首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The saddle dolomites occur more intensely in cores closely to fault than that in cores far away from the fault in Upper Cambrian carbonate of western Tarim basin, suggesting that formation of the saddle dolomites is likely related to fault-controlled fluid flow. They partially fill in fractures and vugs of replacement dolomite. The saddle dolomites exhibit complex internal textures, commonly consisting of core and cortex. In comparison with the matrix dolomites, the saddle dolomites show lower Sr-content and 87Sr/86Sr ratios, higher Fe- and Mn-content, and more negative δ18O values. Combined with high Th (100–130 °C) of primary fluid inclusions, it is suggested that the saddle dolomites precipitated from hydrothermal fluid derived from the deep evaporite-bearing Middle Cambrian strata, and the magnesium source may be due to dissolution of host dolomite during hydrothermal fluid migration. Fault activity resulted in petrographic and geochemical difference of the core and cortex of the saddle dolomites. The cores precipitated from the formation water mixed by deep brines at the early stage of fault activity, and the cortexes precipitated from the deep fluid with higher temperatures through the Middle Cambrian later. In summary, the formation of the saddle dolomites implies a hydrothermal fluid event related to fault activity, which also resulted in high porosity in Upper Cambrian carbonate in western Tarim Basin.  相似文献   

2.
Thick Upper Cambrian-Lower Ordovician carbonates were deposited on a shallow marine platform in the northern Tarim Basin, which were extensively dolomitized, particularly for the Upper Cambrian carbonates. The resulting dolomite rocks are predominantly composed of matrix dolomites with minor cement dolomites. Based on petrographic textures, matrix dolomites consist of very finely to finely crystalline, nonplanar-a to planar-s dolomite (Md1), finely to medium crystalline, planar-e(s) dolomite (Md2), and finely to coarsely crystalline, nonplanar-a dolomite (Md3). Minor cement dolomites include finely to medium crystalline, planar-s(e) dolomite (Cd1) and coarsely crystalline, nonplanar saddle dolomite (Cd2), which partially or completely fill dissolution vugs and fractures; these cements postdate matrix dolomites but predate later quartz and calcite infills. Origins of matrix and cement dolomites and other diagenetic minerals are interpreted on the basis of petrography, isotopic geochemistry (O, C and Sr), and fluid inclusion microthermometry. Md1 dolomite was initially mediated by microbes and subsequently precipitated from slightly modified brines (e.g., evaporated seawater) in near-surface to very shallow burial settings, whereas Md2 dolomite was formed from connate seawater in association with burial dissolution and localized Mg concentration (or cannibalization) in shallow burial conditions. Md3 dolomite, however, was likely the result of intense recrystallization (or neomorphism) upon previously-formed dolomites (e.g., Md1 or Md2 dolomite) as the host carbonates were deeply buried, and influenced by later hydrothermal fluids. Subsequent cement dolomite and quartz crystals precipitated from higher-temperature, hydrothermal fluids, which were contributed more or less by the extensive Permian large igneous province (LIP) activity in Tarim Basin as evidenced by less radiogenic Sr in the cement and parts of matrix dolomites. This extensive abnormal hydrothermal activity could also have resulted in recrystallization (or neomorphism) on the previous matrix dolomites. Faults/fractures likely acted as important conduit networks which could have channeled the hydrothermal fluids from depths. However, the basin uplift triggered by the Late Hercynian Orogeny from the Late Permian would have facilitated downward infiltration of meteoric water and dilution of hydrothermal fluids, resulting in precipitation of later calcites in which lighter C and more radiogenic Sr components demonstrate such a switch of fluid properties. This study provides a useful analogue to understand the complicated dolomitizing processes and later hydrothermal alteration intimately related to the Permian LIP activity within Tarim Basin and elsewhere.  相似文献   

