首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional (3-D) Monte Carlo-based radiative transfer (MCRT) models are usually used for benchmarking in intercomparisons of the canopy radiative transfer (RT) simulations. However, the 3-D MCRT models are rarely applied to develop remote sensing algorithms to estimate essential climate variables of forests, due mainly to the difficulties in obtaining realistic stand structures for different forest biomes over regional to global scales. Fortunately, some of important tree structure parameters such as canopy height and tree density distribution have been available globally. This enables to run the intermediate complexities of the 3-D MCRT models. We consequently developed a statistical approach to generate forest structures with intermediate complexities depending on the inputs of canopy height and tree density. It aims at facilitating applications of the 3-D MCRT models to develop remote sensing retrieval algorithms. The proposed approach was evaluated using field measurements of two boreal forest stands at Estonia and USA, respectively. Results demonstrated that the simulations of bidirectional reflectance factor (BRF) based on the measured forest structures agreed well with the BRF based on the generated structures from the proposed approach with the root mean square error (RMSE) and relative RMSE (rRMSE) ranging from 0.002 to 0.006 and from 0.7% to 19.8%, respectively. Comparison of the computed BRF with corresponding MODIS reflectance data yielded RMSE and rRMSE lower than 0.03 and 20%, respectively. Although the results from the current study are limited in two boreal forest stands, our approach has the potential to generate stand structures for different forest biomes.  相似文献   

2.
Object-based class modelling allows for mapping complex, hierarchical habitat systems. The riparian zone, including forests, represents such a complex ecosystem. Forests within riparian zones are biologically high productive and characterized by a rich biodiversity; thus considered of high community interest with an imperative to be protected and regularly monitored. Satellite earth observation (EO) provides tools for capturing the current state of forest habitats such as forest composition including intermixture of non-native tree species. Here we present a semi-automated object based image analysis (OBIA) approach for the mapping of riparian forests by applying class modelling of habitats based on the European Nature Information System (EUNIS) habitat classifications and the European Habitats Directive (HabDir) Annex 1. A very high resolution (VHR) WorldView-2 satellite image provided the required spatial and spectral details for a multi-scale image segmentation and rule-base composition to generate a six-level hierarchical representation of riparian forest habitats. Thereby habitats were hierarchically represented within an image object hierarchy as forest stands, stands of homogenous tree species and single trees represented by sunlit tree crowns. 522 EUNIS level 3 (EUNIS-3) habitat patches with a mean patch size (MPS) of 12,349.64 m2 were modelled from 938 forest stand patches (MPS = 6868.20 m2) and 43,742 tree stand patches (MPS = 140.79 m2). The delineation quality of the modelled EUNIS-3 habitats (focal level) was quantitatively assessed to an expert-based visual interpretation showing a mean deviation of 11.71%.  相似文献   

3.
Sikkim is a small, mountainous, Indian state (7,096 km2) located in the eastern Himalayan region. Though a global biodiversity hotspot, it has been relatively less studied. A detailed forest type, density and change dynamics study was undertaken, using SATELLITE remote sensing data and intensive field verification. The landscape was found to be dominated by alpine and nival ecosystems, with a large portion above the tree line, considerable snow cover, and a sizeable area under forest cover (72%, 5,094 km2). A total of 18 landscape components including 14 vegetation classes were delineated, with the major ones being oak forest, alpine meadow, alpine scrub, conifer forest and alder-cardamom agro-forestry. Of the 3,154 km2 of forests below the tree line, 40% were found to be dense (>40% tree canopy cover). A sizeable portion of the non dense forests below the tree line was contributed by the degradation of oak forests, which was confirmed by change detection analysis. However on a positive front over the past decade, ban on grazing and felling of trees in forests has been implemented. In order to expand the extent of dense forests, further efforts are needed for the restoration of oak forests such as fire protection, providing alternatives to firewood use, promotion of alder-cardamom agro-forestry in the private lands and protection of the small-sized, fragmented forest patches in the subtropical belt.  相似文献   

