首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
镍是全球能源低碳转型所需的关键金属之一。近年来受资源保护、地缘政治冲突、突发事件等的影响, 镍供应风险随时可能发生。因此, 了解不同国家供应危机的传播过程和影响强度, 对于贸易国来说非常重要。为了探讨这一问题, 我们使用2020年的数据构建了全球镍矿贸易网络, 并在此基础上建立了级联失效模型。因此, 本文不仅模拟了供应风险在贸易网络中的传播过程, 而且导出了一个雪崩网络用来分析危机传播动力学的结构特征。结果表明: (1)影响供应危机传播过程动力学的一个决定性参数r=7时, 不同国家镍矿供应风险雪崩规模之间的差异性能够良好体现。(2)不同国家发生供应风险时, 出口量最大的国家不一定影响最多的国家。(3)只有菲律宾的供应短缺能引发中国的镍矿供应危机。(4)在级联过程中, 间接链路在风险的传播中起着关键作用。  相似文献   

2.
长白山天池火山地质学研究的若干进展与灾害分析   总被引:11,自引:0,他引:11  
通过以减轻火山灾害为目的的天池火山锥体顶部地区地质填图工作,发现了天池火山锥体附近不同期次火山泥石流,部分火山泥石流显示的高温定位特征指示了其与千年大喷发的成因联系。这些火山泥石流构成了严重的火山泥石流灾害,天池火山锥体近顶部大型滑坡体的发现则指示了天池火山另一种重要的灾害类型。滑坡体堆积物结构上可分为3种类型。天池火山千年大喷发时不同成分与物性的岩浆混合作用十分发育,指示了天池火山喷发前不同岩浆批的混合与共喷发机理。本文还论述了天池火山近代历史记录喷发物的分布与鉴别特征。  相似文献   

3.
Agriculture is critically dependent on continuity of water quality and quantity. It is well-established that even small quantities of volcanic ash can disrupt municipal water supplies, with known impacts to quality including: acidification, increases in turbidity and ionic concentrations. In addition, delivery systems may be blocked or damaged by hard and abrasive suspended ash and related ash-cleanup operations place extra stress on water reserves. The aim of this study was to characterise the key areas of vulnerability of farm water supplies to volcanic ashfall, and to identify management recommendations to reduce these. From literature review and case studies of farms impacted by the 1991 Pinatubo (Philippines) and 1991 Hudson (Chile) eruptions, key issues were: sedimentation of irrigation ditches and drinking water ponds, turbidity induced abrasion of sprinkler nozzles and water pumps, and damage to electric pumps (by ash on air-intakes). Building on this, we characterised the water-use regimes and water supply system vulnerability of eight case-study farms from across the North Island, New Zealand. From this, we propose an index system to evaluate the vulnerability of farm water supply systems. The key contributors to the vulnerability index include: water source, storage capacity, reliance on electricity, independence/interconnectedness of system elements, volume of water use and other load factors. These allow identification of key strategies for mitigating water supply vulnerability during prevention, preparation, response and recovery phases of a volcanic eruption.  相似文献   

4.
Merapi is Indonesia's most dangerous volcano with a history of deadly eruptions. Over the past two centuries, the volcanic activity has been dominated by prolonged periods of lava dome growth and intermittent gravitational or explosive dome failures to produce pyroclastic flows every few years. Explosive eruptions, such as in 2010, have occurred occasionally during this period, but were more common in pre‐historical time, during which a collapse of the western sector of the volcano occurred at least once. Variations in magma supply from depth, magma ascent rates and the degassing behaviour during ascent are thought to be important factors that control whether Merapi erupts effusively or explosively. A combination of sub‐surface processes operating at relatively shallow depth inside the volcano, including complex conduit processes and the release of carbon dioxide into the magmatic system through assimilation of carbonate crustal rocks, may result in unpredictable explosive behaviour during periods of dome growth. Pyroclastic flows generated by gravitational or explosive lava dome collapses and subsequent lahars remain the most likely immediate hazards near the volcano, although the possibility of more violent eruptions that affect areas farther away from the volcano cannot be fully discounted. In order to improve hazard assessment during future volcanic crises at Merapi, we consider it crucial to improve our understanding of the processes operating in the volcano's plumbing system and their surface manifestations, to generate accurate hazard zonation maps that make use of numerical mass flow models on a realistic digital terrain model, and to utilize probabilistic information on eruption recurrence and inundation areas.  相似文献   

