首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The X-ray luminosities and spectra of F-M stars of luminosity classes IV–V are analyzed. In dwarfs with rotational velocities of about 100 km/s, such as the optical components of low-mass X-ray novae with black holes, hot plasma can be confined in coronal loops even in the presence of fairly weak magnetic fields. Thus, the soft X-ray emission of such systems in their quiescent state (to 1031 erg/s) could be associated with the coronal emission of the optical component/dwarf. Two systems studied with subgiants (V1033 Sco and V404 Cyg) have X-ray luminosities 2×1032–2×1033 erg/s. The X-ray emission of a solar-type corona cannot provide such luminosities. However, a transition to a non-solar corona is possible in rapidly rotating subgiants—a dynamical corona whose X-ray emission can be one to two orders of magnitude higher than observed for more slowly rotating late-type subgiants in the solar neighborhood. This suggests that the quiescent X-ray emission of these two systems is provided by emission from the corona of the subgiant optical component.  相似文献   

2.
We analyze properties of the unique nova-like star AE Aquarii identified with a close binary system containing a red dwarf and a very fast rotating magnetized white dwarf. It cannot be assigned to any of the three commonly adopted sub-classes of Cataclysmic Variables: Polars, Intermediate Polars, and Accreting non-magnetized White Dwarfs. Our study has shown that the white dwarf in AE Aqr is in the ejector state and its dipole magnetic moment is ???1.5 × 1034 G cm3. It switched into this state due to intensive mass exchange between the system components during a previous epoch. A high rate of disk accretion onto the white dwarf surface resulted in temporary screening of its magnetic field and spin-up of the white dwarf to its present spin period. Transition of the white dwarf to the ejector state had occurred at a final stage of the spin-up epoch as its magnetic field emerged from the accreted plasma due to diffusion. In the frame of this scenario AE Aqr represents a missing link in the chain of Polars evolution and the white dwarf resembles a recycled pulsar.  相似文献   

3.
We suggest two mechanisms to explain IR photometric and spectropolarimetric observations of magnetic white dwarfs: vacuum polarization and the existence of Rydberg atomic states with large dipole moments arising due to atomic collisions in the strong magnetic field of the white dwarf (so-called magnetic collision-induced absorption, or magnetic CIA). Both mechanisms can explain the observed rotations of the polarization ellipses and the depression of the IR spectral energy distribution. We present the results of spectropolarimetric observations of several magnetic white dwarfs with the Special Astrophysical Observatory 6-m telescope, together with photometric observations in the near-IR obtained with the Russian-Italian AZT-24 Telescope at Campo Imperatore.  相似文献   

4.
We have performed three-dimensional magnetohydrodynamical calculations of stream accretion in cataclysmic variable stars for which the white dwarf primary possesses a strong, complex magnetic field. These calculations were motivated by observations of polars: cataclysmic variables containing white dwarfs with magnetic fields sufficiently strong to prevent the formation of an accretion disk. In this case, an accretion stream flows from the L1 point and impacts directly onto one or more spots on the surface of the white dwarf. Observations indicate that the white dwarfs in some binaries possess complex (non-dipolar) magnetic fields. We performed simulations of ten polars, with the only variable being the azimuthal angle of the secondary with respect to the white dwarf. These calculations are also applicable to asynchronous polars, where the spin period of the white dwarf differs by a few percent from the orbital period. Our results are equivalent to calculating the structure of one asynchronous polar at ten different spin-orbit beat phases. Our models have an aligned dipolar plus quadrupolar magnetic field centered on the whitedwarf primary. We find that, with a sufficiently strong quadrupolar component, an accretion spot arises near the magnetic equator for slightly less than half our simulations, while a polar accretion zone is active for most of the remaining simulations. For two configurations, accretion at a dominant polar region and in an equatorial zone occurs simultaneously. Most polar studies assume that the magnetic field is dipolar, especially for single-pole accretors. We demonstrate that, with the orbital parameters and magnetic-field strengths typical of polars, the accretion flow patterns can vary widely in the case of a complex magnetic field. This may make it difficult formany polars to determine observationally whether the field is pure dipolar or is more complex, but there shoulid be indications for some systems. In particular, a complex magnetic field should be suspected if there is an accretion zone near the white dwarf’s equator (assumed to be in the orbital plane) or if there are two or more accretion regions that cannot be fitted by dipolar magnetic field. Magnetic-field constraints are expected to be substantially stronger for asynchronous polars, with clearer signs of complex field geometry due to changes in the accretion flow structure as a function of azimuthal angle. These indications become clearer in asynchronous polars because each azimuthal angle corresponds to a different spin-orbit beat phase.  相似文献   

