首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morpho‐mechanical behaviour of one artificial granite joint with hammered surfaces, one artificial regularly undulated joint and one natural schist joint was studied. The hammered granite joints underwent 5 cycles of direct shear under 3 normal stress levels ranging between 0.3 and 4 MPa. The regularly undulated joint underwent 10 cycles of shear under 6 normal stress levels ranging between 0.5 and 5 MPa and the natural schist replicas underwent a monotonics shear under 5 normal stress levels ranging between 0.4 and 2.4 MPa. These direct shear tests were performed using a new computer‐controlled 3D‐shear apparatus. To characterize the morphology evolution of the sheared joints, a laser sensor profilometer was used to perform surface data measurements prior to and after each shear test. Based on a new characterization of joint surface roughness viewed as a combination of primary and secondary roughness and termed by the joint surface roughness, SRs, one parameter termed ‘joint surface degradation’, Dw, has been defined to quantify the degradation of the sheared joints. Examinations of SRs and Dw prior to and after shearing indicate that the hammered surfaces are more damaged than the two other surfaces. The peak strength of hammered joint with zero‐dilatancy, therefore, significantly differs from the classical formulation of dilatant joint strength. An attempt has been made to model the peak strength of hammered joint surfaces and dilatant joints with regard to their surface degradation in the course of shearing and two peak strength criteria are proposed. Input parameters are initial morphology and initial surface roughness. For the hammered surfaces, the degradation mechanism is dominant over the phenomenon of dilatancy, whereas for a dilatant joint both mechanisms are present. A comparison between the proposed models and the experimental results indicates a relatively good agreement. In particular, compared to the well‐known shear strength criteria of Ladanyi and Archambault or Saeb, these classical criteria significantly underestimate and overestimate the observed peak strength, respectively, under low and high normal stress levels. In addition and based on our experimental investigations, we put forward a model to predict the evolution of joint morphology and the degree of degradation during the course of shearing. Degradations of the artificial undulated joint and the natural schist joint enable us to verify the proposed model with a relatively good agreement. Finally, the model of Ladanyi and Archambault dealing with the proportion of total joint area sheared through asperities, as, once again, tends to underestimate the observed degradation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Quantitative Parameters for Rock Joint Surface Roughness   总被引:17,自引:5,他引:12  
Summary The morphologies of two artificial granite joints (sanded and hammered surfaces), one artificial regularly undulated joint and one natural schist joint, were studied. The sanded and hammered granite joints underwent 5 cycles of direct shear under 3 normal stress levels ranging between 0.3–4 MPa. The regularly undulated joint underwent 10 cycles of shear under 6 normal stress levels ranging between 0.5–5 MPa and the natural schist replicas underwent a monotonous shear under 5 normal stress levels ranging between 0.4–2.4 MPa. In order to characterize the morphology of the sheared joints, a laser sensor profilometer was used to perform surface data measurements prior to and after each shear test. Rather than describing the morphology of the joints from the single profiles, our characterization is based on a simultaneous analysis of all the surface profiles. Roughness was viewed as a combination of a primary roughness and a secondary roughness. The surface angularity was quantified by defining its three-dimensional mean angle, θs, and the parameter Z2s. The surface anisotropy and the secondary roughness were respectively quantified by the degree of apparent anisotropy, k a, and the surface relative roughness coefficient, R s. The surface sinuosity was quantified by the surface tortuosity coefficient, T s.  Comparison between the means of the classical linear parameters and those proposed shows that linear parameters underestimate the morphological characteristics of the joint surfaces. As a result, the proposed bi-dimensional and tri-dimensional parameters better describe the evolution of the joints initial roughness during the course of shearing.  相似文献   

3.
Roughness and wear evolution of three different joint wall surfaces were characterized using surface roughness and surface wear parameters. Parameters were defined by considering the two components of morphology: waviness (“primary” roughness) and surface roughness (“secondary” roughness). Two surface roughness parameters are proposed: joint interface (or single wall) specific surface roughness coefficient SR s (0 ≤ SR s  ≤ 1) for quantifying the amount of “pure” roughness (or specific roughness), and degree of joint interface (or single wall) relative surface roughness DR r (0 ≤ DR r  ≤ 0.5). Two further parameters are also proposed in order to quantify the wear of wall surface: joint interface (or single wall) surface wear coefficient Λinterface, and the degree of joint interface (or single wall) surface wear D w(interface). The three test specimens were: man-made granite joints with hammered surfaces, man-made mortar joints with corrugated surfaces, and mortar joints prepared from natural rough and undulated schist joint replicas. Shearing under monotonic and cyclic shearing was performed using a computer-controlled bidirectional and biaxial shear apparatus. Joint surface data were measured using a noncontact laser sensor profilometer prior to and after each shear test. Calculation of specific surface roughness coefficient SR s , and degree of surface wear D w , indicated that the hammered joint interface with predominant interlocking wears much more (>90%) than the corrugated (27%) and the rough and undulated (23%) joint interfaces having localized interlocking points. The proposed method was also successfully linked to the classical wear theory.  相似文献   