4.
Inventories of mixed broad-leaved forests of Iran mainly rely on terrestrial measurements. Due to rapid changes and disturbances and great complexity of the silvicultural systems of these multilayer forests, frequent repetition of conventional ground-based plot surveys is often cost prohibitive. Airborne laser scanning (ALS) and multispectral data offer an alternative or supplement to conventional inventories in the Hyrcanian forests of Iran. In this study, the capability of a combination of ALS and UltraCam-D data to model stand volume, tree density, and basal area using random forest (RF) algorithm was evaluated. Systematic sampling was applied to collect field plot data on a 150 m × 200 m sampling grid within a 1100 ha study area located at 36°38′- 36°42′N and 54°24′–54°25′E. A total of 308 circular plots (0.1 ha) were measured for calculation of stand volume, tree density, and basal area per hectare. For each plot, a set of variables was extracted from both ALS and multispectral data. The RF algorithm was used for modeling of the biophysical properties using ALS and UltraCam-D data separately and combined. The results showed that combining the ALS data and UltraCam-D images provided a slight increase in prediction accuracy compared to separate modeling. The RMSE as percentage of the mean, the mean difference between observed and predicted values, and standard deviation of the differences using a combination of ALS data and UltraCam-D images in an independent validation at 0.1-ha plot level were 31.7%, 1.1%, and 84 m3 ha−1 for stand volume; 27.2%, 0.86%, and 6.5 m2 ha−1 for basal area, and 35.8%, −4.6%, and 77.9 n ha−1 for tree density, respectively. Based on the results, we conclude that fusion of ALS and UltraCam-D data may be useful for modeling of stand volume, basal area, and tree density and thus gain insights into structural characteristics in the complex Hyrcanian forests.  相似文献   

5.
Optical remote sensing data have been extensively used to derive biophysical properties that relate forest type and composition. However, stand density, stand height and stand volume cannot be estimated directly from optical remote sensing data owing to poor sensitivity between these parameters and spectral reflectance. The ability of microwave energy to penetrate within forest vegetation makes it possible to extract information on both the crown and trunk components from radar data. The type of polarization employed determines the radar response to the various shapes and orientations of the scattering mechanisms within the canopy or trunk. This study mainly presents experimental results obtained with airborne E-SAR using polarimetric C and L bands over the tropical dry deciduous forest of Chandrapur Forest Division, Maharashtra. A detailed documentation of the relationship between SAR C & L bands backscattering and forest stand variables has been provided in the present study through linear correlation. Linear correlation of the single channel SAR derived estimates with the field measured means show a good correlation between L HV backscattering coefficient with stand volume (r2 = 0.71) and L HH backscattering coefficient with stand density (r2 = 0.75). The results imply that SAR data has significant potential for stand menstruation in operational forestry.  相似文献   

6.
Tropical Dry Forest deciduousness is a behavioral response to climate conditions that determines ecosystem-level carbon uptake, energy flux, and habitat conditions. It is regulated by factors related to stand age, and landscape scale variability in deciduous phenology may affect ecosystem functioning in forests throughout the tropics. This study determines whether observed phenological differences are explainable by forest age in the southern Yucatán Peninsula in Mexico, where forest clearing for shifting cultivation has created a mosaic of forest stands of varying age. Matched-pair statistical tests compare neighboring forest pixels of different age class (12–22 years versus 22+ years) and detect significant differences in Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI)-derived metrics related to the timing and intensity of deciduousness during three dry seasons (2008–2011). In all seasons, young forests exhibit significantly more intense deciduousness, measured as total seasonal change of EVI normalized by annual maximum EVI (p < 0.001), and larger normalized EVI change during successive dry season months relative to start-of-dry-season EVI (p < 0.001), than neighboring older forests subject to similar environmental conditions.  相似文献   

7.
The objective of this study was to investigate the relationship between crown closure and tree density in mixed forest stands using Landsat Thematic Mapper (TM) reflectance values (TM 1- TM 5 and TM 7) and six vegetation indices (SR, DVI, SAVI, NDVI, TVI and NLI). In this study, multiple regression analysis was used to estimate the relationships between the crown closure and tree density (number of tree stems per hectare) using reflectance values and vegetation indices (VIs). The results demonstrated that the model that used SR and DVI had the best performances in terms of crown closure (R2?=?0.674) and the model that used the DVI and SAVI had the best performances in terms of tree density (R2?=?0.702). The regression model that used TM 1, TM 3 together with TM 4 showed the performances of the crown closure (R2?=?0.610) and the regression model that used TM 1 showed the performances of the tree density (0.613). Results obtained from this research show that vegetation indices (VIs) were a better predictor of crown closure and tree density than other TM bands.  相似文献   

