首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There exists an E-W trending Middle Jurassic volcanic zone in southern China. The Fankeng basalts in the Yongding basin of Fujian Province are considered to be a typical example. The Fankeng basalts have TiO2 contents in the range of 1.92%-3.21%. They are classified as high-Ti basalts. They also have higher total Fe (averaging FeO* = 11.09%). The Middle Jurassic Fankeng basalts from southwestern Fujian have obvious distinctive lithogeochemical features from early Cre- taceous basalts from southeastern coast of China. They have higher HFSE, such as Th, Nb, Ta, Zr and Ti. Their element ratios related with HFSE, such as Zr/Ba, La/Nb, La/Ta ,Zr/Y, Ti/Y, Ba/Nb, K/Ti and Rb/Zr are similar to those of OIB. The most samples have ε Nd(T) of-0.70-0.24, which are near chondrite. Some samples have higher ε Nd(T) of 1.87-3.55.Therefore, these basaltic magmas might be derived from depleted asthenospheric mantle. The lithogeochemical characteristics of the Fankeng basalts may be caused by interaction between asthenosphere and lithosphere at the time. The (Early-) Middle Jurassic basalts and gabbros from southeastern Hunan, southern Jiangxi and northern Guangdong provinces show similar geochemical features to those of the Fankeng basalts from the Yongding of Fujian. Occurrence of these OIB-type basalts in the area may be regarded as the petrological mark of upwelling of asthenosphere at the time. Upwelling of asthenosphere has led to tectonic extension and the formation of rifted basin in the area.  相似文献   

2.
Helium (He) and Argon (Ar) isotopic compositions of the Tertiary basic igneous rocks were determined by the high temperature melting extraction method. The selected samples for the studies included al-kaline basalts and diabases from the Jiyang basin,and the surrounding Shanwang and Qixia outcrops in the Shandong Peninsula,eastern China. The results show that the Paleogene basalts and diabases from the Jiyang basin yielded a wide range of P4 PHe abundance of (73.70-804.16)×10 P-8 Pcm P3 P STP·g P-1 P,with P3 PHe/ P4 PHe ratios of 0.374-2.959 Ra,which was lower than the MORB but evidently higher than the con-tinental crust value. The Neogene alkaline basalts from the Jiyang basin,Shanwang and Qixia outcrops have variable P4 PHe abundances ((42.34-286.72)×10-8 Pcm P3 P STP·g-1 P),and "continental crust-like" P3 PHe/ P4 PHe ratios (0.013-0.074 Ra). All of them contain atmospheric-like P40 PAr/ P36 PAr ratio (395.4-1312.7),reflecting the mantle sources with air components. Their low P3 PHe/ P4 PHe ratios are interpreted as the enrichment of the radiogenic P4 PHe mainly inherited from the mantle. He and Ar systematics show the mixing of MORB-type,air and a P4 PHe enriched member in the mantle source,suggesting that these igneous rocks originated from the depleted asthenospheric mantle mixed with an EMI component. Therefore,the present He and Ar isotopes do not support the viewpoints that the Cenozoic igneous rocks of Eastern North China were the products of mantle plume(s) activities.  相似文献   

3.
Santanghu area in northeastern Xinjiang region of Northwest China is an important component of the Central Asian Orogenic Belt(CAOB), in which the dynamic mechanism of Permian magmatism is controversial. In Santanghu area is exposed a thick succession of the Middle Permian basalts, including a small amount of picritic basalts and andesites, known as the Tiaohu Formation. The picritic basalts contain cumulate olivine, and have whole-rock Mg# up to 0.68–0.77; the basalts exhibit porphyritic or doleritic textures, and have relatively low Mg# of 0.41–0.54, typical of evolved magmas. The mafic-ultramafic rocks of the Tiaohu Formation are slightly enriched in Light Rare Earth Elements(LREEs), and exhibit negative Nb and Ti anomalies. They also have high Ti O2 content, and Nb/Y and Zr/Yb ratios greater than those of island arc volcanic rocks. Relatively low initial Sr isotopic ratios and high positive εNd(t) and εHf(t) values argue against contamination by ancient continental crust, and suggest formation of the Tiaohu Formation by partial melting of relatively refractory depleted lithospheric mantle that underwent metasomatism and extraction by fluid from the subducted slab. In addition, up to 38% olivine in picritic basalts indicates high-degree partial melting of lithospheric mantle, and the underlying Lucaogou Formation contains fragments of ultra-alkaline magmatic rocks that originated in the deep mantle. These observations imply wide-spread underplating in Santanghu area, which may have been associated with a mantle plume.  相似文献   