3.
The Precambrian Dengying Formation is maximum buried carbonate reservoir in the Sichuan Basin. Reservoir types are thought to be dominated by sedimentary facies or karst controlled. Precursory sedimentary fabrics have been intensively superimposed by medium-to coarse-grained dolomite in most areas. Dolomitized intervals contain planar and saddle dolomite, quartz, and few hydrothermal replacive minerals. Fluid inclusion analyses of dolomite suggests that rocks are formed at temperatures ranging from 132.6°C to 218.7°C in the presence of dense brines, while the dolomite phases are demonstrated by negative δ18O and δ13C VPDB values. Strontium isotopes enriched in 87Sr, and the fluid source could support the conclusion. The dolomites of the Dengying Formation in central Sichuan Basin that formed around basement-rooted wrench faults, in turn mainly oriented towards the North-South and East-West strike-slip faults, are detectable. Lastly, the grabens take the form of negative flower structures-the result of an intra-cratonic rift that took place during the Sinian and early Cambrian period through tensional faulting.Our primary contention is that basement fault, which resulted in the magmatic or deep clastic fluids migration, was key for the formation of the obvious high-temperature coarse dolomite and saddle dolomite replacement. Subsequently, hot fluids that circulated within the matrix dolomite were aided by fractures or vugs and (1) leached into the dolomite, producing vugs and pores; (2) precipitated saddle dolomite, and (3) led to hydrofracturing, fractures enlargement, and further brecciation. The dolomite eventually formed porous hydrocarbon reservoirs through diagenesis. This model better illustrates how fluids that originated from deep basin migration along strike-slip transfer faults and fractures flowed out to structures in Precambrian basement-rooted faults, inheriting the rift in the Cambrian. The data involved offers a fresh perspective pertinent to deep hydrocarbon exploration of dolomite reservoirs in Southwestern China.  相似文献   

4.
The Tournasian age Pekisko carbonates in the Normandville Field (northwestern Alberta) form waulsortian-like, bryozoan/crinoid mounds that developed in fairly deep, low energy, cool water systems, close to the ramp margin. Three main depositional environments occur: (1) crinoidal apron with wackestone, grainstone and floatstone facies; (2) mound flank with grainstone, wackestone, packstone and floatstone facies dipping 35°; and (3) bryozoan mound core, composed of rudstone and floatstone facies with fenestrate bryozoa, minor crinoids and carbonate mud. Local highs due to fault-bounded blocks, created from the collapse of the Devonian Peace River High, may have controlled the location of mound nucleation.Diagenesis of the bryozoan/crinoid mounds included calcite cementation, compaction, dolomitization, silicification, and hydrocarbon emplacement events. The mound core facies contains submarine fascicular optic calcite and bladed/prismatic calcite cements, and later ferroan, brightly luminescent, pore-filling blocky spar cement. The crinoid apron facies contains syntaxial cement associated with crinoids, and the ferroan blocky spar cement. The mounds are dominantly limestone; however, in one well, dolomite dominates the lower section. Four types of dolomite have been identified: partial replacive; chemical-compaction-related, pervasive dolomite and saddle dolomite cement. All dolomites are non-stoichiometric (CaCO3 mole% 56.6–62.6). The partial, zoned replacive dolomite replaces micrite and syntaxial rim calcite in mound flank and crinoid apron facies. The chemical compaction-related dolomite is found along dissolution seams and stylolites and has similar CL characteristics to the replacive dolomite. The pervasive dolomite is fabric destructive and has dull cores and bright rims in CL. Saddle dolomite (0.15 mm) has brightly-luminescent, concentric zoning and occurs in vugs and fossil pore spaces.Chemical and isotopic analysis of the bryozoan/crinoid mounds indicate that the original marine signatures in micrite, early cements, some crinoids and brachiopods have been preserved. However, carbon isotopic values for some crinoids, matrix and dolomite show more positive values compared to known Mississippian carbonate values. Recrystallization during shallow burial has reset the oxygen isotopic composition of some crinoids and micrite. Oxygen and carbon isotopic compositions of most dolomites overlap with altered crinoids and early calcite cements. However, saddle dolomites have lighter δ18O values, similar to saddle dolomites from the Devonian Wabamun Group in this area. The isotopic variations in later ferroan calcite cements show an inverted-J trend, possibly due to variable amounts of water-rock interaction. While the Sr-isotopic ratio of submarine calcite cement coincides with that of Mississippian seawater, the later ferroan calcite cement is more radiogenic, indicating a different source of fluids.  相似文献   