8.
Present study deals with the vegetation type mapping, structure and composition analysis of the tropical forests, spread over 1,294 km2 area in South Andaman Islands. Seventeen vegetation classes spreading over 89.92% forested area of the islands were mapped with the overall accuracy of 88.89%. Evergreen, semi-evergreen and mangrove forests were reasonably well distributed forests, while moist deciduous and littoral evergreen were narrowly restricted. The stocking was quite variable across the forest types. 60.04% of forested area was under medium to high canopy density. Secondary and degraded forest types were mapped. Information on floristic composition, structure and diversity of various forest types were obtained from 84 field sample plots. An inventory of 423 species of plants from 101 families included 155 trees, 84 shrubs, 150 herbs and 84 climbers. Tree density and mean basal area ranged from 517 to 900 stems ha−1 and 36.15 to 53.58 m2 ha−1 respectively. Evergreen forests accounted for highest diversity followed almost equally by semi-evergreen and moist deciduous forests.  相似文献   

9.
Traditionally, forest-stand delineation has been assessed based on orthophotography. The application of LiDAR has improved forest management by providing high-spatial-resolution data on the vertical structure of the forest. The aim of this study was to develop and test a semi-automated algorithm for stands delineation in a plantation of Pinus sylvestris L. using LiDAR data. Three specific objectives were evaluated, i) to assess two complementary LiDAR metrics, Assmann dominant height and basal area, for the characterization of the structure of P. sylvestris Mediterranean forests based on object-oriented segmentation, ii) to evaluate the influence of the LiDAR pulse density on forest-stand delineation accuracy, and iii) to investigate the algorithmś effectiveness in the delineation of P. sylvestris stands for map prediction of Assmann dominant height and basal area. Our results show that it is possible to generate accurate P. sylvestris forest-stand segmentations using multiresolution or mean shift segmentation methods, even with low-pulse-density LiDAR − which is an important economic advantage for forest management. However, eCognition multiresolution methods provided better results than the OTB (Orfeo Tool Box) for stand delineation based on dominant height and basal area estimations. Furthermore, the influence of pulse density on the results was not statistically significant in the basal area calculations. However, there was a significant effect of pulse density on Assmann dominant height [F2,9595 = 5.69, p = 0.003].for low pulse density. We propose that the approach shown here should be considered for stand delineation in other large Pinus plantations in Mediterranean regions with similar characteristics.  相似文献   

10.
机载激光雷达平均树高提取研究   总被引:16,自引:3,他引:13  
为了研究机载激光雷达(LiDAR)树高提取技术,以山东省泰安市徂徕山林场为实验区,于2005年5月进行了机载LiDAR数据获取和外业测量.通过对LiDAR点云数据的分类处理,分别得到了试验区的地面点云子集、植被点云子集和高程归一化的植被点云子集.基于高程归一化的植被点云子集计算了上四分位数处的高度,与实地测量的数据进行了比较,并结合中国森林调查规程进行了实用性分析.结果表明:对于较低密度的点云数据,使用分位数法可以较好地进行林分平均高的估计;机载激光雷达技术对树高估计是可行的,精度都高于87%,总体平均精度为90.59%,其中阔叶树的精度高于针叶树.该试验精度可以满足中国二类森林调查规程中平均树高因子的一般商品林和生态公益林的精度要求,对国有商品林小班的调查精度要求(5%)存在一点差距,需要在国有商品林区进一步开展验证工作.对本试验区而言,已经可以满足其作为森林公园生态公益林的调查要求.  相似文献   

11.
Forest stand structure is an important concept for ecology and planning in sustainable forest management. In this article, we consider that the incorporation of complementary multispectral information from optical sensors to Light Detection and Ranging (LiDAR) may be advantageous, especially through data fusion by back-projecting the LiDAR points onto the multispectral image. A multivariate data set of both LiDAR and multispectral metrics was related with a multivariate data set of stand structural variables measured in a Scots pine forest through canonical correlation analysis (CCA). Four statistically significant pairs of canonical variables were found, which explained 83.0% accumulated variance. The first pair of canonical variables related indicators of stand development, i.e. height and volume, with LiDAR height metrics. CCA also found attributes describing stand density to be related to LiDAR and spectral variables determining canopy coverage. Other canonical variables pertained to Lorenz curve-derived attributes, which are measures of within-stand tree size variability and heterogeneity, able to discriminate even-sized from uneven-sized stands. The most relevant result was to find that metrics derived from the multispectral sensor showed significant explanatory potential for the prediction of these structural attributes. Therefore, we concluded that metrics derived from the optical sensor have potential for complementing the information from the LiDAR sensor in describing structural properties of forest stands. We recommend the use of back-projecting for jointly exploiting the synergies of both sensors using similar types of metrics as they are customary in forestry applications of LiDAR.  相似文献   