4.
It is well known that the destruction of the North China Carton(NCC) is closely related to subduction of the PaleoPacific slab, but materials recording such subduction has not been identified at the peak time of decratonization. This paper presents data of whole-rock major and trace elements and Sr-Nd-Hf isotopes and zircon U-Pb ages and Hf-O isotopes for Mesozoic volcanic rocks from the Liaodong-Jinan region in the northeastern NCC, in order to trace the subduction-related materials in their source and origin. The Mesozoic volcanic rocks in the Liaodong-Jinan region are mainly composed of two series of rocks, including alkaline basaltic trachyandesite, trachyandesite and trachyte, and subalkaline trachyandesite and andesite. Zircon U-Pb dating yields eruption ages of 129–124 Ma for these rocks. The Early Cretaceous volcanic rocks are all enriched in LILEs(such as Rb, Sr, Ba and Th) and LREEs, depleted in HFSEs(such as Nb, Ta and Ti), indicating that they were originated from mantle sources that had been modified by subducted crustal materials. However, they have relatively heterogeneous and variable isotopic compositions. The alkaline basaltic trachyandesite, trachyandesite and trachyte have enriched whole-rock Sr-Nd-Hf and zircon Hf isotopic compositions and mantle-like δ~(18)O values, suggesting that they were derived from low-degree partial melting of an isotopically enriched lithospheric mantle source. In contrast, the subalkaline trachyandesite and andesite have relatively depleted isotopic compositions with zircon ε_(Hf)(t) values up to +5.2 and heavy zircon O isotopic compositions with δ~(18)O values of +8.1‰ to +9.0‰, indicating that they were originated from a lithospheric mantle source that had been metasomatized by melts/fluids derived from the recycled low-T altered oceanic basalt. All of these geochemical features suggest that the Early Cretaceous volcanic rocks in the Liaodong-Jinan region would result from mixing of mafic magmas with different compositions. Such magmas were originated from the enriched lithospheric mantle and the young metasomatized mantle, respectively, with variable extents of enrichment and depletion in trace elements, radiogenic isotopes and O isotopes. Importantly, the identification of the low-T altered oceanic crust component in the origin of Early Cretaceous volcanic rocks by the zircon Hf-O isotopes provides affirmative isotopic evidence and direct material records for Mesozoic subduction of the Paleo-Pacific slab that induced decratonization of the North China Craton.  相似文献   

5.
The high-Mg mafic dykes from the Singhbhum Granitoid Complex in East India have geochemical characteristics[e.g.,enrichment of the large ion lithophile elements and light rare earth elements(LREEs) relative to high field strength elements(HFSEs):high-MgO(8%),high-SiO_2(52%),low-TiO_2(0.5%),and high CaO/Al_2O_3(0.58)]similar to those found in boninitic/noritic rocks.Their high percentage of orthopyroxene as a mafic mineral and of plagioclase as a felsic mineral,and normative hypersthene content greater than diopside content are also indications of their boninitic/noritic affinity.On a triangular diagram of MgO-CaO-Al_2O_3 and on binary diagrams of Ti/V vs Ti/Sc and TiO_2 vs Zr,these samples show geochemical similarities with Phanerozoic boninites and Paleoproterozoic high-Mg norites.On major and trace element variation diagrams,these dykes show a normal crystallization trend and their Nb/La(0.5) and Nb/Ce(0.21) values lower than average bulk crust(0.69 and0.33,respectively) suggest no crustal contamination.Their low values of Rb/Sr(0.11-0.41) and Rb/Ba(0.10-0.27)also suggest little or no effect of post magmatic processes.Their TiO_2(0.27-0.50),Al_2O_3/TiO_2(19.30-42.48),CaO/TiO_2(12.96-32.52),and Ti/V(12-18) values indicate derivation from a depleted mantle source under oxidizing conditions such as a mantle wedge.Ni vs Zr modeling shows that the studied high-Mg dykes were generated by25-30%melting of a refractory mantle source.Enrichment of Rb,Th,U,Pb,Sr,and LREEs,and depletion of HFSEs—especially Nb,P,Ti,Zr—on primitive mantle—and chondrite-normalized spider diagrams,respectively,are clear signals that the slab-derived component played an important role in the formation of melts for these rocks in a supra-subduction zone setting.  相似文献   

