首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samples of stream sediments were collected along two streams adjacent to a sanitary landfill. One of the streams drained the landfill directly. In addition, control of background samples were also analyzed from a stream not affected by the landfill. All samples were analyzed for Ag, Zn, Cu, Cd, and Pb content using atomic adsorption techniques. The pH of the three streams were monitored since pH differences in the streams may affect the quantities of metals adsorbed or precipitated on the sediments. The comparison between the content of Ag, Zn, and Cu in the sediments of the two study streams and the same metals in the control sediments indicated the landfill emitted these metals into the two adjacent streams. However, since the Cd and Pb contents in the sediments of both streams were similar to that of the control stream sediments, these metals may not be emitted into the two study streams from the landfill and they represent only background quantities. The comparisons of each metal in the sediments of each stream were made by the use of a metal trend chart, the individual calculated mean metal content values, and by the statistical two sample t-test. No decreasing trends of the quantities of Ag, Zn, or Cu as a function of increasing distance from the landfill was present in the sediments along the stream that drained the landfill directly. These sediments might have been affected by stream action and became mixed with other sediments downstream.  相似文献   

2.
Restricted grain size sediment samples were collected along two streams. Metal content in some samples may have been influenced by landfill emissions. Each sample was divided into a grab portion, a quartered portion, and a portion crushed and sieved to a smaller size and then quartered. A duplicate sample from each of these portions was extracted. The Cu, Pb, Zn, Co, Ba, Fe, Mn, and Ca quantities were determined for each duplicate sample. Relative standard deviation was used to reflect homogeneity of metal content. Metal occurrence represented speciated metals or major components of chemical phases. Results indicated that variation of metal content among portions was uniform and did not vary as a function of absolute metal quantity. Homogeneity was similar in the same size grab and quartered samples. A more homogeneous metal state was displayed by the crushed and sieved sediments. However, this activity enriched softer chemical phases and associated speciated metals. It was concluded that sediments need not be quartered to obtain a better homogeneity of metal distribution and that field samples should not be crushed and sieved prior to chemical analyses. Assessment of sediments affected by metal emission sources must include a knowledge of metal homogeneity in individual samples.  相似文献   

3.
The geochemical dispersion, in an arid environment, of Pb and Zn in stream sediments is examined with respect to size fractions and depth of sampling in a stream draining the Gamsberg Zn orebody.Sampling results indicate that there is a well-developed drainage train for approximately 8 km from the orebody for both Pb and Zn. The length of the drainage train is similar for both the minus 80 and minus 200-mesh size fractions but it is less for the minus 10, plus 40-mesh fraction.Higher metal values were obtained from samples taken from the surface of the stream bed. Metal values are generally lower in samples collected below the surface of the stream bed. The sampling position within the stream channel is not important.Sampling of the magnetite fraction from the stream sediments produced a well-defined Zn train for a distance of 14 km from the orebody. This train is more significant than the train found by normal sediment sampling.  相似文献   

4.
Analysis of ten heavy metals (Ag, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Zn) in six sediment cores from Wellington Harbour show both anthropogenic enrichments and diagenetic modifications. Absolute concentrations determined by two methods, x-ray fluorescence and acid leaching for bioavailability, are not comparable. However, vertical trends in concentrations of the cored sediment are comparable. To assess levels of anthropogenic pollution, enrichment factors (enriched concentrations in upper core divided by background levels in lower core) are preferred over index of accumulation (I geo) values because preindustrial or background levels of heavy metals are well constrained. The ten metals are placed into three groups: (1) Cu, Pb, and Zn, which show the most anthropogenic enrichment; (2) As, Cd, Cr, Ni, and Sb, which are often associated with anthropogenic pollution but show only minor enrichment; and (3) Fe and Mn, which are diagenetically enriched. Assuming harbor waters are well mixed, anthropogenic enrichments of Cu, Pb, and Zn, are time correlative, but the degree of enrichment depends on the method of analysis and core location. Levels of As, Cd, Pb, and Zn show small variations in preindustrial sediments that are not related to changes in grain size and probably result from changes in the oxidation-reduction potential of the sediments and salinity of the pore waters.  相似文献   