4.
In this article, the shear behavior of discontinuities caused by bedding planes of weakness between two different rock types with high strength difference is investigated. The effect of roughness and compressive strength of joint wall in such discontinuities are studied. The designed profiles consist of two regular and three irregular artificial joints molded by three types of plaster mortars with different uniaxial compressive strengths. Firstly, it is demonstrated that the shear behavior of discontinuities with different joint wall compressive strengths (JCS) is different from rock joints with identical wall compressive strengths by showing that Barton’s empirical criterion is not appropriate for the former discontinuities. After that, some correlation equations are proposed between the joint roughness coefficient (JRC) parameter and some surface statistical/fractal parameters, and the normal stress range of Barton’s strength criterion is also modified to be used for such discontinuities. Then, a new empirical criterion is proposed for these discontinuities in such a way that a rational function is used instead of JRC log10(JCS/σ n) as i 0(σ c/σ n)a/[b + (σ c/σ n) a ] by satisfying the peak dilation angle boundary conditions under zero and very high normal stress (physical infinite normal stress causing zero peak dilation angle). The proposed criterion has three surface parameters: i 0, a, and b. The reason for separation of i 0 from JRC is indicated and the method of its calculation is mentioned based on the literature. The two remaining coefficients (a and b) are discussed in detail and it is shown that a shows a power-law relationship with b, introducing the coefficient c through b = c a . Then, it is expressed that a is directly related to discontinuity surface topography. Finally, it is shown that the coefficient c has higher values in irregular profiles in comparison with regular profiles and is dominated by intensity of peak dilation angle reduction (majorly related to the surface irregularity and minorly related to roughness). The coefficient c is to be determined by performing regression analysis on experimental data.  相似文献   

5.
In this paper an experimental study was planned on rock mass model with three joint sets under triaxial and true-triaxial stress states to assess the influence of joint geometry and stress ratios on deformational behaviour of rock mass. The physical models were composed of three continuous orthogonal joint sets in which joint set-I was inclined at angle θ=0°, 20°, 40°, 60°, 80° and 90° with x-axis, joint set-II was produced at staggering s=0.5 and joint set-III was kept always vertical. Thus, rock mass models with medium interlocked smooth joints (ϕ j =36.8°) were simulated under true triaxial compression (σ123). Modulus of rock mass shows anisotropy with joint inclination θ which diminishes with increase in σ23 ratio. The rock mass at θ=60° shows the highest modulus enhancement (599.9%) whereas it is minimum (32.3%) at θ=90°. Further two empirical expressions for estimation of deformation modulus were suggested based on experimental results, which were developed by incorporating two basic concepts, e.g. Janbu’s coefficients and joint factor, J f.  相似文献   

6.
A new constitutive model to describe the shear behavior of rock joints under constant normal stiffness (CNS) and constant normal load (CNL) conditions is proposed. The model was developed using an empirical approach based on the results of a total of 362 direct shear tests on tensile fractured rock joints and replicas of tensile joints and on a new quantitative roughness parameter. This parameter, the active roughness coefficient C r, is derived from the features of the effective roughness mobilized at the contact areas during shearing. The model involves a shear strength criterion and the relations between stresses and displacements in the normal and shear directions, where the effects of the boundary conditions and joint properties are considered by the shape indices C d and C f. The model can be used to predict the shear behavior under CNS as well as CNL conditions. The shear behavior obtained from the experimental results is generally in good agreement with that estimated by the proposed model, and the effects of joint roughness, initial normal stress, and normal stiffness are reasonably reflected in the model.  相似文献   