5.
The results of spectropolarimetric observations of a number of magnetic white dwarfs obtained on the 6-m optical telescope of the Special Astrophysical Observatory are presented. The observations were carried out using the SCORPIO focal aperture-ratio reducer in a spectropolarimetric regime. Two characteristic dependences of the degree of polarization on the wavelength are observed. For one group of objects, the degree of linear polarization grows with wavelength, suggesting that the alignment of atoms and molecules in Rydberg states in the atmosphere of the white dwarf due to the action of its magnetic field influences scattering processes. The second group of objects displays an increase in the degrees of both linear and circular polarization with wavelength, providing evidence for the presence of protoplanetary disks around these magnetic white dwarfs, in which the alignment of circumstellar grains leads to the observed behavior.  相似文献   

6.
The range of abundances of radioactive nuclei in material ejected during novae is derived from kinetic calculations of thermonuclear burning in a hydrogen-rich, single-zone envelope at the surface of a CO or ONeMg dwarf. The total amount of radioactive N, O, and F isotopes in the envelope is approximately equal to the mass of CO in the dwarf that is admixed during accretion and/or the outburst. The mass fraction of synthesized 18F is 10?3–10?2. In the case of ONeMg dwarfs, the abundances of 22Na and 26Al are substantially higher and reach several percent and one percent of the mass, respectively. We derived light curves in the annihilation line from short-lived NOF-isotopes and studied the effect of varying the envelope parameters. The light curves are most sensitive to the degree of mixing of the radioactive isotopes in the envelope. Even having as little as 1% of unmixed material in the outer layer results in appreciable suppression of the first luminosity peak due to radioactive NO isotopes. The second luminosity peak, due to 18F decay, is appreciably suppressed only when the relative mass of unmixed material in the outer layer exceeds 10%. We suggest observations of the 18F annihilation-line flux with independent observational estimates of the 18F mass in the ejected envelope as a means to determine the degree of mixing and the mass of synthesized 18O. Calculations of the synthesis of 22Na and 26Al isotopes are compared to estimates of the masses of these isotopes in the envelopes of novae derived from observations of their gamma radiation.  相似文献   

7.
We model the Galactic ensemble of helium stars using population synthesis techniques, assuming that all helium stars are formed in binaries. In this picture, single helium stars are produced by mergers of helium remnants of the components of close binaries (mainly, the merging of helium white dwarfs) or in the disruption of binaries with helium components during supernova explosions. The estimated total birthrate of helium stars in the Galaxy is 0.043 yr?1; the total number is 4 × 106; and the binarity rate is 76%. We construct a subsample of low-mass (MHe ? 2M) helium stars defined by observational selection effects: the limiting magnitude (VHe ≤ 16), ratio of the magnitudes of the components in binaries (VHeVcomp), and lower limit for the semiamplitude of the radial velocity required for detecting binarity (Kmin = 30 km s?1). The parameters of this subsample are in satisfactory agreement with observations of helium subdwarfs. In particular, the binarity rate in the selection-limited sample is 58%. We analyze the relations between the orbital periods and masses of helium subdwarfs and their companions in systems with various combinations of components. We predict that the overwhelming majority (~97%) of unobserved companions to helium stars will be white dwarfs, predominantly, carbon-oxygen white dwarfs.  相似文献   