5.
Regional geochemistry of trace elements in Chesapeake Bay sediments   总被引:4,自引:0,他引:4  
The concentrations of Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in 177 surface sediment samples from throughout Chesapeake Bay are reported. Analyses were made of both unfractionated samples and the <63 μm fractions. Analytical uncertainty, always less than ±10%, controlled reproducibility in analyses of the <63 μm fractions, but sampling variance controlled reproducibility in the unfractionated samples, especially when coarse-grained sediments were being analyzed. Sediments in the northernmost part of the bay are enriched relative to average continental crust in all elements except Cr. This reflects the composition of dissolved and suspended material being delivered to that region by the Susquehanna River. The enriched sediments appear not to be transported south of Baltimore in significant quantily. Zinc, cadmium, and lead are enriched relative to average crust throughout the bay and in most other estuaries in the eastern United States.  相似文献   

6.
《Applied Geochemistry》2000,15(6):807-817
The concentrations of major and trace elements were determined (aqua regia leach and ICP-AES analyses) in stream, lake and dredged sediments downstream of the historical Antskog iron- and copperworks, S.Finland. The levels of Ag, Cd, Cu, Pb and Zn are highly elevated in all studied sediment types: roughly half of the studied lake-sediment samples contain >5 ppm Ag, >15 ppm Cd, >0.1% Cu, >0.1% Pb and >0.3% Zn. In the dredged sediment material located onshore, the concentrations of Ag, Cu and Pb are comparable to those in the polluted lake-sediment samples, while in stream sediments elevated metal concentrations are found especially in samples characterised by high concentrations of organic material. The source of the elevated metal concentrations is the historical metalworks at Antskog, mainly the copperworks of the 19th century. Compared to the limit values for contaminated soils in Finland, the concentrations of Cu, Pb and Zn are on average elevated by factors >10 in the polluted horizons of lake sediments, >5 in the dredged sediment located onshore and >2 at the most heavily contaminated site in the stream. Since the surface waters in the area are used for agricultural purposes and for various leisure activities, it is necessary to make further detailed investigations into the extent of the metal pollution and to determine species, mobility and bioavailability of the metals.  相似文献   

7.
This work reports a geochemical study of sediments from the upper Paracatu River Basin. The objective is to define the influences of Au, Zn, and Pb mineral deposits and mining activities on the sediment metal sources, distribution, and accretion. The samples were analyzed using ICP/OES, AAS, and XRD techniques and were treated with principal components analysis and the geo-accumulation index. The main geochemical processes that control the sediment composition are pyrite oxidation, muscovite weathering, carbonate dissolution, and the erosion of oxisols enriched with Zn and Pb. The upper Rico Stream has high Al, Fe, Cu, Cr, Co, and Mn concentrations due erosion of oxisols and pyrite oxidation and muscovite alteration present in the parental rock. The artisanal alluvial gold mining increased the primary rock-minerals?? weathering and Hg sediment concentration. The lower Escuro River and Santa Catarina Stream are enriched with Zn and Pb due the erosion of metal-rich soils formed over galena, sphalerite, calamine, and willemite mineral deposits located upstream. Elements such as Ca, Mg, and Ba have low concentrations throughout the sampled area due the high solubility of these metals-bearing minerals. The dispersion of metals is limited by the basin geomorphology and their affinity to silt-clayey minerals and Fe and Mn oxides and hydroxides in circumneutral pH waters.  相似文献   

8.
Spatial distributions of trace elements in the coastal sea sediments and water of Maslinica Bay (Southern Adriatic), Croatia and possible changes in marine flora and foraminifera communities due to pollution were investigated. Macro, micro and trace elements’ distributions in five granulometric fractions were determined for each sediment sample. Bulk sediment samples were also subjected to leaching tests. Elemental concentrations in sediments, sediment extracts and seawater were measured by source excited energy dispersive X-ray fluorescence (EDXRF). Concentrations of the elements Cr, Cu, Zn, and Pb in bulk sediment samples taken in the Maslinica Bay were from 2.1 to over six times enriched when compared with the background level determined for coarse grained carbonate sediments. A low degree of trace elements leaching determined for bulk sediments pointed to strong bonding of trace elements to sediment mineral phases. The analyses of marine flora pointed to higher eutrophication, which disturbs the balance between communities and natural habitats.  相似文献   