5.
Field observations indicate that tectonic compression, anticline formation and concomitant uplift events of marine Paleogene carbonates in eastern United Arab Emirates, which are related to the Zagros Orogeny, have induced brecciation, karstification, and carbonate cementation in vugs and along faults and fractures. Structural analysis, stable isotopes and fluid inclusion microthermometry are used to constrain the origin and geochemical evolution of the fluids. Fluid flow was related to two tectonic deformation phases. Initially, the flux of moderately 87Sr-rich basinal NaCl–MgCl2–H2O brines along reactivated deep-seated strike-slip faults have resulted in the precipitation of saddle dolomite in fractures and vugs and in dolomitization of host Eocene limestones (δ18OV-PDB −15.8‰ to −6.2‰; homogenization temperatures of 80–115 °C and salinity of 18–25 wt.% eq. NaCl). Subsequently, compression and uplift of the anticline was associated with incursion of meteoric waters and mixing with the basinal brines, which resulted in the precipitation of blocky calcite cement (δ18OV-PDB −22‰ to −12‰; homogenization temperatures of 60–90 °C and salinity of 4.5–9 wt.% eq. NaCl). Saddle dolomite and surrounding blocky calcite have precipitated along the pre- and syn-folding E–W fracture system and its conjugate fracture sets. The stable isotopes coupled with fluid-inclusion micro-thermometry (homogenization temperatures of ≤50 °C and salinity of <1.5 wt.% eq. NaCl) of later prismatic/dogtooth and fibrous calcites, which occurred primarily along the post-folding NNE–SSW fracture system and its conjugate fracture sets, suggest cementation by descending moderately 87Sr-rich, cool meteoric waters. This carbonate cementation history explains the presence of two correlation trends between the δ18OV-PDB and δ13CV-PDB values: (i) a negative temperature-dependent oxygen isotope fractionation trend related to burial diagenesis and to the flux of basinal brines, and (ii) positive brine-meteoric mixing trend. This integrated study approach allows better understanding of changes in fluid composition and circulation pattern during evolution of foreland basins.  相似文献   

6.
The Early Jurassic dolomitized carbonates in the Venetian Alp, represent a surface analogue of the hydrocarbon exploration targets in Adriatic offshore and Po Plain, Italy. Dolomitization affected the carbonate platform of Monte Zugna Formation (Lower Jurassic) and the Neptunian dikes breccia in the pelagic Maiolica Formation (Uppermost Jurassic–Lower Cretaceous) improving the poro-perm characteristics. Petrography, stable isotope, strontium isotope ratio, trace element and fluid inclusion analyses were carried out on samples from the Monte Grappa Anticline, which is the direct analogue for subsurface. The petrographic analyses showed a first pervasive, replacement dolomitization phase (D1) followed by volumetrically less important dolomite cement precipitation phases (D2, D3, DS). The same, quite wide range of oxygen isotope (?9 to ?2‰ V-PDB) is observed in all dolomite types. The δ13C range is in the positive field of marine derived carbonate (from +0.5 to +3.2‰ PDB). The trace element analysis showed a slight enrichment in Fe and Mn contents in the Monte Zugna dolostones with respect the original limestone. The same dolomite precipitation temperature (up to 105 °C Th) was observed in the replacement and cement dolomites, suggesting a unique dolomitization event. This temperature, largely higher than the maximum burial temperature (about 50 °C), supports a hydrothermal origin of the dolomitizing fluids, which had a seawater to brackish composition. The data collected suggest a hydrothermal dolomitization occurring during to the South Alpine thrusting according to the “squeegee model”. The interpretation is consistent with the dolomitization model proposed for similar Jurassic successions in the Central Southern Alps. This study indicates that the deformed foreland and thrust fold belts carbonates in Po Plain and Adriatic offshore are suitable to be dolomitized, and therefore reflect an efficient hydrocarbon exploration play.  相似文献   

7.
Samples of diagenetic and hydrothermal minerals from drillcores along the DEKORP 9601 seismic traverse in the North German Basin were investigated for their fluid inclusion and sulphur isotope composition to reconstruct the thermal and chemical evolution of fluid systems during basin evolution. The stages of basin subsidence and subsequent inversion are marked by fluid systems of distinct composition. The basinwide Zechstein evaporite units formed an aquiclude, disconnecting convecting fluids in the underlying Rotliegend volcanics from the overlying units. δ34S ratios of sulphides suggest a sedimentary sulphur source. δ34S ratios of diagenetic and hydrothermal sulphates indicate that sulphur was derived partly from Rotliegend volcanic units and partly from the evaporitic Zechstein.  相似文献   