8.
The “Scenario Machine” (a computer code designed for studies of the evolution of close binaries) was used to carry out a population synthesis for a wide range of merging astrophysical objects: main-sequence stars with main-sequence stars; white dwarfs with white dwarfs, neutron stars, and black holes; neutron stars with neutron stars and black holes; and black holes with black holes. We calculate the rates of such events, and plot the mass distributions for merging white dwarfs and main-sequence stars. It is shown that Type Ia supernovae can be used as standard candles only after approximately one billion years of evolution of galaxies. In the course of this evolution, the average energy of Type Ia supernovae should decrease by roughly 10%; the maximum and minimum energies of Type Ia supernovae may differ by no less than by a factor of 1.5. This circumstance must be taken into account at estimating the parameters of the Universe expansion acceleration. According to theoretical estimates, the most massive—as a rule, magnetic—white dwarfs probably originate from mergers of white dwarfs of lower mass. At least some magnetic Ap and Bp stars may form in mergers of low-mass main-sequence stars (M ? 1.5 M ) with convective envelopes.  相似文献   

9.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

10.
The origin of solar-type activity for low-mass stars of late spectral types is considered. Spectroscopic data were used to study the dependence of the activity level logR HK on the lithium abundance logA(Li) and axial rotation rate. A close correlation between logA(Li) and logR HK is found for two groups of G stars, hotter and cooler than the Sun. This relation is most clearly expressed in the case of high activity, and is somewhat more strongly expressed for G6-K3 dwarfs, which includes many BY Dra variables, than for F8-G5 stars. It is confirmed that, for stars with high activity, both the lithium abundance and the activity level are determined by the rotation rate, which depends on the age. The lithium abundance exhibits different dependences on the chromospheric activity, depending on the level of this activity. Cooler stars, with detectable lithium and solar-like chromospheres, possess much stronger coronas. This change in the relationship between the relative luminosities of the chromosphere and corona can be reliably traced using larger datasets. The different ratios between the activity of the choromosphere and corona for cooler and hotter G stars may reflect the fact that their convective zones become deeper or shallower than some critical value. This is consistent with observations of parameters describing rotational modulation and the correlation and anti-correlation of chromospheric and photospheric activity indices for stars hotter and cooler than the Sun. Physically, this means that the character of the activity could be related to a changing contribution of the large-scale and local magnetic fields to the generation of the activity. The results of this study confirm the earlier idea that there may be different evolution paths associated with solar-type activity. The results can be used to refine methods for estimating ages of stars from their activity levels (gyrochronology).  相似文献   

11.
We investigate the physical characteristics of single, rapidly rotating white dwarfs, which could form as a result of a merger of two white dwarfs with different masses and filled Roche lobes, due to the radiation of gravitational waves. When the merging of the binary components occurs without loss of mass and angular momentum, the merger products are subject to secular instability, and the density in their cores does not exceed ~108 g/cm3. Models are constructed for rapidly rotating neutron stars, which could form after the collapse of rotating iron cores of evolved massive stars. Dynamically unstable neutron-star models are characterized by a shift of the maximum density from the rotational axis. The total momentum of such neutron stars is about half the maximum possible momentum for the evolved cores of massive stars.  相似文献   

12.
The conditions for the formation of planets and brown dwarfs around single main-sequence stars are considered in two scenarios. The formation of planets and brown dwarfs requires that the initial specific angular momentum of a solar-mass protostar be (0.32)×1018 cm2/s. The accreted matter of the protostar envelope forms a compact gas ring (disk) around the young star. If the viscosity of the matter in this ring (disk) is small, increasing its mass above a certain limit results in gravitational instability and the formation of a brown dwarf. If the viscosity of the gas is sufficiently large, the bulk of the protostar envelope material will be accreted by the young star, and the gas disk will grow considerably to the size of a protoplanetary dust disk due to the conservation of angular momentum. The formation of dust in the cool part of the extended disk and its subsequent collisional coalescence ultimately results in the formation of solar-type planetary systems.  相似文献   