7.
Distinct element modeling and analysis of mining-induced subsidence   总被引:8,自引:0,他引:8  
Summary The influence of rock discontinuities on mining-induced subsidence is addressed in this paper. A two-dimensional rigid block computer model was used to simulate discontinuities within strata overlying a longwall coal mine. Input for the model was available from a previous field study and numerical experiments were performed by varying the simulated joint stiffness, joint roughness, and vertical joint density. A comparison of simulated and measured displacements both within the overburden and on the surface provides insight into the influence of rock discontinuities. For the case in which all contacts had a relatively low stiffness, the maximum simulated subsidence was 293 mm whereas the case involving variable, but higher contact stiffness produced a maximum subsidence of only 73 mm reflecting the influence of increased overall stiffness. By comparison, the maximum measured subsidence was 580 mm. Consequently, the model behaved more stiffly than the actual rock mass but still provided a reliable simulation of block caving and strata separation. A comparison of simulated and observed displacements within the overburden suggests that horizontal discontinuities not included in the rigid block mesh above the zone of caving controlled rock mass compliance.List of Symbols c joint stiffness ratio [dimensionless] - d strata thickness ratio [dimensionless] - e strata modulus ratio [dimensionless] - E a modulus of stratum a [MPa] - E b modulus of stratum b [MPa] - E equiv equivalent rock mass modulus [MPa] - E u unconfined compression modulus of intact rock [MPa] - F n contact normal force [N] - h overburden thickness [m] - k a normal spring stiffness of stratum a [N/m] - k b normal spring stiffness of stratum b [N/m] - k equiv equivalent rock mass spring stiffness [N/m] - K n normal material stiffness of joint [MPa/m] - K s shear material stiffness of joint [MPa/m] - m mined thickness of coal seam [m] - q u unconfined compressive strength of intact rock [MPa] - Sh shale - Ss sandstone - Sh/Ss shale/sandstone interbeds - S max maximum subsidence [m] - SLEX Slope Indicator inclinometer/Sondex extensometer - T a thickness of stratum a [m] - T b thickness of stratum b [m] - T j joint thickness [m] - u a compression of stratum a [m] - u b compression of stratum b [m] - u j compression of joint [m] - u total total compression of strata and included joint [m] - w width of longwall panel [m] - n normal stress [MPa]  相似文献   

8.
Summary A new concept of feature size range of a roughness profile is introduced in the paper. It is shown that this feature size range plays an important role in estimating the fractal dimension,D, accurately using the divider method. Discussions are given to indicate the difficulty of using both the divider and the box methods in estimatingD accurately for self-affine profiles. The line scaling method's capability in quantifying roughness of natural rock joint profiles, which may be self-affine, is explored. Fractional Brownian profiles (self-affine profiles) with and without global trends were generated using known values ofD, input standard deviation, , and global trend angles. For different values of the input parameter of the line scaling method (step sizea 0),D and another associated fractal parameterC were calculated for the aforementioned profiles. Suitable ranges fora 0 were estimated to obtain computedD within ±10% of theD used for the generation. Minimum and maximum feature sizes of the profiles were defined and calculated. The feature size range was found to increase with increasingD and , in addition to being dependent on the total horizontal length of the profile and the total number of data points in the profile. The suitable range fora 0 was found to depend on bothD and , and then, in turn, on the feature size range, indicating the importance of calculating feature size range for roughness profiles to obtain accurate estimates for the fractal parameters. Procedures are given to estimate the suitablea 0 range for a given natural rock joint profile to use with the line scaling method in estimating fractal parameters within ±10% error. Results indicate the importance of removal of global trends of roughness profiles to obtain accurate estimates for the fractal parameters. The parametersC andD are recommended to use with the line scaling method in quantifying stationary roughness. In addition, one or more parameters should be used to quantify the non-stationary part of roughness, if it exists. The estimatedC was found to depend on bothD and and seems to have potential to capture the scale effect of roughness profiles.  相似文献   