8.
The present study of five wells from Upper Albian to Lower Maastrichtian succession in the southwestern Barents Sea yields the first dinoflagellate cyst-based palynological event biostratigraphy for the area. The research focuses on the Upper Cretaceous Kveite and Kviting formations due to the lack of formal palynological documentation, and enables the formation of a biozonation of greater resolution than currently achievable by micropalaeontology. Four new interval zones and one abundance subzone are described, from base upward: Palaeohystrichophora infusorioides and Palaeohystrichophora palaeoinfusa Interval Zone (intra Early Cenomanian–intra Late Cenomanian), Dinopterygium alatum Interval Zone (?intra Early Coniacian–Late Santonian), Palaeoglenodinium cretaceum Interval Zone (Early Campanian), and the Chatangiella bondarenkoi Interval Zone (Late Campanian) encompassing the Heterosphaeridium bellii Abundance Subzone (intra-Late Campanian). The zones are well correlated to existing palynological zonations from the Norwegian–Greenland Sea, where the previously described Subtilisphaera kalaalliti Interval Zone (intra Late Albian–?intra Early Cenomanian), Heterosphaeridium difficile Interval Zone (Middle Turonian to ?intra Early Coniacian) and Cerodinium diebelii Interval Zone (Early Maastrichtian) are recognised. These data also reveal the presence of three significant unconformities of Late Cenomanian–Early Turonian, Middle Campanian and Late Maastrichtian–Paleocene age.  相似文献   

9.
Extensive, large-scale pervasive cementation in the form of cement bodies within fluvial strata has rarely been documented although fluvial strata commonly act as important hydrocarbon reservoirs, as well as groundwater aquifers. Here, we present outcrop, petrographic and geochemical data for pervasive ferroan dolomite cement bodies up to 250 m in size from Upper Cretaceous Desert Member and Castlegate Sandstone fluvial strata exposed in the Book Cliffs in Utah. These cement bodies are present with coastal plain fluvial strata within both the Desert and Castlegate lowstand sandstones and are most abundant in the thin, distal fluvial strata. Cement bodies are almost entirely absent in updip, thicker, fluvial strata. Petrographic observations suggest a predominantly early diagenetic timing to the mildly ferroan dolomite, with a component of later burial origin. δ13C values for the cement (+4.8 to −5.7‰ V-PDB) suggest a marine-derived source for the earliest phase with a burial organic matter source for later cement. δ18O data (−6.3 to −11.8‰ V-PDB) suggest precipitation from freshwater dominated fluids. It is proposed here that dolomite was derived from leaching of detrital dolomite under lowstand coals and cementation took place in coastal aquifers experiencing mixed meteoric-marine fluids as a result of base-level fluctuations. This data presented here shows that large cement bodies can be an important component within fluvial sandstones with a potentially significant impact upon both reservoir quality and fluid flow within reservoirs, especially at the marine-non-marine interface.  相似文献   

10.
The mesogenetic dissolution is well developed in the middle Ordovician Yijianfang formation (O2yj) limestone, and the dissolution pores are very important for petroleum accumulation in the south slope area of the Tahe oilfield which lies in the north of the Tarim basin, northwestern China. Mottled, dotted or laminar dissolution can be observed in the O2yj limestone. Under microscope, the grains, lime matrix and all stages of calcite cements (including oil-inclusion-bearing blocky calcite cements) can all be found dissolved ubiquitously. The stylolites in the limestone were enlarged and rounded because of dissolution. Some dolomite rhombs, precipitated along stylolites in burial environment, were found dissolved as well. The dissolution of the blocky calcite cements and dolomite rhombs and the enlarging of stylolites demonstrate that the dissolution took place in the mesogenetic environment. Concentration of trace elements, including REEs, of the eroded part of the O2yj limestone is intermediate between that of the uneroded part and that of the underlying lower Ordovician limestone hydrocarbon source rocks. Both δ13CPDB and δ18OPDB values of the eroded part are less than those of the uneroded part, respectively. The geochemical characteristics indicate that the eroding fluids are hydrocarbon-bearing fluids coming from the underlying hydrocarbon source rocks.  相似文献   

11.
Shallow marine carbonate sedimentation dominated during the Albian in the western part of the Basque Cantabrian Basin in Northern Spain, forming the large Ramales Platform. This platform originated on a less subsiding tectonic block facing deeper and more subsiding areas to the south and east, which were created by tectonic activity in the Basin. Fracture-related hydrothermal dolomites hosted in these Albian carbonates are well exposed in the Asón valley area. Mapping in the studied area revealed several dolomite bodies related to main faults that cut the stratification almost at right angles. The bodies show a vertical development along fault-strike up to 900 m thick from which kilometre-scale branches expand following the stratification. Dolomitization is pervasive and independent of the limestone facies. Main dolomite facies are fine replacive, sucrosic and saddle. Petrography, C, O and Sr isotopes and fluid-inclusion analysis support a polyphase hydrothermal dolomitization at fluid temperatures between 75 °C and 240 °C and highly variable salinity of up to 22 wt.% NaCl. Fine dolomite replaced limestone first and then, sucrosic and saddle dolomites replaced part of the first dolomite and cemented newly created fracture porosity together with different calcite cements. Zebra dolomites and hydroclastic breccias are products of this later stage. Burial analysis of the host rock supports maximum burial temperatures of 80 °C and intense tectonic activity from the Albian to Turonian with a latest Albian peak subsidence. Albian stretching of the crust and subsequent ascent of the isotherms in the area is suggested to have produced sufficient heat to the dolomitizing fluids. The structural analysis indicates a strong transtensional tectonic activity in the studied area during Albian to Turonian time with the creation of an overstep between W–E trending and N–S trending faults. Fluids moved from subsiding areas to fractured uplifted parts of the Ramales Platform, enhanced by diapiric activity.  相似文献   