13.
Experimental modelling of corona textures   总被引:1,自引:0,他引:1  
Formation of corona textures along olivine–plagioclase and orthopyroxene–plagioclase interfaces has been experimentally reproduced at 670 and 700 °C and 5 kbar with either a pure H2O fluid phase or 0.1 and 37 m NaCl–H2O solution fluid. In these experiments, we investigate the interaction of primary olivine and/or orthopyroxene and plagioclase in powders and polished crystals, and in small samples of a natural gabbro. The experiments result in the formation of corona textures with several layers of different assemblages (according to the experimental conditions) consisting of garnet (grossular), clinopyroxene, orthopyroxene, amphibole, chlorite and phlogopite. The experiments show major differences in the number of layers, the mineral assemblages and mineral composition, and in the trends of composition of plagioclase in coronas around olivine and orthopyroxene. The fluid phase composition influences the corona assemblages and the composition of the minerals in the experimental coronas; for example, garnet appears in the coronas in the second experiment where the NaCl–H2O ratio is low. Experimental modelling of corona textures confirms a model of simultaneous growth of layers by the mechanism of diffusion metasomatism with participation of a fluid phase through which mass is transferred. Zoning in the experimental coronas shows opposing diffusion of Al and Ca from plagioclase and Mg and Fe from olivine/orthopyroxene; difference in the mobility of the components is inferred from observations in the coronas. The experimental corona textures are compared with natural coronas from the Belomorian belt (Baltic shield), developed at 670–690 °C and 7–8 kbar, and the Marun‐Keu complex (Polar Urals), developed at 670–700 °C and 14–16 kbar, where the corona textures correspond to a transitional stage of the gabbro‐to‐eclogite transformation.  相似文献   

14.
The coronal and chromospheric emission of several hundred late-type stars whose activity was recently detected are analyzed. This confirms the previous conclusion for stars of HK project that there exist three groups of objects: active red M dwarfs, G-K stars with cyclic activity, and stars exhibiting high but irregular activity. The X-ray fluxes, EUV-spectra, and X-ray cycles can be used to study the main property of stellar coronas—the gradual increase in the number of high-temperature (T ≥ 10 MK) regions in the transition from the Sun to cyclically active K dwarfs and more rapidly rotating F and G stars with irregular activity. The level of X-ray emission is closely related to the spottedness of the stellar surface. The correlation between the chromospheric and coronal emission is weak when the cycles are well-defined, but becomes strong when the activity is less regular. Unexpectedly, stars whose chromospheric activity is even lower than that of the Sun are fairly numerous. Common and particular features of solar activity among the activity of other cyclically active stars are discussed. Our analysis suggests a new view of the problem of heating stellar coronas: the coronas of stars with pronounced cycles are probably heated by quasistationary processes in loops, while prolonged nonstationary coronal events are responsible for heating the coronas of F and G stars with high but irregular activity.  相似文献   

15.
Spectrophotometric observations are used to study the envelopes of the FeII nova V2467 Cyg and the HeN nova V2491 Cyg. The abundances of several elements in the nova envelopes and the envelope masses are estimated. The nitrogen mass abundance in the V2467 Cyg envelope is higher than the solar value by a factor of 186 and the oxygen abundance by the factor of 10. The nitrogen abundance in the envelope of V2491 Cyg exceeds the solar value by a factor of 56, the oxygen abundance by a factor of 12, and the neon abundance by a factor of 8. The masses of the envelopes were estimated to be 8.5×10?5 M for V2467 Cyg and 1.5×10?5 M for V2491 Cyg. These envelope elemental abundances and masses are in good agreement with those of low-mass CO white dwarfs (0.8 M ) and ONe white dwarfs (1.15 M ).  相似文献   

16.
The possibility of a conservative merger of a binary white dwarf whose components have similar masses is studied. Axially symmetrical models for single, rapidly rotating white dwarfs that are possible products of such mergers are constructed and their physical characteristics investigated. The merger products must be turbulent, and the viscosity of the electron gas is not sufficient to support the observed luminosities of massive, bright white dwarfs. The amount of dissipative energy and the timescale for its release are estimated.  相似文献   