9.
The shear strength of rock joints in theory and practice   总被引:62,自引:10,他引:62  
SummaryThe Shear Strength of Rock Joints in Theory and Practice The paper describes an empirical law of friction for rock joints which can be used both for extrapolating and predicting shear strength data. The equation is based on three index parameters; the joint roughness coefficientJRC, the joint wall compressive strengthJCS, and the residual friction angle r . All these index values can be measured in the laboratory. They can also be measured in the field. Index tests and subsequent shear box tests on more than 100 joint samples have demonstrated that r can be estimated to within ± 1° for any one of the eight rock types investigated. The mean value of the peak shear strength angle (arctan/ n ) for the same 100 joints was estimated to within 1/2°. The exceptionally close prediction of peak strength is made possible by performing self-weight (low stress) sliding tests on blocks with throughgoing joints. The total friction angle (arctan/ n ) at which sliding occurs provides an estimate of the joint roughness coefficientJRC. The latter is constant over a range of effective normal stress of at least four orders of magnitude. However, it is found that bothJRC andJCS reduce with increasing joint length. Increasing the length of joint therefore reduces not only the peak shear strength, but also the peak dilation angle and the peak shear stiffness. These important scale effects can be predicted at a fraction of the cost of performing large scale in situ direct shear tests.With 20 Figures  相似文献   

10.
Surface flux parameterization schemes used in current dynamic models are primarily based upon measurements at low and moderate wind speeds. Recent studies show that these parameterization schemes may be incorrect at high wind speeds (e.g., tropical cyclone forecasts). Five high-resolution numerical model experiments are designed to assess the sensitivity of tropical cyclone intensity forecasts to changes in the surface flux parameterization. The sensitivity experiments are conducted by running 48 h forecasts of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) for six selected tropical cyclones with individual modifications to surface flux calculation that include: (1) limiting the surface stress for wind speeds greater than 33 m s−1, or 64 knots (kt); (2) computing the stress at the top of the model bottom grid layer (MBGL) by averaging results from surface layer similarity and turbulence mixing parameterization for wind speeds greater than 33 m s−1; (3) increasing the roughness lengths for heat and moisture transfer by a factor of ten; (4) setting the roughness lengths for heat and moisture transfer to 1/10 of the momentum roughness length; and (5) cooling the sea surface temperature (SST) by a prescribed rate at high winds. Averaged responses for the six storms to these sensitivity tests show that: (i) the limit on surface stress at high winds significantly increases the cyclone intensity in 48 h forecasts; (ii) the averaged surface layer stress at high winds increases the cyclone intensity but to a much lesser degree than limiting the surface stress; (iii) large increases in the roughness lengths for heat and moisture transfer are needed to significantly impact the intensity forecast; (iv) the different roughness length formula for surface transfer coefficients notably increases C h/C d ratio from 0.59 to 0.79 for 25 m s−1 and 0.41 to 0.75 for 50 m s−1 that significantly increases the predicted cyclone intensity; and (v) cooling of the SST by −5.8°C in 48 h reduces the maximum surface wind speed by −32 kt, or 16.5 m s−1, at 48 h forecast. These results suggest that a surface flux parameterization scheme suitable for tropical cyclone intensity forecast must correctly model the leveling-off character of surface stress and C h/C d ratio at high winds. All modifications to surface flux calculation have little influence on 48 h track forecasts, even though they may significantly impact the intensity forecasts.
Chi-Sann LiouEmail:
  相似文献   

11.
本文报道了天然Ⅱ型CaCO3 矿物。该矿物发现于海洋表层沉积物,成分与方解石、文石及六方球方解石相同,但结构完全不同,它们共同组成了天然CaCO3 的同质多象变体。天然Ⅱ型CaCO3 矿物的空间群为P21/c,单位轴长为a0= 0.6290±0.0002 nm,b0= 0.4934±0.0002 nm,c0= 0.7979±0.0003nm,β= 107.571°±0.002°,Z= 4,单胞体积为0.23605±0.1749nm3;理论密度为2.82 g/cm3,实测值为2.76 g/cm3;实测硬度H= 4.天然Ⅱ型CaCO3 矿物是在深水环境中较高静水压力下形成的珊瑚体生物矿物。  相似文献   

12.
Summary The hoop forces which develop in circular tubes buried in elastic-plastic ground are investigated. A closed form solution is used to determine the hoop forces which develop when the field stresses in the elastic-plastic ground are initially uniform. The finite element method is used to solve the problem for biaxial field stress. A parametric study is undertaken to assess the influence of tube stiffness and ground strength on the hoop forces, and use is made of elastic stress contours to predict the likely extent of material failure around tubes buried in ground with biaxial prestress.Notation a tube radius - c cohesion - D flexural stiffness of the structure - E i Young's modulus of structure - E s Young's modulus of ground - F hoop force (compression positive) - G s shear modulus of ground - H hoop stiffness of the structure - K coefficient of lateral pressure - N tan2(45+/2) - q ( 1 1)/2 - S f relative flexural stiffness of the structure - S h relative hoop stiffness of the structure - t structural thickness - v circumferential displacement - w radial displacement - v l Poisson's ratio of structure - v s Poisson's ratio of ground - normal traction acting on the structure - d deviatoric component of field stress - h horizontal field stress - m uniform component of field stress - v vertical field stress - 1 major principal stress - 3 minor principal stress - tangential traction acting on the structure - angle of internal friction of the ground - angle of dilation of the ground  相似文献   