9.
Sediment samples were collected from streambeds in an undisturbed watershed in eastern Quebec (Gaspé Peninsula). Two sampling sites were located on a stream draining an area of known mineralization (Cu, Pb, Zn) and two on a control stream. The sediment samples were separated into 8 distinct size classes in the 850 μm to <1 μm size range by wet sieving, gravity sedimentation or centrifugation. Each sediment subsample was then subjected to a sequential extraction procedure designed to partition the particulate heavy metals into five fractions: (1) exchangeable; (2) specifically adsorbed or bound to carbonates; (3) bound to Fe-Mn oxides; (4) bound to organic matter; (5) residual. The following metals were analyzed in each extract: Cu, Pb, Zn; Fe, Mn.Comparison of samples from the mineralized area with control samples revealed the expected increase in total concentrations for Cu, Pb and Zn. Non-detrital metals were mainly associated with Fe oxides (specifically adsorbed; occluded) and with organic matter or resistant sulfides. For a given sample, variation of trace metal levels in fractions 2 and 3 with grain size reflected changes in the available quantities of the inorganic scavenging phase (FeOx/MnOx); normalization with respect to Fe and Mn content in fraction 3 greatly reduced the apparent dependency on grain size.The results of this study suggest that a single reducing extraction (NH2OH.HCl) could be used advantageously to detect anomalies in routine geochemical surveys. A second leaching step with acidified H2O2 could also be included, as the trace metal concentrations in fraction 4, normalized with respect to organic carbon content, also showed high {anomaly/background} ratios.  相似文献   

10.
Eighteen sediment samples and six water-column samples were collected in a small (6 km2), coastal embayment (Port Jefferson Harbor, New York) to define a high-resolution spatial distribution of metals and to elucidate sources of contaminants to the harbor. Sediment metal (Ag, Cu, Fe, Ni, Pb, V, and Zn) concentrations varied widely, reflecting differences in sediment grain size, with higher metal concentrations located in the fine-grained inner harbor sediments. Calculated enrichment factors for these sediments show that Ag, Pb, Cu, and Zn are elevated relative to both crustal abundances and their respective abundances in sediments in central Long Island Sound. Metal concentrations were 1.2 to 10 fold greater in water from the inner harbor compared to water from Long Island Sound collected outside the mouth of the harbor. Spatial variations in trace metals in surface waters within the bay parallel the spatial variations of trace metals in sediments within the harbor. Elevated water-column metal concentrations appear to be partially derived from a combination of diagenetic remobilization from contaminated sediments (e.g., Ag) and anthropogenic sources (e.g., Cu and Zn) within the southern portions of the harbor. Although the National Status and Trends Program had reported previously that sediment metal concentrations in Port Jefferson Harbor were low, the results of this study show sediment metals have high spatial variability and are enriched in the inner harbor sediments at levels comparable to more urbanized western north shore Long Island harbors.  相似文献   

11.
Levels of heavy metals are found in soils and waters of the major tributary valleys of the Jordan Valley. Heavy metal content in soils irrigated by treated waste water were measured for a 40 km reach of Zarqa River. Soil samples from eight different sites along the upper course of this river were analyzed to determine the concentration of selected heavy metals (CO, Cr, Cu, Pb, Ni, Zn). Silt forms the major component of the soils with an average of 54%. Clay fractions show an increase with depth from 17 to 41%. Trends in particle size distribution and metal contents were compared across sample sites. Samples contained moderate to considerable levels of Pb and Ni. Concentrations of Cu and Cr ranged between 33–59 and 65–90 ppm, respectively. These values represent a slight to moderate class of pollution. The concentration of Cr shows a decrease with depth and distance from the waste water plant. Cu, Zn, and Ni show increasing concentrations with depth but Pb and CO do not. The concentrations of the measured heavy metals increases near the waste water treatment plant but decreases with distance from the plant due to precipitation in the stream bed and dilution with stream water. This decline in metal content with distance from the treatment plant suggests that most metals reaching floodplain soils may derive from the same source. Although current metal concentrations are low to moderate, floodplain surface soils in this area should be regarded as a potential source for future heavy metal pollution downstream.  相似文献   

12.
The distribution of ammonium citrate-leachable lead, zinc and cadmium among size fractions in stream sediments is strongly influenced by the presence of hydrous Mn-Fe oxides in the form of coatings on sediment grains. Distribution curves showing leachable metals as a function of particle size are given for eight samples from streams in New York State. These show certain features in common; in particular two concentrations of metals, one in the finest fractions, and a second peak in the coarse sand and gravel fraction. The latter can be explained as a result of the increasing prevalence and thickness of oxide coatings with increasing particle size, with the oxides serving as collectors for the heavy metals. The distribution of Zn and Cd in most of the samples closely parallels that of Mn; the distribution of Pb is less regular and appears to be related to Fe in some samples and Mn in others. The concentration of metals in the coarse fractions due to oxide coatings, combined with the common occurrence of oxide deposition in streams of glaciated regions, raises the possibility of using coarse materials for geochemical surveys and environmental heavy-metal studies.  相似文献   