5.
Throughout most of its geological evolution Etna has been characterized by the eruption of lava flows of a predominantly hawaiitic composition, but within the stratigraphical record there are four major sequences of pyroclastic materials: the Acireale tephra and lahars (˜100000 B.P.); the ‘lower tephra’ and Milo lahars (both ˜26000 B.P.); the Biancavilla ignimbrites (15–15500 B.P.) and the ‘upper tephra’ (˜5000–6000 B.P.). This paper reports investigations carried out on these deposits in order to determine their stratigraphy, petrology, sedimentology, and likely origins. Whereas the Biancavilla ignimbrites were generated when a more evolved, gas-charged magma (benmoreite) was being produced by the volcano, the other suites of pyroclastic deposits were erupted from hawaiitic magmas—similar to those that have characterized the volcano during historical times. These deposits resulted from two processes: violent strombolian activity producing lapilli-rich. coarse, but well-sorted sediments, and hydrovolcanism when the mixing of water and magma in the conduit, brought about more violently explosive activity, giving rise to highly fragmented, poorly sorted, airfall tephra and lahars. Conditions favouring hydrovolcanism occurred at times in the volcano's history when palaeoenvironment and palaeogeography were conducive to the retention of large amounts of surface and subsurface water. Although climates favouring the retention of water at high levels on the volcano have occurred on many occasions in the history of the volcano, at ˜26.000 and ˜5000-6000 B.P. these occurred in conjunction with a construct of sufficient height and suitable configuration to allow storage of water and give rise to hydrovolcanic activity. The nature of the mechanisms responsible for the emplacement of these hydrovolcanic deposits is considered and it is concluded that airfall is the most probable process. Finally, the implications of this research for the assessment of hazard are reviewed.  相似文献   

6.

Following the 2010 VEI 4 eruption of Merapi volcano, more than 250 lahars were triggered during two rainy seasons from October 2010 to March 2012. This high number of post-eruption lahars mainly occurred in the Kali (valley) Putih watershed and was mostly associated with high-magnitude rainstorms. A lahar occurring on January 8, 2011, caused significant damage to homes in several communities, bridges, sabo dams, and agricultural crops. The aims of this contribution are to document the impacts of lahars on the Kali Putih watershed and specifically (1) to analyze the lahar frequency during the period of 1969–2012 on an inter-annual and intra-annual basis and to determine the link between the volume of tephra and the frequency of lahars; (2) to detail the lahar trajectory and channel evolution following the January 8th lahar; (3) to map the spatial distribution of the thickness and geomorphic effects of the lahar deposit; and (4) to determine the impacts of the lahar on the infrastructure (sabo dams and roads) and settlements in the distal area of the volcano. The Kali Putih watershed has experienced 62 lahars, which represent 22% of all lahars triggered on 17 rivers at Merapi between 2010 and 2012. The main geomorphic impacts are: (1) excessive sedimentation in valleys, settlements and agricultural areas; (2) undercutting of the river banks by as much as 50 m, accompanied by channel widening; and (3) abrupt changes in the river channel direction in the distal area (15–20 km downstream of the volcano). About 19 sabo dams were damaged, and 3 were totally destroyed. Over 307 houses were damaged, and the National Road Yogyakarta–Semarang was regularly cut (18 times during approximately 25 days). Although the sabo dams on Kali Putih were originally constructed to protect distal areas from lahar damage, they had little effect on the 2010–2012 rain-triggered lahars. The underlying design of those dams along this river is one of the main reasons for the major destruction in this sector of the volcano’s lower slope. The catch basin capacity of the sabo dam was only 1.75?×?106 m3, whereas the total volume of the 2010–2011 lahars exceeded 5?×?106 m3. In order to prepare for future lahars, the government has invested in significant mitigation measures, ranging from structural approaches (e.g., building new sabo dams and developing an early warning system) to non-structural approaches (e.g., contingency and preparedness planning and hazard education).