6.
Calculation of repeated observation data at the densified GPS monitoring network in northeastern area of Pamir together with data from IGS stations in the peribphyery of the area yielded the movement rate of more than 40GPS station sites in the area,and,hence,the recent crustal deformation rate pattern and time series of fiductial GPS stations in the area were obtained.The result indicates that the principal movement direction of the GPS station sites is NNW,basically diagonal to the strike of Tianshan fold belt,i.e.a normal compression occurs in the Tianshan region.The movement pattern near Jiashi and its southwestern zone is some different from that of station sites in their surrounding areas,indicating a certain relation of tectonic deformation in Jiashi area to seismic activity during last years.The movement rate of station sites in the periphery of Taim basin less varies and its direction is basically consistent It indicates less or basically no deformation within Tarim basin.  相似文献   

7.
The mafic volcanic association is made up of OIB, E-MORB and N-MORB in the A'nyemaqen Paleozoic ophiolites. Compared with the same type rocks in the world, the mafic rocks generally display lower Nb/U and Ce/Pb ratios and some have Nb depletion and Pb enrichment. The OIB are LREE-enriched with (La/Yb)N =5―20, N-MORB are LREE-depleted with (La/Yb)N = 0.41―0.5. The OIB are featured by incompatible element enrichment and the N-MORB are obviously depleted with some metasomatic ef- fect, and E-MORB are geochemically intermediated. These rocks are distributed around the Majixue- shan OIB and gabbros in a thickness greater than a thousand meters and transitionally change along the ophiolite extension in a west-east direction, showing a symmetric distribution pattern as centered by the Majixueshan OIB, that is, from N-MORB, OIB and E-MORB association in the Dur'ngoi area to OIB in the Majixueshan area and then to N-MORB, OIB and E-MORB assemblage again in the Buqing- shan area. By consideration of the rock association, the rock spatial distribution and the thickness of the mafic rocks in the Majixueshan, coupled with the metasomatic relationship between the OIB and MORB sources, it can be argued that the Majixueshan probably corresponds to an ancient hotspot or an ocean island formed by mantle plume on the A'nyemaqeh ocean ridge, that is the ridge-centered hotspot, tectonically similar to the present-day Iceland hotspot.  相似文献   

8.
The Mugouriwang Cenozoic volcanic rocks exposed in the north Qiangtang Block of Tibetan Plateau are mainly composed of basalt and andesitic-basalt,both characterized by the lower SiO2 (51%―54%),high refractory elements (i.e. Mg,Cr,Ni) as well as the moderate enrichment in light rare earth elements (LREE) relative to a slight depleted in Eu and high strength field elements (HFSE,i.e. Nb,Ta,Ti). Be-sides,the fairly low Sm/Yb value (3.07―4.35) could signify that the rocks should be derived directly from partial melting of the spinel lherzolite at the upper part of the asthenosphere. These rocks have radiogenic Sr and Pb (87Sr/86Sr = 0.705339 to 0.705667; 208Pb/204Pb = 38.8192 to 38.8937; 207Pb/204Pb = 15.6093 to 15.6245; 206Pb/204Pb = 18.6246 to 18.6383),and non-radiogenic Nd (143Nd/144Nd = 0.512604 to 0.512639; εNd = 0.02 to -0.66) in agreement with those values of the BSE mantle reservoir. The DUPAL anomaly of the rocks can be evidently attested by the △8/4Pb = 66.82 to 74.53 ,△7/4Pb = 9.88 to 11.42,△Sr>50,implying that the Mugouriwang volcanic rock is likely to be generated by partial melting of a Gondwana-bearing asthenospheric mantle ever matasomatised by the fluid from subduction zone. Depending on the previous study on the high-K calc-alkaline intermediate-felsic volcanics in the study area,this paper proposed that the fluids derived from the subducted Lhasa Block metasomatised the asthenosphere beneath the Qiangtang Block,and induced its partial melting,and then the melt under-plated the thickened Qiangtang lithosphere and caused the generation of the Cenozoic adakite-like felsic magmas in the Qiangtang region.  相似文献   