13.
Partitioning of heavy metals (Cd, Cr, Cu, Pb, Zn) in marine sediments collected from various sites in Hong Kong waters were determined using sequential extraction method. Sediments from Kellette Bank, located in Victoria Harbour, had higher metal concentrations especially Cu and Zn than most other sites. Slightly over 20% of total Cu and Cr existed as readily available forms in Peng Chau and Kellette Bank. At most sampling sites, over 15% of the Cu existed as the exchangeable form indicating that Cu could be readily released into the aqueous phase from sediments. A significantly higher percentage of Pb and Zn was associated with the three non-residual fractions. Hence, there is a greater environmental concern for remobilization of Pb and Zn compared with Cr. The high amount of residual Cd (>50%) and the relatively lower Cd content indicate that little environmental concern is warranted for the remobilization of Cd. Distribution of metals in sediments collected from different depth at Kellette Bank shows that metal concentrations decreased with profile depth. The levels of Pb and Zn associated with the two readily available fractions increased sharply in the surface sediment. These metals represented the pollutants, which were introduced into the area in the mid-eighties through early nineties as a result of rapid economic and industrial development in the territory. As significant portions of these metals were bound to the readily available phases in the surface sediments, metal remobilization could be a concern. An erratum to this article can be found at  相似文献   

14.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

15.
The distribution, accumulation, and ecological risk of heavy metals (Cu, Cd, Pb, Zn, Ni, Cr, and As) in the surface sediment were investigated in the upper reaches of Hunhe River, Northeast China. Sediment samples from 51 points throughout the upper reaches of Hunhe River were collected and measured for heavy metal concentrations, TN content, and TP content. Results showed that heavy metal concentrations at the vicinity of mines and towns were higher than those at other locations. According to sediment quality guidelines (SQGs), Cd and Zn were enriched in the sediments. The correlation analysis and principal component analysis (PCA) were conducted to assess the heavy metal sources. Close correlations between metal distribution and TP indicated that the sediments may be affected by application of phosphate fertilizer. Elements, Cu, Cd, Pb, Zn, and As, were grouped together, reflecting they were released from the same sources. PCA suggested that their primary sources were anthropogenic, namely mining and extensive use of fertilizers. Therefore, heavy metal pollution due to mining and agricultural intensification in the upper Hunhe River basin should be taken into account during the formation of regional management strategies for the water environment.  相似文献   

16.
Historical profiles of metal accumulation have been generated for the lower St. Johns River and Hillsborough Bay, Florida, in cores representing approximately 50 yr of sediment and metal accumulation. These profiles demonstrate that Cd, Pb, and Zn are enriched in these Florida estuarine sediments. Pb enrichment has decreased since the mid 1970s because of reduced use of leaded gasoline. In the St. Johns River, most metals exhibit a trend of increasing enrichment with time. Cd enrichment significantly decreased between 1970 and 1975 as a result of reduced discharges into the river and control of aquatic vegetation. In Hillsborough Bay, enrichment factors for most metals are relatively high and show little change downcore. Cr, Cu, and Ni border on enrichment and Pb, Cd, and Zn are enriched. The results of this study are consistent with other studies of surficial-sediment metal concentration in other Florida estuaries.  相似文献   

17.
This investigation revealed the presence of traffic-derived metals within road, stream and estuarine sediments collected from a coastal catchment, northern Australia. Studied road sediments displayed variable total metal concentrations (median Cd, Cu, Pb, Pd, Pt, Ni and Zn values: 0.19, 42.6, 67.5, 0.064, 0.104, 36.7 and 698 mg/kg, respectively). The distinctly elevated Zn values are due to abundant tyre rubber shreds (as verified by SEM-EDS and correlation analysis). By comparison to the road sediments, background stream sediments taken upstream from roads have relatively low median Pb, Pd, Pt and Zn concentrations (7.3 mg/kg Pb, 0.01 mg/kg Pd, 0.012 mg/kg Pt, 62 mg/kg Zn). Stream and estuarine sediment samples collected below roads have median values of 21.8 mg/kg Pb, 0.014 mg/kg Pd, 0.021 mg/kg Pt and 71 mg/kg Zn, and exhibit 207Pb/206Pb and 208Pb/206Pb ratios that appear on a mixing line between the isotopically distinct background stream sediments and the road sediments. Thus, mobilisation of dusts and sediments from road surfaces has resulted in relatively elevated Pb, Pd, Pt and Zn concentrations and non-radiogenic Pb isotope ratios in local coastal stream and estuarine sediments. The investigation demonstrates that traffic-derived metals enter coastal stream and estuary sediments at the fringe of the Great Barrier Reef lagoon.  相似文献   