  相似文献   

7.
Potential Hazards of Eruptions around the Tianchi Caldera Lake, China   总被引:8,自引:0,他引:8  
Since the eruption of the Tianchi volcano about 1000 years ago, there have been at least 3 to 5 eruptions of small to moderate size. In addition, hazardous avalanches, rock falls and debris flows have occurred during periods between eruptions. A future eruption of the Tianchi volcano is likely to involve explosive interaction between magma and the caldera lake. The volume of erupted magma is almost in a range of 0.1-0.5 km3. Tephra fallout may damage agriculture in a large area near the volcano. If only 1% of the lake water were ejected during an eruption and then precipitated over an area of 200 km2, the average rainfall would be 100 mm. Moreover, lahars are likely to occur as both tephra and water ejected from the caldera lake fall onto flanks of the volcano. Rocks avalanching into the caldera lake also would bring about grave hazards because seiches would be triggered and lake water with the volume equal to that of the landslide would spill out of the existing breach in the caldera and cause flooding  相似文献   

8.
GIS and Volcanic Risk Management   总被引:7,自引:0,他引:7  
Pareschi  M. T.  Cavarra  L.  Favalli  M.  Giannini  F.  Meriggi  A. 《Natural Hazards》2000,21(2-3):361-379
Volcanic catastrophes constitute a majorproblem in many developing and developed countries. Inrecent years population growth and the expansion ofsettlements and basic supply lines (e.g., water, gas,etc.) have greatly increased the impact of volcanicdisasters. Correct land-use planning is fundamental inminimising both loss of life and damage to property.In this contribution Geographical Information Systems(GIS), linked with remote sensing technology andtelecommunications/warning systems, have emerged asone of the most promising tools to support thedecision-making process. Some GIS are presented fortwo volcanic areas in Italy, Mt. Etna and Vesuvius.GIS role in risk management is then discussed, keepingin mind the different volcanic scenarios of effusiveand explosive phenomena. Mt. Etna system covers alarge area (more than 1,000 km2) potentiallyaffected by effusive phenomena (lava flows) whichcause damage to both houses and properties in general.No risk to life is expected. The time-scales of lavaflows allow, at least in principle, modification ofthe lava path by the building of artificial barriers.Vesuvius shows typically an explosive behaviour. Inthe case of a medium size explosive eruption, 600,000people would potentially have to be evacuated from anarea of about 200 km2 around the Volcano, sincethey are exposed to ruinous, very fast phenomena likepyroclastic surges and flows, lahars, ash fallout,etc. Ash fallout and floods/lahars are also expectedin distal areas, between Vesuvius and Avellino,downwind of the volcano. GIS include digital elevationmodels, satellite images, volcanic hazard maps andvector data on natural and artificial features (energysupply lines, strategic buildings, roads, railways,etc.). The nature and the level of detail in the twodata bases are different, on the basis of thedifferent expected volcanic phenomena. The GIS havebeen planned: (a) for volcanic risk mitigation (hazard,value, vulnerability and risk map assessing), (b) toprovide suitable tools during an impending crisis, (c)to provide a basis for emergency plans.  相似文献   

9.
《Applied Geochemistry》1995,10(2):215-227
Some experiences obtained in Mexico pursuing the identification of geochemical precursors and changes associated to different kinds of volcanic activity are discussed. Three recent events of volcanic unrest are described in the context of an active geological environment. The identification of some geochemical precursors helped to evaluate the eruptive potential during two volcanic crises (Tacana´, 1986; Colima, 1991). The significant compositional fluctuations observed after a volcanic catastrophic eruption (El Chichon, 1982) are also discussed. It is concluded that even simple geochemical methods may provide a useful tool for the evaluation of the level of activity and the recognition of some eruption precursors.  相似文献   

10.
This paper demonstrates techniques for pre-eruption prediction of lahar-inundation zones in areas where a volcano has not erupted within living memory and/or where baseline geological information about past lahars could be scarce or investigations to delimit past lahars might be incomplete. A lahar source (or proximal lahar-inundation) zone is predicted based on ratio of vertical descent to horizontal run-out of eruptive deposits that spawn lahars. Immediate post-eruption distal lahar-inundation zones are predicted based on “pre-eruption” distal lahar-inundation zones and on spatial factors derived from a digital elevation model. Susceptibility to distal lahar-inundation is estimated by weights-of-evidence, by logistic regression and by evidential belief functions. Predictive techniques are applied using a geographic information system and are tested in western part of Pinatubo volcano (Philippines). Predictive maps are compared with a forecast volcanic-hazard map through validation against a field-based volcanic-hazard map. The predictive model of proximal lahar-inundation zone has “true positive” prediction accuracy, “true negative” prediction accuracy, “false positive” prediction error and “false negative” prediction error that are similar to those of the forecast volcanic-hazard map. The predictive models of distal lahar inundation zones have higher “true positive” prediction accuracy and lower “false negative” prediction error than the forecast volcanic-hazard map, although the latter has higher “true negative” prediction accuracy and lower “false positive” prediction error than the former. The results illustrate utility of proposed predictive techniques in providing geo-information could be used, howbeit with caution, for planning to mitigate potential lahar hazards well ahead of an eruption that could generate substantial source materials for lahar formation.  相似文献   