13.
Numerical Investigations of the Dynamic Shear Behavior of Rough Rock Joints   总被引:1,自引:1,他引:0  
The dynamic shear behavior of rock joints is significant to both rock engineering and earthquake dynamics. With the discrete element method (DEM), the dynamic direct-shear tests on the rough rock joints with 3D (sinusoidal or random) surface morphologies are simulated and discussed. Evolution of the friction coefficient with the slip displacement shows that the 3D DEM joint model can accurately reproduce the initial strengthening, slip-weakening, and steady-sliding responses of real rock joints. Energy analyses show that the strengthening and weakening behavior of the rock joint are mainly attributed to the rapid accumulation and release of the elastic energy in the joint. Then, effects of the surface roughness and the normal stress on the friction coefficient and the micro shear deformation mechanisms, mainly volume change and asperity damage, of the rock joint are investigated. The results show that the peak friction coefficient increases logarithmically with the increasing surface roughness, but decreases exponentially with the increasing normal stress. In addition, the rougher rock joint exhibits both higher joint dilation and asperity degradation. However, high normal stress constrains the joint dilation, but promotes the degree of asperity degradation significantly. Lastly, the effects of the 3D surface morphology on the shear behavior of the rock joint are investigated with a directional roughness parameter. It is observed that the anisotropy of the surface roughness consequently results in the variation of the peak friction coefficient of the joint corresponding to different shearing directions as well as the micro shear deformation mechanisms, e.g., the extent of joint dilation.  相似文献   

14.
The friction and deformation behaviour of rock joints   总被引:2,自引:3,他引:2  
SummaryThe Friction and Deformation Behaviour of Rock Joints The present investigation deals with the influence of joint roughness and material strength on the friction and deformation behaviour of rough indented joints. Besides the analytical determination of the joint roughness by the dilatation behaviour of the joint, friction tests on models with natural joint morphology and rock samples have been conducted.A material law is developed, describing the friction resistance and the dilatation behaviour at large deformations in their dependence on normal stress and material strength.
ZusammenfassungDas Reibungs- und Verformungsverhalten von Klüften Die vorliegende Untersuchung war dem Einfluß der Kluftflächenunebenheit und der Materialfestigkeit auf das Reibungs- und Verformungsverhalten rauher, verzahnter Kluftflächen gewidmet.Neben der analytischen Bestimmung der Kluftflächenunebenheit anhand des Dilatationsverhaltens der Kluftfuge wurden Reibungsversuche an Modellkörpern mit natürlicher Kluftmorphologie und an Gesteinen durchgeführt. Es wird ein Stoffgesetz entwickelt, mit welchem der Reibungswiderstand und das Dilatationsverhalten in Abhängigkeit von der Normalspannung und der Materialfestigkeit bei längeren Gleitwegen beschrieben werden kann.

RésuméLe comportement des fissures au frottement et aux déformations La présente étude traite de l'influence de la rugosité d'une diaclase et de la résistance de la roche sur le comportement au frottement et aux déformations d'une fissure âpre et endentée. La rugosité de la fissure a été déterminée d'après la dilatation maximale. Des éssais de frottement ont été exécutés à l'aide de modèles ayant une surface de fissure naturelle et à l'aide d'échantillons de roche. Une loi a été développée qui décrit la resistancé au frottement et le comportement à la dilatation de la fissure pour de grandes déformations en fonction de la contrainte normale et de la résistance des matériaux.