12.
We sampled hydrothermal plumes over the N. Gorda Ridge four times between March and August 1996 to document Mn and Fe discharge resulting from a magmatic intrusion/seafloor eruption. Two separate event plumes, EP96A and B, and chronic hydrothermal emissions lasting 6 months were characterized. Shipboard time-series measurements of an event plume sample were used to calibrate an Fe phase clock useful for estimating sample age up to 6 days after fluid discharge. Samples collected from EP96A and B had Mn/heat (<0.15 nmol J-1) and Fe/Mn (>2 mol mol-1) ratios similar to historical event plume observations. We suggest these “signature” ratio values are generally characteristic of event plumes and hypothesize that Mn and Fe may be supplied to event plumes by different processes: Mn by entrainment of fluids from an extant shallow subseafloor reservoir, and Fe by short-lived, high-temperature water-rock reaction coincident with dike emplacement. Calculations based on the Fe phase clock indicate that the two event plumes were released more than a month apart. The largest event plume, EP96A (2.3×106 M Mn and 13×106 M Fe), formed 7 March soon after seismic activity began. The smaller EP96B (0.49×106 M Mn and 3.5×106 M Fe) was not discharged until 11 April, 3 weeks after the cessation of seismic activity detectable by SOSUS T-phase monitoring. We hypothesize that the subseafloor disturbance that triggered EP96B also resulted in the episodic flushing of a reservoir of chronic-plume-like fluids. Total event plume inventories of Mn and Fe at N. Gorda Ridge are much smaller than those associated with the 1986 event at N. Cleft segment of the Juan de Fuca Ridge, but comparable to event plume inventories at N. Cleft segment in 1987 and CoAxial segment in 1993. Mn/heat values for chronic plumes over the eruption site underlying EP96A evolved from moderate (0.25 oonmol J-1, reflecting probable admixture with event plume formation fluids) to high (0.7 nmol J-1, typical of chronic plumes) to low (0.1 nmol J-1, similar to diffuse vent fluid values), marking a complete episode of intrusion/eruption-induced hydrothermal discharge.  相似文献   

13.
Several diagenetic models have been proposed for Middle and Upper Jurassic carbonates of the eastern Paris Basin. The paragenetic sequences are compared in both aquifers to propose a diagenetic model for the Middle and Late Jurassic deposits as a whole. Petrographic (optical and cathodoluminescence microscopy), structural (fracture orientations) and geochemical (δ18O, δ13C, REE) studies were conducted to characterize diagenetic cements, with a focus on blocky calcite cements, and their connection with fracturation events. Four generations of blocky calcite (Cal1–Cal4) are identified. Cal1 and Cal2 are widespread in the dominantly grain-supported facies of the Middle Jurassic limestones (about 90% of the cementation), whereas they are limited in the Oxfordian because grain-supported facies are restricted to certain stratigraphic levels. Cal1 and Cal2 blocky spars precipitated during burial in a reducing environment from mixed marine-meteoric waters and/or buffered meteoric waters. The meteoric waters probably entered aquifers during the Late Cimmerian (Jurassic/Cretaceous boundary) and Late Aptian (Early Cretaceous) unconformities. The amount of Cal2 cement is thought to be linked to the intensity of burial pressure dissolution, which in turn was partly controlled by the clay content of the host rocks. Cal3 and Cal4 are associated with telogenetic fracturing phases. The succession of Cal3 and Cal4 calcite relates to the transition towards oxidizing conditions during an opening of the system to meteoric waters at higher water/rock ratios. These meteoric fluids circulated along Pyrenean, Oligocene and Alpine fractures and generated both dissolution and subsequent cementation in Oxfordian vugs in mud-supported facies and in poorly stylolitized grainstones. However, these cements filled only the residual porosity in Middle Jurassic limestones. In addition to fluorine inputs, fracturation also permitted inputs of sulphur possibly due to weathering of Triassic or Purbeckian evaporites or H2S input during Paleogene times.  相似文献   