9.
The Shazi deposit is a large-scale anatase deposit in Qinglong, Guizhou Province. Zircon grains from this deposit yielded a zircon U–Pb age of *259 Ma, representing the formation age of the deposit's parent rocks.This age is identical to the eruption age of the Emeishan large igneous province, indicating a synchronous magmatic event. The rare-earth-element patterns of laterite samples were similar to those of the weathered basalt sample, and sub-parallel to those of the Emeishan high-Ti basalts,implying a genetic relationship between the laterite and the basalt. The Chemical Index of Alteration values of laterite ranged from 96 to 98, suggesting a high degree of weathering. SiO_2, MgO, and alkaline metal elements decreased with increasing degree of weathering, while Al_2O_3, Fe_2O_3,and TiO_2 increased. We found the highest TiO_2 in laterite and the lowest in pillow basalts, indicating that Ti migrated from basalt to laterite.Our U–Pb dating and whole-rock elemental geochemistry analyses suggest that the Emeishan basalt is the parent rock of the Shazi anatase ore deposit.Based on our analysis, we propose a metallogenic model to explain the ore-forming process, in which the karst terrain formed by the Emeishan mantle plume and the subsequent basaltic magma eruption were the key factors in the formation the Shazi anatase ore deposit.  相似文献   

10.
In this study, from the travel time data recorded in the Tianshan passive seismic array experiment, we present the P-wave velocity structure of the upper mantle down to 660 km along the Kuqa-Kuitun pro-file in terms of seismic tomography technique. Based on the P-wave velocity model, we derive the corresponding 2D upper mantle density model. The 2D small-scale convection of the upper mantle underneath the Tianshan Mountains in China driven by the density anomalies is simulated using the hybrid finite element method combining with the marker-in-cell technique. The main features of the upper mantle convection and the reciprocation between the convection and mountain building are in-vestigated. The results manifest that (1) in the upper mantle underneath the Junggar basin and North Tianshan exists a counterclockwise convection, which scale is ~ 500 km; (2) underneath the Tarim ba-sin and South Tianshan exists a clockwise northward convection, which is relatively weak; (3) the convective velocity at the top of the upper mantle underneath the Tianshan Mountains in China should not be less than 20 mm/a, while considering the dependent of convective velocity on the viscosity; (4) the northward extrusion of the Tarim block plays a key role in the Cenozoic Tianshan mountain building and the present-day tectonic deformation of the Tianshan range is related closely to the upper mantle convection; and (5) the northward subduction of the Tarim block does not influence obviously the up-per mantle convection.  相似文献   

11.
Chronology and geochemistry of the Shangyu gabbro-diorite in western Shandong were studied to understand their petrogenesis and the nature of the Mesozoic lithospheric mantle. The Shangyu intru-sion is mainly composed of a suite of gabbro-diorite. Zircons from the intrusion display eu-hedral-subhedral in shape and have high Th/U ratios (1.23―2.87), implying their magmatic origin. LA-ICP-MS zircon U-Pb dating results for two samples indicate that they were formed in the Early Cre-taceous, yielding weighted mean 206Pb/238U ages of 129±1Ma and 134±2Ma, respectively. Except for early cumulate such as sample QT-19, their SiO2 and MgO contents range from 50.12% to 56.37% and from 3.52% to 6.37%, respectively. Moreover, the gabbro-diorites are characterized by high Mg# (0.54―0.63), enrichment in Na (Na2O/K2O ratios more than 1), Cr (73×10-6―217×10-6) and Ni (34×10-6―241×10-6), and intensive enrichments in light rare earth elements (LREEs) and large ion lithophile elements (LILEs) and depletion in high field strength elements (HFSEs). Their initial 87Sr/86Sr ratios and ε Nd(t) values range from 0.70962 to 0.71081 and from-16.60 to-13.04, respectively. Taken together with the Early Creta-ceous high-Mg diorites and the mantle xenoliths from the Tietonggou and Jinling as well as basalts from the Fangcheng and Feixian, it is suggested that the primary magma for the Shangyu gab-bro-diorites should be derived from the enriched lithospheric mantle intensively modified by conti-nental crust. The Sr-Nd-Pb isotopic compositions for the Early Cretaceous high-Mg diorites in western Shandong display a trend of spatial variations, i.e., initial 87Sr/86Sr, 207Pb/204Pb and 208Pb/204Pb ratios de-creasing and ε Nd(t) values increasing from southeast to northwest in western Shandong, which is con-sistent with the tectonic model that the Yangtze Craton subducted beneath the North China Craton oriented in north-west direction in the Early Mesozoic.  相似文献   