List of Symbols h dilatation - i deviation angle, dilatation angle - s shear deformation - residual friction angle - normal stress - F tensile strength - shear stress With 15 Figures  相似文献   

15.
The present study explores the degradation characteristics and scale of unevenness (small-scale roughness) on sheared rock joint surfaces at a low-stress regime. While the degradation characteristics of unevenness and the normal stress are mutually interrelated, an understanding of the degradation patterns of the three-dimensional roughness of rock joints is one of the important components needed to identify asperity failure characteristics and to quantify the role of damaged unevenness in establishing a shear strength model. A series of direct shear tests was performed on three-dimensional artificial rock joint surfaces at different normal stress levels. After shearing, the spatial distributions and statistical parameters of degraded roughness were analysed for the different normal stress levels. The length and area of the degraded zones showed bell-shaped distributions in a logarithmic scale, and the dominant scale (or the most frequently occurring scale) of the damaged asperities (i.e., unevenness) ranged from approximately, 0.5 to 5.0 mm in length and 0.1–10 mm2 in area. This scale of the damaged unevenness was consistent regardless of the level of normal stress. It was also found that the relative area of damaged unevenness on a given joint area, and thus the contribution of the mechanical asperity failure component to shear strength increased as normal stress increased.  相似文献   

16.
An infilled rock joint is likely to be the weakest plane in a rock mass. The presence of infill material within the joint significantly reduces the friction of the discontinuity boundaries (i.e. rock to rock contact of the joint walls). The thicker the infill, the smaller the shear strength of the rock joint. Once the infill reaches a critical thickness, the infill material governs the overall shear strength, and the joint walls (rock) play no significant role. Several models have been proposed to predict the peak shear strength of soil-infilled joints under both constant normal load (CNL) and constant normal stiffness (CNS) boundary conditions, taking into account the ratio of infill thickness (t) to the height of the joint wall asperity (a). CNS models provide a more realistic picture of the soil-infilled joint behaviour in the field. This paper presents a critical review on the existing mathematical models for predicting the shear strength of soil-infilled rock joint and verifies the normalised peak shear stress model with further laboratory investigations carried out on idealised saw-tooth rock joints at the University of Wollongong. Based on the prediction of the experimental data, the normalised peak shear stress model is slightly modified by the authors. A simplified approach for using this model in practice is presented and a new expression for prediction of dilatation at peak shear stress is suggested.  相似文献   

17.
Peng  Qinge  Liu  Xingnian  Huang  Er  Yang  Kejun 《Natural Hazards》2019,98(2):751-763

Due to the steep slope of mountainous watersheds and large changes in vegetation coverage degree, flood response processes after rainstorms are complicated. The flow concentration time of the slope is a key parameter for the simulation of flood processes. The most widely used flow concentration time formula currently in the distributed hydrological model is T?=?L0.6n0.6i?0.4S?0.3, which is derived from the kinematic wave theory (Melesse and Graham in J Am Water Resour As 40(4):863–879, 2004; Lee in Hydrol Sci 53(2):323–337, 2008). The flow confluence time T is characterized by the constant exponent of the slope length L, roughness n, effective rainfall intensity i and slope S, and the influence of vegetation on the flow concentration time is implied by the roughness. In this study, a series of heavy rainfall slope surface confluence tests under different slopes and vegetation coverage were carried out, a vegetation coverage factor, C, which was introduced, a statistical analysis method was used, and the vegetation coverage index was fitted. The results showed that the types of vegetation have a certain influence on the flow concentration time of slope, and the flow confluence time under turf vegetation was larger than the flow confluence time under shrubs vegetation; especially in the slope of the larger slope, the relative impact is more significant; at the same time, the influence of vegetation coverage on the flow concentration time of slope was more significant; no matter the condition of turf or shrub, the slope confluence time increased obviously with the increase in vegetation coverage. The index of vegetation coverage factor C varied with the slope and rain intensity. In general, the index of vegetation coverage factor C increased with the decrease in slope and decreased with the increase in rain intensity. In regard to the turf vegetation coverage index, when the slope is 45° and 30°, the decreasing trend of the vegetation coverage index a0 is obvious with increasing rainfall intensity. When the slope is 15°, the vegetation coverage index a0 also decreases with increasing rainfall intensity. When the slope is 5°, the vegetation coverage index a0 basically has no change. In regard to the shrubs vegetation coverage index, when the slope is 45° and 30°, the decreasing trend of the vegetation coverage index a0 is obvious with increasing rainfall intensity. When the slope is 15°, the vegetation coverage index a0 also decreases with increasing rainfall intensity. When the slope is 5°, the vegetation coverage index a0 basically has no change.