11.
Eruption records in the terrestrial stratigraphy are often incomplete due to erosion after tephra deposition, limited exposure and lack of precise dating owing to discontinuity of strata. A lake system and sequence adjacent to active volcanoes can record various volcanic events such as explosive eruptions and subaqueous density flows being extensions of eruption triggered and secondary triggered lahars. A lacustrine environment can constrain precise ages of such events because of constant and continuous background sedimentation. A total of 71 subaqueous density flow deposits in a 28 m long core from Lake Inawashiro‐ko reveals missing terrestrial volcanic activity at Adatara and Bandai volcanoes during the past 50 kyr. Sedimentary facies, colour, grain size, petrography, clay mineralogy, micro X‐ray fluorescence analysis and chemistry of included glass shards characterize the flow event deposits and clarify their origin: (i) clay‐rich grey hyperpycnites, extended from subaerial cohesive lahars at Adatara volcano, with sulphide/sulphate minerals and high sulphur content which point to a source from hydrothermally altered material ejected by phreatic eruptions; and (ii) clay‐rich brown density flow deposits, induced by magmatic hydrothermal eruptions and associated edifice collapse at Bandai volcano, with the common presence of fresh juvenile glass shards and low‐grade hydrothermally altered minerals; whereas (iii) non‐volcanic turbidites are limited to the oldest large slope failure and the 2011 Tohoku‐oki earthquake events. The high‐resolution chronology of volcanic activity during the last 50 kyr expressed by lacustrine event deposits shows that phreatic eruption frequency at Adatara has roughly tripled and explosive eruptions at Bandai have increased by ca 50%. These results challenge hikers, ski‐fields and downstream communities to re‐evaluate the increased volcanic risks from more frequent eruptions and far‐reaching lahars, and demonstrate the utility of lahar and lacustrine volcanic density flow deposits to unravel missing terrestrial eruption records, otherwise the recurrence rate may be underestimated at many volcanoes.  相似文献   

12.
Mount Pinatubo in the Philippines, known for its cataclysmic eruption in 1991, hosts several porphyry copper deposits and active geothermal systems. An underlying mafic melt supplied much of the sulphur for the dacitic magma and its injection into the dacitic magma chamber triggered the eruption. The eruption caused purging of the sulphur-rich fluid from the dacite to the atmosphere and extensive fracturing. Similar events took place at Bingham Canyon, Utah, site of the largest copper and gold deposit in North America at 38 Ma. The Bingham Canyon mineralization took place beneath an active stratovolcano and pyroclastic flows contemporaneous with the mineralization show evidence for magma mingling. Ascent of mafic melt supplied sulphur and chalcophile elements to the felsic magma, which consolidated to form the Bingham stock and its underlying magma chamber. Injections of the mafic melt caused periodic eruptions of felsic magma to form the stratovolcano and deposition of sulphide minerals in highly fractured rocks in and around the stock.  相似文献   

13.
Recent volcanic eruptions at Mt. Unzen (Japan) in 1990 and Mt. Pinatubo (Philippines) in 1991 produced voluminous amounts of ash and sediments which inundated widespread areas. In later rehabilitation and reconstruction, it is practical and economical to use these freshly deposited sediments as materials for foundations and embankments. However, the geotechnical properties of young volcanic products have not been fully investigated. Accordingly, we investigated the geotechnical characteristics of volcanic soils associated with three recent eruptions, namely, the Unzen and Izu-Oshima eruptions of 1990 and 1986, respectively, in Japan and the Pinatubo eruption of 1991 in the Philippines. We specifically investigated index properties, permeability and compaction characteristics, and strength and deformation behavior in drained conditions. Additionally, we examined the dynamic properties and liquefaction characteristics of samples taken from Mt. Pinatubo. The results showed that the geotechnical characteristics of the deposits generally varied with the sampling sites. Depending on the location, either upstream or downstream from a volcano, the preferential sizing due to alluvial deposition affects engineering properties of the deposits. For example, volcanic sediments upstream from Mt. Pinatubo have high compressibility and low cyclic strength, whereas those taken downstream show dilative tendencies and high liquefaction strength.  相似文献   

