predictors of such impacts are urgently needed. We explored the effects of fish farm benthic organic and nutrient inputs on the population dynamics of a key seagrass species (Posidonia oceanica) in four Mediterranean deep meadows adjacent to sea bream and sea bass farms. We performed two annual plant censuses on permanent plots at increasing distance from farms and measured benthic sedimentation rates around plots. High shoot mortality rates were recorded near the cages, up to 20 times greater than at control sites. Recruitment rates increased in variability but could not compensate mortality, leading to rapid seagrass decline within the first 100 m from cages. Seagrass mortality increased with total sedimentation rates (K=0.55, p<0.0002), and with organic matter (K=0.50, p=0.001), total nitrogen (K=0.46, p=0.002) and total phosphorus (K=0.56, p<3.10(-5)) inputs. P. oceanica decline accelerated above a phosphorus loading threshold of 50mg m(-2)day(-1). Phosphorus benthic sedimentation rate seems a powerful predictor of seagrass mortality from fish farming. Coupling direct measurements of benthic sedimentation rates with dynamics of key benthic species is proposed as an efficient strategy to predict fish farm impacts to benthic communities.  相似文献   

18.
To understand the coastal water quality of San Andrès Island, and provide tools for the management of its marine resources, we present the historical analysis of the island monitoring, which includes ammonia, nitrites, nitrate, phosphates, fecal and total coliforms. The anthropogenic pressure on the coastal system is heavy, with water nutrification, posing at risk seagrass and coral ecosystems. During dry season, biologically available nitrogen is 3-9 times higher than the maximum recommended for coral reefs, while during wet season values are 2-6.4 times the maximum. Biologically available phosphorous is also high, 1-8 times the maximum during dry season, 2-13 times during wet season. In some sites the concentration of pathogenic bacteria is above the limits set by law for primary and secondary contact. It is urgent to improve the management of sewage discharge, the main polluting source of San Andres coastal waters.  相似文献   

19.
Physiological Responses of Five Seagrass Species to Trace Metals   总被引:5,自引:0,他引:5  
Trace metal run-off associated with urban and industrial development poses potential threats to seagrasses in adjacent coastal ecosystems. Seagrass from the largest urban (Moreton Bay) and industrial (Port Curtis) coastal regions in Queensland, Australia were assessed for metal concentrations of iron (Fe), aluminium (Al), zinc (Zn), chromium (Cr) and copper (Cu). Trace metal concentrations in seagrass (Zostera capricorni) leaf and root-rhizome tissue had the following overall trend: [Fe] > [Al] > [Zn] > [Cr] > [Cu]. Rainfall events and anthropogenic disturbances appeared to influence metal concentrations in seagrasses with the exception of Al, which does not appear to bioaccumulate. In laboratory experiments, five seagrass species (Halophila ovalis, H. spinulosa, Halodule uninervis, Z. capricorni, Cymodocea serrulata) were incubated with iron (1 mg Fe l−1) and copper (1 mg Cu l−1) and responses assessed by changes in PSII photochemical efficiency (Fv/Fm), free amino acid content and leaf/root-rhizome metal accumulation. Iron addition experiments only affected Halophila spp, while copper additions affected other seagrass species as well. Trace metal contamination of seagrasses could have ramifications for associated trophic assemblages through metal transfer and seagrass loss. The use of photosystem II photochemical efficiency as well as amino acid concentrations and composition proved to be useful sublethal indicators of trace metal toxicity in seagrasses.  相似文献   

20.
Abstract

Agricultural watersheds in the Czech Republic are one of the primary sources of non-point-source phosphorus (P) loads in receiving waters. Since such non-point sources are generally located in headwater catchments, streamflow and P concentration data are sparse. We show how very short daily streamflow and P concentration records can be combined with nearby longer existing daily streamflow records to result in reliable estimates of daily and annual P concentrations and loads. Maintenance of variance streamflow record extension methods (MOVE) can be employed to extend short streamflow records. Constituent load regressions are used to predict daily P constituent loads from streamflow and other time varying characteristics. Annual P loads are then estimated for individual watersheds. Resulting annual P load estimates ranged from 0.21 to 95.4 kg year-1 with a mean value of 11.77 kg year-1. Similarly annual P yield estimates ranged from 0.01 to 0.3 kg ha-1 year-1 with an average yield of 0.07 kg ha-1 year-1. We document how short records of daily streamflow and P concentrations can be combined with a national network of daily streamflow records in the Czech Republic to arrive at meaningful and reliable estimates of annual P loads for small agricultural watersheds.

Citation Beránková, T., Vogel, R. M., Fiala, D. & Rosendorf, P. (2010) Estimation of phosphorus loads with sparse data for agricultural watersheds in the Czech Republic. Hydrol. Sci. J. 55(8), 1417–1426.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号