18.
The degree of metal contamination (Zn, Pb, Cu, Ni, Cd) has been investigated in the vicinity of an old unmonitored municipal landfill in Prague, Czech Republic, where the leachate is directly drained into a surface stream. The water chemistry was coupled with investigation of the stream sediment (aqua regia extract, sequential extraction, voltammetry of microparticles) and newly formed products (SEM/EDS, XRD). The MINTEQA2 speciation-solubility calculation showed that the metals (Zn, Pb, Cu, Ni) are mainly present as carbonate complexes in leachate-polluted surface waters. These waters were oversaturated with respect to Fe(III) oxyhydroxides, calcite (CaCO3) and other carbonate phases. Three metal attenuation mechanisms were identified in leachate-polluted surface waters: (i) spontaneous precipitation of metal-bearing calcite exhibiting significant concentrations of trace elements (Fe, Mn, Mg, Sr, Ba, Pb, Zn, Ni); (ii) binding to Fe(III) oxyhydroxides (mainly goethite, FeOOH) (Pb, Zn, Cu, Ni); and (iii) preferential bonding to sediment organic matter (Cu). These processes act as the key scavenging mechanisms and significantly decrease the metal concentrations in leachate-polluted water within 200 m from the direct leachate outflow into the stream. Under the near-neutral conditions governing the sediment/water interface in the landfill environment, metals are strongly bound in the stream sediment and remain relatively immobile.  相似文献   

19.
Ten heavy metals, namely, Ag, As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn were partially extracted using aqua regia digestion method and analysed by ICP-AES from 56 stream sediment samples collected from River Orle, Igarra area, southwestern Nigeria. The analytical results were used to produce geochemical distribution maps for the elements and were subjected to univariate statistical analysis in order to evaluate the distribution and abundance of the heavy metals in the study area. The degree of pollution of these stream sediments by these heavy metals was evaluated by calculating such parameters as enrichment factors (EF), as well as pollution load and geo-accumulation indices (PLI and Igeo). Co, Cr, Cu, Ni, Pb and Zn are widely distributed in the drainage system while the distribution of Ag, Cd, As and Hg is restricted to only parts of the drainage system with Ag and Cd being localized to one sample site each near Epkeshi in the southern part of the study area. Cr and Pb display anomalously high concentrations, each from a site, also in the same locality where Ag and Cd were detected, indicating the likelihood that the four elements, Cr, Pb, Ag and Cd, are genetically related. Calculation of the enrichment factor (EF), pollution load index (PLI) and geo-accumulation index (Igeo) yielded results that indicate that all the 56 stream sediment sites, except one located about 4 km southeast of Epkeshi in the southern part of the Orle drainage system, are practically unpolluted by heavy metals. The relatively high metal concentration of this anomalous site having Pb EF of 62.5, PLI of 1.14 and Pb Igeo of 2.44 signifies Pb pollution. Both natural and anthropogenic sources of the Pb contamination around Epkeshi locality are possible. In conclusion, the levels of concentrations of heavy metals in the study area, in general, do not constitute any serious environmental risk except for Pb which needs to be monitored at only one site in the study area. Therefore the concentration ranges for the different heavy metals in the study area can serve as baseline environmental data against which the degree of pollution of these heavy metals can be evaluated in future.  相似文献   

20.
Total concentrations of 13 elements (K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Rb, Sr, Y, Zr, Pb) in the size-fractionated Sava River sediments upstream and downstream of the Krsko nuclear power plant together with metal speciation within bulk sediment have been investigated. Trace metals generally increase with decreasing particle size, however, because of entrapment of organic matter in the 0.63–1 mm fraction, concentrations in the coarser sediment fraction are higher than expected. Exchangeable Pb, Zn, Cu, Mn, Cr and Fe are generally found to represent a negligible fraction of the total metal concentration of the bulk sediment. Seasonal variations of the Pb, Zn and Cu concentrations in the <0.5 mm fraction reflect decreased values during the spring period. Heavy metal concentrations in the 2003 waste water discharges from the Krsko nuclear power plant released into the Sava River were much lower than their maximum allowed values. Combined rubidium and organic matter normalization of the Zn, Pb and Cu concentrations, which was applied on the minus 0.063 mm fraction, indicated three potential sources of contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号