  相似文献   

18.
North-east India is seismically very active and has experienced many widelydistributed shallow, large earthquakes. Earthquake generation model for the region was studied using seismicity data [(1906–1984) prepared by National Geophysical Data Centre (NGDC), Boulder Colorado, USA]. For establishing statistical relations surface wave magnitudes (M s≥5·5) have been considered. In the region four seismogenic sources have been identified which show the occurrences of atleast three earthquakes of magnitude 5·5≤M s≤7·5 giving two repeat times. It is observed that the time interval between the two consecutive main shock depends on the preceding main shock magnitude (M p) and not on the following main shock magnitude (M f) revealing the validity of time predictable model for the region. Linear relation between logarithm of repeat time (T) and preceding main shock magnitude (M p) is established in the form of logT=cM p+a. The values ofc anda are estimated to be 0–36 and 1–23, respectively. The relation may be used for seismic hazard evaluation in the region.  相似文献   

19.
During June 2003, a period of mid level discharge (17,400 m−3 s−1), a parcel of water in the lower Mississippi River was sampled every 2 h during its 4-d transit from river km 362 near Baton Rouge to km 0 at Head of Passes, Louisiana, United States. Properties measured at the surface during each of the 48 stations were temperature, salinity, dissolved organic carbon (DOC), total dissolved nitrogen, dissolved macronutrients (NO3+NO2, PO4, Si(OH)4), chlorophylla (chla; three size fractions: < 5 μm, 5–20 μm, and > 20 μm) pigment composition by HPLC, total suspended matter (TSM), particulate organic carbon (POC), and particulate nitrogen (PN). Air-water CO2 flux was calculated from surface water dissolved inorganic carbon and pH. During the 4 d transit, large particles appeared to be settling out of the surface water. Concentrations of chla containing particles > 20 μm declined 37%, TSM declined 43%, POC declined 42% and PN declined 57%. Concentrations of the smaller chla containing particles did not change suggesting only large particulate materials were settling. There was no measurable loss of dissolved NO3, PO4, or Si(OH)4, consistent with the observation that chla did not increase during the 4-d transit. DOC declined slightly (3%). These data indicate there was little autotrophic or heterotrophic activity in the lower Mississippi River at this time, but the system was slightly net heterotrophic.  相似文献   

20.
Oxygen isotopes are an attractive target for zoning studies because of the ubiquity of oxygen‐bearing minerals and the dependence of mineral 18O/16O ratios on temperature and fluid composition. In this study, subtle intragrain oxygen isotope zoning in titanite is resolved at the 10‐μm scale by secondary ion mass spectrometry. The patterns of δ18O zoning differ depending on microstructural context of individual grains and reflect multiple processes, including diffusive oxygen exchange, partial recrystallization, grain‐size reduction, and grain growth. Using the chronological framework provided by structural relations, these processes can be related to specific events during the Grenville orogeny. Titanite was sampled from two outcrops within the Carthage‐Colton Mylonite Zone (CCMZ), a long‐lived shear zone that ultimately accommodated exhumation of the Adirondack Highlands from beneath the Adirondack Lowlands during the Ottawan phase (1090–1020 Ma) of the Grenville orogeny. Titanite is hosted in the Diana metasyenite complex, which preserves three sequentially developed fabrics: an early NW‐dipping protomylonitic fabric (S1) is crosscut by near‐vertical ultramylonitic shear zones (S2), which are locally reoriented by a NNW‐dipping mylonitic fabric (S3). Texturally early titanite (pre‐S2) shows diffusion‐dominated δ18O zoning that records cooling from peak Ottawan, granulite‐facies conditions. Numerical diffusion models in the program Fast Grain Boundary yield good fits to observed δ18O profiles for cooling rates of 50 ± 20 °C Ma?1, which are considerably faster than the 1–5 °C Ma?1 cooling rates previously inferred for the Adirondack Highlands from regional thermochronology. High cooling rates are consistent with an episode of rapid shearing and exhumation along the CCMZ during gravitational collapse of the Ottawan orogen at c. 1050 Ma. Texturally later titanite (syn‐S2) has higher overall δ18O and shows a transition from diffusion‐dominated to recrystallization‐dominated δ18O zoning, indicating infiltration of elevated‐δ18O fluids along S2 shear zones and continued shearing below the blocking temperature for oxygen (~≤500 °C for grain sizes at the study site). The texturally latest titanite (post‐S3) has growth‐dominated δ18O zoning, consistent with porphyroblastic grain growth following cessation of shearing along the Harrisville segment of the CCMZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号