14.
The lower Ordovician St. George Group in Western Newfoundland consists of a sequence of subtidal and peritidal carbonates, which are extensively dolomitized. The current study investigates the diagenetic evolution of the Catoche Formation from the Port aux Choix and Port au Port peninsulas in order to study the controls on reservoir quality in western Newfoundland. The Catoche Formation dolomites are classified into three main generations. Early and pervasive replacement dolomite (D1) indicates that dolomitization began during early stages of diagenesis. Stable isotope and trace element data indicate significant variations between D1 dolomite on the Port aux Choix and Port au Port peninsulas. The depleted δ18O signature of D1 dolomite fluids (−8.7 ± 1.3‰ VPBD) on the Port aux Choix Peninsula is consistent with partial dolomitization associated with mixing of seawater and meteoric waters on the flanks of structural highs. In contrast δ18O values (−6.1 ± 0.7‰ VPBD) and trace element data from the Port au Port Peninsula indicate that pervasive D1 was associated with mixing of possibly post evaporitic brines with meteoric waters.Later-stage replacement dolomites (D2) are associated with enhancement in porosity through the development of intercrystalline pores, while latest stage saddle dolomite (D3), significantly occluded the pores in some horizons. D2 dolomite formed due to the influx of warm (>100 °C), saline (>15 eq. wt% NaCl) fluids. Intercrystalline porosity in D2 formed due to the dolomitization of precursor calcite, due to the lower molar volume of dolomite compared to calcite. Therefore porosity development is lower on the Port au Port Peninsula, with no significant volume change during the recrystallization of the pervasive early (D1) dolomicrite. Similarly, extensive porous horizons on the Port aux Choix Peninsula are related to the limited extent of D1 dolomitization. This suggests that the quality of a potential dolomite reservoir is strongly controlled by tectonic and diagenetic history of host carbonates.  相似文献   

15.
At Matienzo (Basque–Cantabrian Basin, northern Spain), a large stratabound HTD body (4 by 2 km2 and 80–400 m thick) delimited by two parallel sinistral strike-slip faults is exposed in Aptian carbonates. The margins of the HTD body are characterised by dolomite “tongues” indicating that some limestone beds were more prone to dolomitisation. However, no clear relationship between HTD occurrence and precursor limestone facies can be established. Massive limestone beds, as found at the top of the HTD body, act as barriers to hydrothermal processes, since no dolomite is present in or above these beds. Three types of dolomites have been differentiated, i.e. 1) matrix, 2) coarse crystalline and 3) zebra dolomite. The distribution of the dolomite types is attributed to ascending fluid flow and changing degree of dolomite oversaturation.The dolomite body was formed by two dolomitisation phases under burial conditions. No indications for a synsedimentary/early diagenetic dolomitisation have been observed. The first dolomitisation phase is characterized by ferroan dolomite and the second by non-ferroan dolomite. The two HTD phases are characterised by depleted δ18O-values (ranging between −10‰ and −16‰ V-PDB), δ13C-values similar to the Aptian–Albian marine signature and homogenisation temperatures of primary fluid inclusions between 120 °C and 150 °C. The dolomitising fluid was enriched in 87Sr compared to Aptian seawater, excluding the latter as an unmodified fluid source for dolomitisation. Microthermometry of primary fluid inclusions indicates that the dolomitising fluid evolved from a moderate saline (9.7 – 14.0 wt% NaCl) to a more saline (10.9 – 21.0 wt% NaCl) H2O–NaCl brine. The dolomitising fluid likely originated from evaporated seawater. Fluid circulation through the dolomitised strata is inferred to have taken place during the tectonically active period of the late Albian throughout which important sinistral-strike slip movements along basement faults occurred.  相似文献   