12.
This study is devoted to testing the general applicability of radar imagery in vegetation analysis, and, in particular, to determining the potential of radar images obtained for different seasons. In plains areas intermediate-scale radar images are used to discriminate forests differing in age and stand productivity and to identify sectors where the tree stand has been partially destroyed. They also can be used as supplementary material in studying forest resources and in geological research in forested plains areas. Translated by Edward Torrey, Alexandria, VA 22308 from: Geografiya i prirodnyye resursy, 1989, No. 3, pp. 130–134.  相似文献   

13.

Background

Worldwide, forests are an important carbon sink and thus are key to mitigate the effects of climate change. Mountain moist evergreen forests in Mozambique are threatened by agricultural expansion, uncontrolled logging, and firewood collection, thus compromising their role in carbon sequestration. There is lack of local tools for above-ground biomass (AGB) estimation of mountain moist evergreen forest, hence carbon emissions from deforestation and forest degradation are not adequately known. This study aimed to develop biomass allometric equations (BAE) and biomass expansion factor (BEF) for the estimation of total above-ground carbon stock in mountain moist evergreen forest.

Methods

The destructive method was used, whereby 39 trees were felled and measured for diameter at breast height (DBH), total height and the commercial height. We determined the wood basic density, the total dry weight and merchantable timber volume by Smalian’s formula. Six biomass allometric models were fitted using non-linear least square regression. The BEF was determined based on the relationship between bole stem dry weight and total dry weight of the tree. To estimate the mean AGB of the forest, a forest inventory was conducted using 27 temporary square plots. The applicability of Marzoli’s volume equation was compared with Smalian’s volume equation in order to check whether Marzoli’s volume from national forest inventory can be used to predict AGB using BEF.

Results

The best model was the power model with only DBH as predictor variable, which provided an estimated mean AGB of 291?±?141 Mg ha?1 (mean?±?95% confidence level). The mean wood basic density of sampled trees was 0.715?±?0.182 g cm?3. The average BEF was of 2.05?±?0.15 and the estimated mean AGB of 387?±?126 Mg ha?1. The BAE from miombo woodland within the vicinity of the study area underestimates the AGB for all sampled trees. Chave et al.’s pantropical equation of moist forest did not fit to the Moribane Forest Reserve, while Brown’s equation of moist forest had a good fit to the Moribane Forest Reserve, having generated 1.2% of bias, very close to that generated by the selected model of this study. BEF showed to be reliable when combined with stand mean volume from Marzoli’s National Forestry Inventory equation.

Conclusion

The BAE and the BEF function developed in this study can be used to estimate the AGB of the mountain moist evergreen forests at Moribane Forest Reserve in Mozambique. However, the use of the biomass allometric model should be preferable when DBH information is available.
  相似文献   

14.
This paper depicts an approach for predicting individual tree attributes, i.e., tree height, diameter at breast height (DBH) and stem volume, based on both physical and statistical features derived from airborne laser-scanning data utilizing a new detection method for finding individual trees together with random forests as an estimation method. The random forests (also called regression forests) technique is a nonparametric regression method consisting of a set of individual regression trees. Tests of the method were performed, using 1476 trees in a boreal forest area in southern Finland and laser data with a density of 2.6 points per m2. Correlation coefficients (R) between the observed and predicted values of 0.93, 0.79 and 0.87 for individual tree height, DBH and stem volume, respectively, were achieved, based on 26 laser-derived features. The corresponding relative root-mean-squared errors (RMSEs) were 10.03%, 21.35% and 45.77% (38% in best cases), which are similar to those obtained with the linear regression method, with maximum laser heights, laser-estimated DBH or crown diameters as predictors. With random forests, however, the forest models currently used for deriving the tree attributes are not needed. Based on the results, we conclude that the method is capable of providing a stable and consistent solution for determining individual tree attributes using small-footprint laser data.  相似文献   