12.
The mafic volcanic association is made up of OIB, E-MORB and N-MORB in the A'nyemaqen Paleozoic ophiolites. Compared with the same type rocks in the world, the mafic rocks generally display lower Nb/U and Ce/Pb ratios and some have Nb depletion and Pb enrichment. The OIB are LREE-enriched with (La/Yb)N =5―20, N-MORB are LREE-depleted with (La/Yb)N = 0.41―0.5. The OIB are featured by incompatible element enrichment and the N-MORB are obviously depleted with some metasomatic effect, and E-MORB are geochemically intermediated. These rocks are distributed around the Majixueshan OIB and gabbros in a thickness greater than a thousand meters and transitionally change along the ophiolite extension in a west-east direction, showing a symmetric distribution pattern as centered by the Majixueshan OIB, that is, from N-MORB, OIB and E-MORB association in the Dur'ngoi area to OIB in the Majixueshan area and then to N-MORB, OIB and E-MORB assemblage again in the Buqingshan area. By consideration of the rock association, the rock spatial distribution and the thickness of the mafic rocks in the Majixueshan, coupled with the metasomatic relationship between the OIB and MORB sources, it can be argued that the Majixueshan probably corresponds to an ancient hotspot or an ocean island formed by mantle plume on the A'nyemaqeh ocean ridge, that is the ridge-centered hotspot, tectonically similar to the present-day Iceland hotspot.  相似文献   

13.
Study of geothermal field data,terrestrial heat flow values,and other geophysical data from the Xingtai-Shulu area of Hebei Province made us more understanding of the distribution of geothermal fields and deep structures and their interrelation.The study illustrates that the geothermal field has an apparent lateral inhomogeneity and is evidently correlated by the structure of the crust and upper mantle in the area.The relation of the geothermal field distribution to the structure indicates that in comparison with the depression zone,the uplift zone has a higher heat flow value and a larger geothermal gradient.The analysis of the relation between distribution of earthquake epicenters and geothermal field and mathematical simulation of thermal stress in the area suggests that thermal stress plays an important role in the process of earthquake generation.  相似文献   

14.
The Cenozoic basalts from eastern China show commonly high Fe/Mn ratios (average = 68.6 ± 11.5) coupled with OIB-type trace element signature. The Cenozoic basalts form the northern margin and the southern margin of the North China Craton are studied in detail. Model calculations point out that the coupling feature of high Fe/Mn ratio with OIB-type trace element signature of these basalts cannot be produced by neither pyroxene/olivine crystallization nor remelting of previously melted mantle, but require partial melting of a garnet pyroxenite-rich mantle source. Combining these features of the Cenozoic basalts with the Phanerozoic lithospheric evolution of the eastern China, we suggest that the Cenozoic basalts were derived from a garnet pyroxenite-rich mantle source associated with continental crust delamination or oceanic crust subduction.  相似文献   

15.
The Dongco ophiolite occurred in the middle-western segment of the Bangong-Nujiang suture zone. The thickness of the ophiolite suite is more than 5 km, which is composed, from bottom to top, of the mantle peridotite, mafic-ultramafic cumulates, basic sills (dykes) and basic lava and tectoni- cally emplaced in Jurassic strata (Mugagongru Group). The Dongco cumulates consist of dunite- troctolite-olivine-gabbro, being a part of DTG series of mafic-ultramafic cumulates. The basic lavas are characterized by being rich in alkali (Na2O K2O), TiO2, P2O5 and a LREE-rich type pattern dip- ping right with [La/Yb]=6.94―16.6 as well as a trace elements spider-diagram with normal anomaly of Th, Nb, Ta, Hf. Therefore, the Dongco basic lavas belong to ocean-island basalt (OIB) and dis- tinctly differ from mid-ocean ridge basalt (MORB) and island-arc basalt (IAB) formed in the plate convergence margin. The basic lavas have higher 87Sr/86Sr (0.704363―0.705007), lower 143Nd/144Nd (0.512708―0.512887) and εNd(t ) from 2.7― 5.8, indicating that they derive from a two-components mixing mantle source of depleted mantle (DM) and enriched mantle (EMI). From above it is ready to see that the Dongco ophiolite forms in oceanic island (OIB) where the mantle source is replaced by a large amount of enriched material, therefore it distinctly differs from these ophiolites formed in island-arc and mid-oecan ridge. Newly obtained SHRIMP U-Pb dating for zircon of the cumulate troctolite is 132 ± 3 Ma and whole-rock dating of ~(39)Ar/~(40)Ar for the basalt is 173.4 ± 2.7 Ma and 140.9 ± 2.8 Ma, indicating that the Dongco ophiolite formed at Early Cretaceous and the middle-western segment of the Bangong-Nujiang oceanic basin was still in the developing and evolving period at Early Cretaceous.  相似文献   