14.
Earthquakes, ground deformation, and increased geothermal activity at Long Valley caldera after mid-1980 suggest the possibility of a volcanic eruption in the near future. An eruption there could have serious consequences for the City of Los Angeles, depending on the magnitude and volume of material ejected because surface water in Mono Basin plus surface and groundwater in Owens Valley accounts for about 80 percent of its water supply. Eruptions of moderate to very large magnitude could impede the supply of water from this area for several days, weeks, or even years by discharging small to large volumes of volcanic ash and causing lahars. Soon after an eruption, water quality would likely be affected by the accumulation of organic debris and microorganisms in surface waters.  相似文献   

15.
Volcanic ash forecast during the June 2011 Cordón Caulle eruption   总被引:1,自引:0,他引:1  
We modelled the transport and deposition of ash from the June 2011 eruption from Cordón Caulle volcanic complex, Chile. The modelling strategy, currently under development at the Argentinean Naval Hydrographic Service and National Meteorological Service, couples the weather research and forecasting (WRF/ARW) meteorological model with the FALL3D ash dispersal model. The strategy uses volcanological inputs inferred from satellite imagery, eruption reports and preliminary grain-size data obtained during the first days of the eruption from an Argentinean ash sample collection network. In this sense, the results shown here can be regarded as a quasi-syn-eruptive forecast for the first 16 days of the eruption. Although this article describes the modelling process in the aftermath of the crisis, the strategy was implemented from the beginning of the eruption, and results were made available to the Buenos Aires Volcanic Ash Advisory Centers and other end users. The model predicts ash cloud trajectories, concentration of ash at relevant flight levels, expected deposit thickness and ash accumulation rates at relevant localities. Here, we validate the modelling strategy by comparing results with satellite retrievals and syn-eruptive ground deposit measurements. Results highlight the goodness of the combined WRF/ARW-FALL3D forecasting system and point out the usefulness of coupling both models for short-term forecast of volcanic ash clouds.  相似文献   

16.
The incorporation of a set ofcomputer-based tools, such as Geographical InformationSystems and physical models, to the field of riskassessment, introduces a new perspective in thevolcanic risk maps production, increasing the analysisand modelling capabilities available through theapplication of conventional methodologies. Amethodology adapted to the requirements andcharacteristics of the new operating environment hasbeen applied at Tenerife island (Canary Islands,Spain) to carry out a study devoted to analyse thesuitability of these tools for near real-timemanagement of volcanic crises. With this in mind, aseries of potential eruption scenarios have beenselected to identify and characterise which elementsat risk would prove most vulnerable against a specificvolcanic phenomenon, depending on the socio-economiccharacteristics of the area affected and the resultingdistribution of the volcanic products. This kind ofinformation is fundamental to update, adapt or produceeffective risk management and emergency plans orprotocols, where the measures to mitigate or fightagainst a specific volcanic disaster have to be taken,incorporating the existing knowledge of the phenomenonbehaviour and taking into account their potentialeffects on the area of interest.  相似文献   

17.
Nevado de Toluca Volcano (NTV), located in central Mexico, is a large stratovolcano, with an explosive history. The area is one of the most important developing centers (>2 millions) in Mexico and in the last 30 yrs large population growth and expansion have increased the potential risk in case of a reactivation of the volcano. As part of a study to assess volcanic risk, this paper presents the results of the volcanic hazard analysis for the NTV. A total of 150 stratigraphic sections were made in the field and three new ages were obtained. Eruptions from NTV produced a complex sequence of pyroclastic deposits that have affected the area at least 18 times during the last 100,000 yrs. Eight vulcanian, four plinian and one-ultraplinian eruptions as well as the destruction of at least three domes occurred in the last 42,000 yr BP as well as two sector collapses in the last 100,000 yrs. Isopach and isopleth maps for the main ulraplinian eruption were also made. The original cone height (5,080 m.a.s.l) was reconstructed through geomorphologic methods. The maximum distance calculated with the energy line for the block and ash flows was 41 km, 35 km for pumice flows and 45 km for debris avalanches. The dominant wind direction at altitudes of 20–30 km is to the east-northeast from November to March, west-northwest in April and west from May to October. Five hazards maps (block and ash flows, pumice flows, ash fall, debris avalanches, and lahars) were made for the NTV. The pyroclastic flows and lahars represent very high to medium hazard for Toluca, Villa Guerrero, Coatepec, Tianguistengo, Metepec, Tenango, Lerma and Zinacantepec. A new debris avalanche would probably affect the south and northeast because of active faulting (E–W and NW–SE) and existing topographic differences in height.  相似文献   