17.
The effect of the radius of the tube of open magnetic-field lines on the gamma-ray curvature radiation from the polar regions of a radio pulsar with a non-dipolar magnetic field is analyzed. The pulsar is considered in a polar-cap model with free electron emission from the neutron-star surface. The effect of the non-dipolar magnetic field on the radius of curvature of the field lines and the field intensity is taken into account. In connection with the creation of electron-positron pairs, we take into account only the birth of pairs by curvature radiation in the magnetic field. The small non-dipolarity of the field enables the radio pulsar not to turn off, even after a considerable decrease in the pulsar-tube radius. For instance, with a 20% non-dipolarity (ν = 0.2), a pulsar with B = 1013 G and P = 0.5 s can still operate even for a fivefold decrease in the pulsar-tube radius. A maximum is observed in the dependence of the electrostatic potential in the diode on the non-dipolarity parameter ν at ν ~ 0.5–0.7. The pulse profile in non-thermal X-ray emission for ν ~ 0.5–0.7 may look virtually the same as for ν ~ 0.1–0.2. Decreases in the pulsar-tube radius could be due to a structure of currents in the magnetosphere that results in the pulsar diode on the neutron-star surface occupying only a small fraction of the pulsar tube, with the remainder of the tube containing an outer annular gap. The pulsar-tube size is also affected by the presence of a circum-pulsar disk. A change in the pulsar-tube radius could also be due to an external magnetic field, associated with either a magnetic white dwarf or a circum-pulsar disk.  相似文献   

18.
Omphacite and garnet coronas around amphibole occur in amphibolites in the Hong'an area, western Dabie Mountains, China. These amphibolites consist of an epidote–amphibolite facies assemblage of amphibole, garnet, albite, clinozoisite, paragonite, ilmenite and quartz, which is incompletely overprinted by an eclogite facies assemblage of garnet, omphacite and rutile. Coronas around amphibole can be divided into three types: an omphacite corona; a garnet–omphacite–rutile corona; and, a garnet–omphacite corona with less rutile. Chemographic analysis for local reaction domains in combination with petrographical observations show that reactions Amp + Ab + Pg = Omp +Czo + Qtz + H2O, and Amp + Ab = Omp ± Czo + Qtz + H2O may lead to the development of omphacite coronas. The garnet–omphacite–rutile corona was formed from the reaction Amp + Ab + Czo + Ilm ± Qtz = Omp + Grt + Rt + H2O. In garnet–omphacite coronas, the garnet corona grew during an early stage of epidote amphibolite facies metamorphism, whereas omphacite probably formed by the reactions forming the omphacite corona during the eclogite facies stage. It is estimated that these reactions occurred at 0.8–1.4 GPa and 480–610 °C using the garnet–clinopyroxene thermometer and omphacite barometer in the presence of albite.  相似文献   

19.
Interplanetary scintillation observations of the compact nucleus of 3C 274 have been carried out at 111 MHz on on the Large Phased Array radio telescope. We have derived an upper limit for the flux density of the compact radio source, and determined the parameters of the low-frequency cutoff of the spectrum of this source. We have analyzed the observational data assuming that the low-frequency spectral cutoff is due to synchrotron self-absorption. In this case, the magnetic field in the nucleus of 3C 274 must be very nonuniform. At the center, on scales of < 0.01 pc, the magnetic field varies in the range 0.4 G < H < 40 G, while its mean value over the entire radio source is 〈H〉 ~ 10?3 ? 10?4 G. The energy density of the relativistic electrons exceeds the energy density of the magnetic field everywhere within the nucleus, though energy equipartition is also possible near the center.  相似文献   

20.
In this work, cold and hot, static and rotating white dwarf stars are investigated within the framework of classical physics, employing the Chandrasekhar equation of state. The main parameters of white dwarfs such as the central density, pressure, total mass and radius are calculated fulfilling the stability criteria for hot rotating stars. To construct rotating configurations the Hartle approach is involved. It is shown that the effects of finite temperatures become crucial in low-mass white dwarfs, whereas rotation is relevant in all mass range. The simultaneous accounting for temperature and rotation is critical in the calculation of the radii of white dwarfs. The results obtained in this work can be applied to explain a variety of observational data for white dwarfs from the Sloan Digital Sky Survey Data Releases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号