16.
The mechanisms responsible for the formation of huge volumes of dolomitized rocks associated with faults are not well understood. We present a case study for high-temperature dolomitization of an Early Cretaceous (Aptian–Albian) ramp in Benicàssim (Maestrat basin, E Spain). In this area, seismic-scale fault-controlled stratabound dolostone bodies extend over several kilometres away from large-scale faults. This work aims at evaluating different Mg sources for dolomitization, estimating the reactivity of dolomitizing fluids at variable temperature and quantifying the required versus available fluid volumes to account for the Benicàssim dolostones. Field relationships, stable 13C and 18O isotopes, as well as radiogenic 87Sr/86Sr isotopes, indicate that dolomitization at Benicàssim was produced by a high-temperature fluid (>80 °C). 13C and 18O isotopic compositions for dolomite vary from +0.5 to +2.9‰ V-PDB and from +21.1 to +24.3 V-SMOW, respectively. A Mg source analysis reveals that the most likely dolomitizing fluid was seawater-derived brine that interacted with underlying Triassic red beds and the Paleozoic basement. Geochemical models suggest that evolved seawater can be considerably more reactive than high-salinity brines, and the maximum reactivity occurs at about 100 °C. Mass-balance calculations indicate that interstitial fluids with high pressure and/or high temperature relative to the normal geothermal gradient cannot account for the volume of dolomite at Benicàssim. Instead a pervasive fluid circulation mechanism, like thermal convection, is required to provide a sufficient volume of dolomitizing fluid, which most likely occurred during the Late Cretaceous post-rift stage of the Maestrat basin. This study illustrates the importance of fluid budget quantification to critically evaluate genetic models for dolomitization and other diagenetic processes.  相似文献   

17.
The Anisian–Ladinian Latemar platform, northern Italy, presents a spectacularly exposed outcrop analogue for dolomitized carbonate reservoirs in relation to fracture-controlled igneous intrusions. Although the Latemar is one of the best studied carbonate platforms worldwide, timing and evolution of dolomitization and the link to fractures and dikes have not been explored in detail. Previous dolomite observations are based on a stratigraphically limited portion of the platform. This study extends observations to the complete exposed interval in which dolomite bodies occur, including those within the less accessible Valsorda valley.Numerous parallel mafic dikes crosscut the Latemar platform and border several of its large dolomite bodies (50 m wide, 100 m high). Within dikes and along dike-carbonate contacts, there are abundant dolomite veins that are geochemically related to surrounding dolomite bodies. Dolomitization is the result of limestone interaction with hydrothermal fluids delivered along these dikes. At dike boundaries, impermeable marble aureoles exist derived from contact metamorphism. The marble aureoles have locally shielded surrounding limestone from dolomitizing fluid. Dolomite occurs only where the ‘protective’ marble is missing or crosscut by fractures. Based on geometric relationships, we conclude that dikes and their damage zones formed the pathways for the dolomitizing fluids and functioned as boundaries for dolomite bodies.From field observations and petrography, we established a detailed paragenesis. Dolomitization started shortly after dike emplacement. There is an evolution in the Fe content of matrix dolomite and dolomite veins, from highly ferroan dolomite to non-ferroan (saddle) dolomite, alternating with episodes of silica cementation. Non-ferroan calcite precipitation followed dolomitization, possibly indicating concurrent depletion in Mg. This stage likely resulted in further limestone recrystallization rather than dolomitization. Stable and radiogenic isotopes suggest that the dolomitizing fluid comprised Carnian seawater with elevated Fe and Mg from interaction with other lithologies (possibly the nearby Predazzo intrusion).  相似文献   