18.
Since the implementation of the Quadripartite Agreement in June 1972, Berlin has entered a new phase in East-West relations. Once a city of perpetual crisis, it has now become accustomed to the pleasant effects of détente. Through the establishment of many practical improvements, the life of Berliners has become easier and the city has been defused of much of its explosive potential. Nevertheless, if Berlin no longer appears to serve as a major flash point of international tension, serious unresolved problems remain. It is the point of this investigation to examine the most important areas of conflict, showing what trends have developed and what actions and counteractions can be expected in the future. The major underlying hypothesis of this study is that one may be skeptical of any conclusion that we have seen the last of the “Berlin crises”.  相似文献   

19.
Volcanic eruptions can significantly cool the global troposphere on the time scales from several months up to a decade due to reflection of solar radiation by sulfate aerosols and feedback mechanisms in the climate system. The impact of volcanic eruptions on global climate are discussed in many studies. However, few studies have been done on the impact of volcanic eruption on climate change in China in the past millennium. The 1300-year and 600-year temperature series were reconstructed based on the six tree-ring temperature proxy data in northeastern and southeastern Tibetan Plateau, respectively. Three warm periods occurred in 670-920,1000-1310 and 1590-1930, and three cold periods happened at 920-1000,1310-1590 and 1930-2000 in the northeastern Tibetan Plateau. There were two obviously warm periods (1385-1450 and 1570-1820) and two cold periods (1450-1570 and 1820-2000) in southeastern Tibetan Plateau. Contrasting with volcanic eruption chronology, we analyzed the relationship between volcanic activity and temperature variation in the eastern Tibetan plateau during the past millennium using Superposed Epoch Analysis (SEA) method. The results indicated that the temperature decreased one year after large volcanic eruptions located beteen 10°S and 10°N in latitude in northeastern Tibetan Plateau and two years in southeastern Tibetan Plateau. The volcanic eruptions occurred at different latitudes have different impacts on the temperature variations, which may be caused by regional difference, the nature of the eruption, the magnitude of the resulting change in incoming solar radiation, prevailing background climate and internal variability, season, latitude, and other considerations.  相似文献   

20.
Aguilera  E.  Pareschi  M. T.  Rosi  M.  Zanchetta  G. 《Natural Hazards》2004,33(2):161-189
Cotopaxi volcano (Ecuador) is famous for production of large-scale laharsthrough melting of ice and snow on its summit glacier. The lahar hazard inthe northern valleys of the volcano is assessed through numerical simulationof a maximum expected event. Considerations of past activity suggest that anevent like that of the 1877 eruption is the maximum expected lahar event.Review of the historical records reveals that northerly flowing lahars initiallyfollowed the Rio Pita and Rio Salto; at ``La Caldera', owing to a sharp bendin the channel, the lahar partly overflowed into Rio Santa Clara. The laharsalong Rio Pita and Rio Santa Clara were conveyed to the Los Chillos valley.The simulation, using an initial flow volume of 60 × 106 m3reproduces the maximum heights reached by the 1877 lahar along the northernvalley. The volume of lahar triggered by an eruption similar to that of 1877 isestimated to have a volume about 2/3 of that of 1877. This hypothesized reductionof volume is attributed to shrinkage of the summit glacier over the past century.However, dramatic population growth along valleys exposed to lahar hazard overthe past 100 years makes the present risk from lahars higher than in the past. Thesharp bend of ``La Caldera' represents a crucial site controlling lahar propagation:should a lahar overflow into the Santa Clara valley the risk increases considerablydue to the much higher concentration of human settlements along the valley. Resultsof a lahar simulation in which the entire flow is artificially forced into Rio Pita suggestthat construction of a dyke at ``La Caldera' to prevent overflow would substantiallyreduce the general risk in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号