16.
The interactions of seafloor hydrothermal fluid with igneous rocks can result in leaching elements from the rocks,creating potential ore-forming fluids and influencing the chemical compositions of near-bottom seawater.The hydrothermal alteration of plagioclase microphenocrysts and basaltic glass in the pillow basalts from one dredge station(103°57.62′′W,12°50.55′N,water depth 2480 m)on the East Pacific Rise(EPR)near 13°N were analyzed using a scanning electron microscope(SEM)and energy dispersive X-ray spectrometry(EDS).The results show that the edges of the plagioclase microphenocrysts and the basaltic glass fragments are altered but the pyroxene and olivine microphenocrysts in the interior of the pillow basalts appear to be unaffected by the hydrothermal fluids.In addition,our results show that the chemical alteration at the rims of the plagioclase microphenocrysts and the edges of basaltic glass fragments can be divided into separate types of alteration.The chemical difference in hydrothermal alteration of the plagioclase microphenocrysts and the basaltic glass indicate that different degrees of hydrothermal fluid-solid phase interaction have taken place at the surface of the pillow basalts.If the degree of hydrothermal fluid-solid phase interaction is relatively minor,Si,Al,Ca and Na diffuse from the inside of the solid phase out and as a result these elements have a tendency to accumulate in the edge of the plagioclase microphenocrysts or basaltic glass.If the degree of hydrothermal fluid-solid phase interaction is relatively strong,Si,Al,Ca and Na also diffuse from the inside of solid phase out but these elements will have a relatively low concentration in the edge of the plagioclase microphenocrysts or basaltic glass.Based on the chemical variation observed in the edges of plagioclase microphenocrysts and basaltic glass,we estimate that the content of Si,Al and Fe in the edges of plagioclase microphenocrysts can have a variation of 10.69%,17.59%and 109%,respectively.Similarly,the Si,Al and Fe concentrations in the edges of basaltic glass can have a variation of 9.79%,16.30%and 37.83%,respectively,during the interaction of hydrothermal fluids and seafloor pillow basalt.  相似文献   

17.
It is generally believed a variation of 3He/4He isotopic ratios in the mantle is due to only the decay of U and Th,which produces4 He as well as heat.Here we show that not only3He/4He isotopic ratios but also helium contents can be fractionated by thermal diffusion in the lower mantle.The driving force for that fractionation is the adiabatic or convective temperature gradient,which always produces elemental and isotopic fractionation along temperature gradient by thermal diffusion with higher light/heavy isotopic ratio in the hot end.Our theoretical model and calculations indicate that the lower mantle is helium stratified,caused by thermal diffusion due to*400℃temperature contrast across the lower mantle.The highest3He/4He isotopic ratios and lowest He contents are in the lowermost mantle,which is a consequence of thermaldiffusion fractionation rather than the lower mantle is a primordial and undegassed reservoir.Therefore,oceanicisland basalts derived from the deepest lower mantle with high3He/4He isotopic ratios and less He contents—the long-standing helium paradox,is solved by our model.Because vigorous convection in the upper mantle had resulted in disordered or disorganized thermal-diffusion effects in He,Mid-ocean ridge basalts unaffected by mantle plume have a relatively homogenous and lower!3He/4He isotopic compositions.Our model also predicts that 3He/4He isotopic ratios in the deepest lower mantle of early Earth could be even higher than that of Jupiter,the initial He isotopic ratio in our solar system,because the temperature contrast across the lower mantle in the early Earth is the largest and less4 He had been produced by the decay of U and Th.Moreover,the early helium-stratified lower mantle owned the lowest He contents due to over-degassing caused by the largest temperature contrast.Consequently,succeeding evolution of the lower mantle is a He ingassed process due to secular cooling of the deepest mantle.This explains why significant amount of He produced by the decay of U and Th in the lower mantle were not released,another long-standing heat–helium paradox.  相似文献   