15.
Forest structural diversity metrics describing diversity in tree size and crown shape within forest stands can be used as indicators of biodiversity. These diversity metrics can be generated using airborne laser scanning (LiDAR) data to provide a rapid and cost effective alternative to ground-based inspection. Measures of tree height derived from LiDAR can be significantly affected by the canopy conditions at the time of data collection, in particular whether the canopy is under leaf-on or leaf-off conditions, but there have been no studies of the effects on structural diversity metrics. The aim of this research is to assess whether leaf-on/leaf-off changes in canopy conditions during LiDAR data collection affect the accuracy of calculated forest structural diversity metrics. We undertook a quantitative analysis of LiDAR ground detection and return height, and return height diversity from two airborne laser scanning surveys collected under leaf-on and leaf-off conditions to assess initial dataset differences. LiDAR data were then regressed against field-derived tree size diversity measurements using diversity metrics from each LiDAR dataset in isolation and, where appropriate, a mixture of the two. Models utilising leaf-off LiDAR diversity variables described DBH diversity, crown length diversity and crown width diversity more successfully than leaf-on (leaf-on models resulted in R² values of 0.66, 0.38 and 0.16, respectively, and leaf-off models 0.67, 0.37 and 0.23, respectively). When LiDAR datasets were combined into one model to describe tree height diversity and DBH diversity the models described 75% and 69% of the variance (R² of 0.75 for tree height diversity and 0.69 for DBH diversity). The results suggest that tree height diversity models derived from airborne LiDAR, collected (and where appropriate combined) under any seasonal conditions, can be used to differentiate between simple single and diverse multiple storey forest structure with confidence.  相似文献   

16.
Inventories of temperate forests of Central Europe mainly rely on terrestrial measurements. Rapid alterations of forests by disturbances and multilayer silvicultural systems increasingly challenge the use of conventional plot based inventories, particularly in protected areas. Airborne LiDAR offers an alternative or supplement to conventional inventories, but despite the possibility of obtaining such remote sensing data, its operational use for broader areas in Central Europe remains experimental. We evaluated two methods of forest inventory that use LiDAR data at the landscape level: the single tree segment-based method and an area-based method. We compared a set of structural forest attributes modeled by these methods with a conventional forest inventory of the highly heterogeneous forest of the Bavarian Forest National Park (Germany), which partially includes stands affected by severe natural disturbances. Area-based models were accurate for all structural attributes, with cross-validated average root mean squared error ranging from ∼3.4 to ∼13.4 in the best modeling case. The coefficients of variation for the mapped area-based estimations were mostly minor. The area-based estimations were varied but highly correlated (Pearson’s correlations between ∼ 0.56 and 0.85) with single tree segmentation estimations; undetected trees in the single tree segmentat-based method were the main sources of inconsistency. The single tree segment-based method was highly correlated (∼ 0.54 to 0.90) with data from ground-based forest inventories. The single tree-based algorithm delivered highly reliable estimates for a set of forest structural attributes that are of interest in forest inventories at the landscape scale. We recommend LiDAR forest inventories at the landscape scale in both heterogeneous commercial forests and large protected areas in the central European temperate sites.  相似文献   

17.
Recent advances in light detection and ranging (LIDAR) technology have enabled the estimation of valuable canopy parameters (e.g., crown diameter, leaf area, and canopy structure) that are difficult to obtain through in situ surveys. The objective of this study was to assess the utility of LIDAR-derived measurements of crown and growth parameters to model and predict the growth of sugi (Cryptomeria japonica) stands located in the University of Tokyo Forest, Chiba Prefecture, Japan. Initially, we confirmed that crown lengths and widths of trees in stands of various densities obtained from LIDAR data correlated with those measured in situ. Then, we developed a crown growth model from repeated LIDAR measurements of stands, suggesting that LIDAR data are adequate for this purpose, and indicating that crown surface area and tree volume growth were linearly related (R2 = 0.90; p < 0.01; RMSE tree volume < 0.02 m3). The model also provided robust predictions of the volume growth of local forests in 10 × 10 m plots based on LIDAR-derived estimates of crown surface areas. Future work should test the applicability of this growth model to facilitate practical forest management.  相似文献   

