首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Ray perturbation theory for interfaces   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
12.
13.
14.
Summary. Asymptotic ray theory is applied to surface waves in a medium where the lateral variations of structure are very smooth. Using ray-centred coordinates, parabolic equations are obtained for lateral variations while vertical structural variations at a given point are specified by eigenfunctions of normal mode theory as for the laterally homogeneous case. Final results on wavefields close to a ray can be expressed by formulations similar to those for elastic body waves in 2-D laterally heterogeneous media, except that the vertical dependence is described by eigenfunctions of 'local' Love or Rayleigh waves. The transport equation is written in terms of geometrical-ray spreading, group velocity and an energy integral. For the horizontal components there are both principal and additional components to describe the curvature of rays along the surface, as in the case of elastic body waves. The vertical component is decoupled from the horizontal components. With complex parameters the solutions for the dynamic ray tracing system correspond to Gaussian beams: the amplitude distribution is bell-shaped along the direction perpendicular to the ray and the solution is regular everywhere, even at caustics. Most of the characteristics of Gaussian beams for 2-D elastic body waves are also applicable to the surface wave case. At each frequency the solution may be regarded as a set of eigenfunctions propagating over a 2-D surface according to the phase velocity mapping.  相似文献   

15.
Rayleigh waves in isotropic viscoelastic media   总被引:1,自引:0,他引:1  
  相似文献   

16.
Summary. A layer of constant thickness over a half-space is assumed, and the propagation of head waves is considered for the following two cases: (1) the P -wave velocity varies in the layer in the horizontal direction, and is constant in the half-space: (2) the P -wave velocity varies in the half-space in the horizontal direction, and is constant in the layer. In each case the horizontal velocity gradient is assumed to remain constant. The wave propagation is investigated in the direction of the gradient (direct profile), and opposite to it (reverse profile). Formulae for the travel times and the amplitudes are obtained on the basis of ray-theoretical considerations. Conditions are discussed for the discrimination in a field experiment between the case of a sloping boundary separating the homogeneous media, and the case of an intrinsic horizontal velocity gradient.  相似文献   

17.
Seismic waves in stratified anisotropic media   总被引:4,自引:0,他引:4  
Summary. The response of a structure composed of anisotropic strata can be built up from the reflection and transmission properties of individual interfaces using a slightly modified version of the recursion scheme of Kennett. This scheme is conveniently described in terms of scatterer operators and scatterer products. The effects of a free surface and the introduction of a simple point source at any depth can be accommodated in a manner directly analogous to the treatment for isotropic structures. As in the isotropic case the results so obtained are stable to arbitrary wavenumbers. For isotropic media, synthetic seismograms can be constructed by computing the structure response as a function of frequency and radial wavenumber, then performing the appropriate Fourier and Hankel transforms to obtain the wavefield in time-distance space. Such a scheme is convenient for any system with cylindrical symmétry (including transverse isotropy). Azimuthally anisotropic structures, however, do not display cylindrical symmétry; for these the transverse component of the wavenumber vector will, in general, be non-zero, with the result that phase, group, and energy velocities may all diverge. The problem is then much more conveniently addressed in Cartesian coordinates, with the frequency-wavenumber to time-distance transformation accomplished by 3-D Fourier transform.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号