18.
Major and trace elements analysis has been carried out on the Late Ladinian Tabai basalts from Yunnan Province with the aim of studying their petrogenesis. Their SiO2 contents range from 43.63 wt.% to 48.23 wt.%. The basalts belong to the weakly alkaline(average total alkalis Na2 O+K2O=3.59 wt.%), high-Ti(3.21 wt.% to 4.32 wt.%) magma series. The basalts are characterized by OIB-like trace elements patterns, which are enriched in large ion lithosphile elements(LILE) including Rb and Ba, and display negative K, Zr and Hf anomalies as shown on the spider diagrams. The Tabai basalts display light rare-earth elements(LREE) enrichment and are depleted in heavy rare-earth elements(HREE) on the REE pattern. Those dates indicate that the parental magma of the Tabai basalts was derived from low-degree(1%–5%) partial melting of garnet peridotite. The magma underwent olivine fractional crystallization and minor crustal contamination during their ascent. The Tabai basalts were related to a relaxation event which had triggered the Emeishan fossil plume head re-melting in the Middle Triassic.  相似文献   

19.
In China, most Precambrian banded iron formations(BIFs) are situated in the North China Craton. The Yuanjiacun iron deposit, located in the Lüliang area, is arguably the most representative Superior-type BIF. This iron deposit is coherent with the sedimentary rock succession of the Yuanjiacun Formation in the lower Lüliang Group, and was interpreted to be deposited at 2.3–2.1 Ga, based on ages of overlying and underlying volcanic strata. This age overlaps with the time range of the Great Oxidation Event(GOE, 2.4–2.2 Ga). The Yuanjiacun BIF consists mainly of subhedral-xenomorphic magnetite and quartz and rarely other minerals with a lower degree of metamorphism, from greenschist to lower amphibolite facies. The geochemical characteristics of this BIF are similar to those of Superior-type BIFs. Prominent positive La, Y, and Eu anomalies normalized by the Post Archean Australian Shale(PAAS) indicate that the primary chemical precipitate is a result of solutions that represent mixtures of seawater and high-T hydrothermal fluids. The contamination from crustal detritus found is negligible based on low abundances of Al2O3 and TiO2(0.5%) and of trace elements such as Th, Hf, Zr, and Sc(1.5 ppm), as well as the lack of co-variations between Al2O3 and TiO2. In particular, the Yuanjiacun BIF samples do not display significant negative Ce anomalies like those of the Archean iron formations, but rather, the Yuanjiacun BIF samples exhibit prominent positive Ce anomalies, low Y/Ho ratios, and high light to heavy REE((Pr/Yb)SN) ratios, which are essentially consistent with the late Paleoproterozoic(2.0 Ga) BIFs around the world. These characteristics of the Yuanjiacun BIF samples imply that the ancient ocean(2.3–2.1 Ga) was redox-stratified from oxic shallow water to deeper anoxic water. The specific redox conditions of the ancient ocean may be related to the GOE, which gave rise to the oxidation of Ce and Mn in the upper water, and to the presence of a Mn oxide shuttle in the ocean, resulting in varying REE patterns due to the precipitation and dissolution of this Mn oxide shuttle under different redox states. Therefore, the Yuanjiacun BIF appears to have formed near the redoxcline and lower-level reduced marine water.  相似文献   

20.
Metabasites consisting of metamorphic ultra-mafic rocks, cumulate gabbro, gabbro (diabase), basalt, and plagiogranite are exposed at the Taoxinghu area in central Qiangtang, northern Tibetan Plateau. Zircon SHRIMP U-Pb dating for the cumulate gabbro yields a weighted mean age of 467±4 Ma, which is the oldest and most reliable magmatic age in this area. Zircon 176Hf/177Hf ratios range from 0.282615 to 0.282657, with εHf(t) values of 5.02±0.28, indicating that the cumulate gabbro was mainly derived from the depleted mantle. In addition, geochemical data of metabasites suggest that they have similar characteristics to those in the mid-ocean ridge basalts (MORB). The Taoxinghu metabasites may represent the fragment of Early Paleozoic ophiolite in the "Central Uplift" of the Qiangtang, northern Tibetan Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号