18.
Panna National Park is situated in the north-central part of Madhya Pradesh, India. Landscape parameters like fragmentation, porosity, patchiness and jaxtaposition have been analysed for disturbance gradient characterization. Disturbance on biodiversity due to human activities has been studied both qualitatively and quantitatively. The species richness is highest in northern mixed dry deciduous forest followed by dry deciduous open scrub and southern tropical dry deciduous teak forest. Species richness of the open thorny dry deciduous forest with grasses is found to be the lowest. Disturbance analysis indicates that 22.02% of the southern slightly moist teak forests are highly disturbed whereas Anogeissus forest and Riverine forest have 17.04% and 12.41% of the area under high disturbance, respectively. A total of 88 field sample plots were laid to enumerate trees, shrubs, herbs, climbers, etc. Biological richness parameters such as Shannon-Wiener biodiversity index, biodiversity value, ecosystem uniqueness were derived from field data. High biological richness is found in northern mixed dry deciduous forest and mixed dry deciduous forest with bamboo. More than 99% of such areas are falling under medium to high biological richness. Nearly 55% of the gentle and flat to gentle, slope categories were found to have low biological richness. Phytosociological analysis of sampled field data indicated that the number of trees per unit area is the lowest in the Savannah. In inaccessible areas, the species richness and number of trees per unit area is very high. Main forces causing disturbance are search for diamonds, dams on river Ken, settlements in and around the park, grazing and resource utilization by villagers for fodder, animal grazing, fuel-wood, timber, etc.  相似文献   

19.

Background

Forests play an important role in mitigating global climate change by capturing and sequestering atmospheric carbon. Quantitative estimation of the temporal and spatial pattern of carbon storage in forest ecosystems is critical for formulating forest management policies to combat climate change. This study explored the effects of land cover change on carbon stock dynamics in the Wujig Mahgo Waren forest, a dry Afromontane forest that covers an area of 17,000 ha in northern Ethiopia.

Results

The total carbon stocks of the Wujig Mahgo Waren forest ecosystems estimated using a multi-disciplinary approach that combined remote sensing with a ground survey were 1951, 1999, and 1955 GgC in 1985, 2000 and 2016 years respectively. The mean carbon stocks in the dense forests, open forests, grasslands, cultivated lands and bare lands were estimated at 181.78?±?27.06, 104.83?±?12.35, 108.77?±?6.77, 76.54?±?7.84 and 83.11?±?8.53 MgC ha?1 respectively. The aboveground vegetation parameters (tree density, DBH and height) explain 59% of the variance in soil organic carbon.

Conclusions

The obtained estimates of mean carbon stocks in ecosystems representing the major land cover types are of importance in the development of forest management plan aimed at enhancing mitigation potential of dry Afromontane forests in northern Ethiopia.
  相似文献   

20.
In remote sensing–based forest aboveground biomass (AGB) estimation research, data saturation in Landsat and radar data is well known, but how to reduce this problem for improving AGB estimation has not been fully examined. Different vegetation types have their own species composition and stand structure, thus they have different data saturation values in Landsat or radar data. Optical and radar data also have different characteristics in representing forest stand structures, thus effective use of their features may improve AGB estimation. This research examines the effects of Landsat Thematic Mapper (TM) and ALOS PALSAR L-band data and their integrations in forest AGB estimation of Zhejiang Province, China, and the roles of textural images from both datasets. The linear regression models of AGB were conducted by using (1) Landsat TM alone, (2) ALOS PALSAR data alone, (3) their combination as extra bands, and (4) their data fusion, based on non-stratification and stratification of vegetation types, respectively. The results show that (1) overall, Landsat TM data perform better than PALSAR data, but the latter can produce more accurate estimates for bamboo and shrub, and for forests with AGB values less than 60 Mg/ha; (2) the combination of TM and PALSAR data as extra bands can greatly improve AGB estimation performance, but their fusion using the modified high-pass filter resolution-merging technique cannot; (3) textures are indeed valuable in AGB estimation, especially for forests with complex stand structures such as mixed forests and pine forests with understories of broadleaf species; (4) stratification of vegetation types can improve AGB estimation performance; and (5) the results from the linear regression models are characterized by overestimation and underestimation for the smaller and larger AGB values, respectively, and thus, selecting non-linear models or non-parametric algorithms may be needed in future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号