18.
Marine dolostones of Carboniferous Huanglong Formation constitute major gas reservoir rocks in eastern Sichuan Basin. However, the investigation with respect to sources of dolomitizing and diagenetic fluids is relatively underexplored. The current study attempts to investigate the REE characteristics of dolomites using seawater normalization standard, and therefore discusses the origins of dolomitizing and diagenetic fluids, on the basis of continuous 47.33-m-long core samples from the second member of Huanglong Formation (C2h2) in eastern Sichuan Basin. Low Th, Sc, and Hf concentrations (0.791 × 10−6, 4.751 × 10−6, and 0.214 × 10−6, respectively), random correlation between total REE concentration (ΣREE) and Fe or Mn abundance, and seawater-like Y/Ho ratios (mean value of 45.612) indicate that the carbonate samples are valid for REE analysis. Based on petrographic characteristics, four dolomite types are identified, including micritic-sized dolomite (type Dol-1), fine-to medium-sized dolomite (type Dol-2), medium-to coarse-sized dolomite (type Dol-3), and coarse-to giant-sized saddle dolomite (type Dol-4). Dol-1 dolomites, characterized by positive Ce anomaly (mean value of 6.398), light REE (LREE) enrichment, and heavy REE (HREE) depletion with mean LREE/HREE ratio of 12.657, show micritic calcite-like REE patterns, indicating seawater origin of their dolomitizing fluids. Dol-1 dolomites were formed in sabkha environment whereas the dolomitizing fluids originated from evaporative brine water due to their micritic crystal sizes and tight lithology. Dol-2 dolomites, particularly subtype Dol-2a barely developing vuggy porosity, also show micritic calcite-like REE patterns, suggesting their dolomitizing fluids were seawater or seawater-derived fluids. This inference is confirmed by low Fe and Mn concentrations, which range from 651 μg/g to 1018 μg/g (mean value of 863 μg/g) and 65 μg/g to 167 μg/g (mean value of 105 μg/g), respectively, whereas homogenization temperatures (Th, mean value of 103 °C) indicate that Dol-2 dolomites were formed under burial environment. Dol-3 dolomites, in form of cements of Dol-2 dolomites, show similar REE patterns to their host minerals (i.e., Dol-2 dolomites), indicating their parent source was possibly derived from Dol-2 dolomites. Dol-3 dolomites have high Fe and Mn concentrations with mean values of 3346 μg/g (ranging from 2897 μg/g to 3856 μg/g) and 236 μg/g (ranging from 178 μg/g to 287 μg/g), respectively, indicating the involvement of meteoric water. Meanwhile, it confirms that the dissolution in Dol-2 dolomites was caused by meteoric water leaching. Positive Eu anomalies (mean value of 1.406) in Dol-4 dolomites, coupled with high homogenization temperatures (mean value of 314 °C), suggest that Dol-4 dolomites precipitated from hydrothermal fluids. High Fe and Mn concentrations (mean values of 2521 μg/g and 193 μg/g, respectively) in Dol-4 dolomites likely results from interactions of hydrothermal fluids with deep burial clastic rocks.  相似文献   

19.
Significant oil and gas accumulations occur in and around Lougheed Island, Arctic Canada, where hydrocarbon prospectivity is controlled by potential source rock distribution and composition. The Middle to Upper Triassic rocks of the Schei Point Group (e.g. Murray Harbour and Hoyle Bay formations) contain a mixture of Types I and II organic matter (Tasmanales marine algae, amorphous fluorescing bituminite). These source rocks are within the oil generation zone and have HI values up to 600 mg HC/g Corg. The younger source rocks of the Lower Jurassic Jameson Bay and the Upper Jurassic Ringnes formations contain mainly gas-prone Type II/III organic matter and are marginally mature. Vitrinite reflectance profiles suggest an effective geothermal gradient essentially similar to the present-day gradient (20 to 30°C/km). Maturation gradients are low, ranging from 0.125 to 0.185 log%Ro/km. Increases in subsidence rate in the Early Cretaceous suggest that the actual heat flow history was variable and has probably diminished from that time. The high deposition rates of the Christopher Formation shales coincide with the main phase of rifting in Aptian-Albian times. Uplift and increased sediment supply in the Maastrichtian resulted in a new sedimentary and tectonic regime, which culminated in the final phase of the Eurekan Orogeny. Burial history models indicate that hydrocarbon generation in the Schei Point Group took place during rifting in Early Cretaceous, long before any Eurekan deformation.  相似文献   

20.
Halokinesis causes a dynamic structural evolution with the development of faults and fractures, which can act as either preferential fluid pathways or barriers. Reconstructing reactive fluid flow in salt dome settings remains a challenge. This contribution presents for the first time a spatial distribution map of diagenetic phases in a salt dome in northern Oman. Our study establishes a clear link between structural evolution and fluid flow leading to the formation of diagenetic products (barite and calcite) in the salt dome roof strata. Extensive formation of diagenetic products occurs along NNE-SSW to NE-SW faults and fractures, which initiated during the Santonian (Late Cretaceous) and were reactivated in the Miocene, but not along the E-W fault, which was generated during Early Paleocene time. We propose that the diagenetic products formed by mixing of a warm (100 °C) saline (17 wt% NaCl eq.) 87Sr enriched (87Sr/86Sr: 0.71023) fluid with colder (35 °C) meteoric fluid during Miocene to Pleistocene. The stable sulphur and strontium isotope composition and fluid inclusion data indicate that a saline fluid, with sulphate source derived from the Ara Group evaporite and Haima Supergroup layers, is the source for barite formation at about 100 °C, predominantly at fault conjunctions and minor faults away from the main graben structure in the dome. In the Miocene, the saline fluid probably ascended along a halokinesis-related fault due to fluid overpressure (due to the rising salt and impermeable layers in the overlying stratigraphic sequence), and triggered the formation of barite due to mixing with barium-rich fluids, accompanied by a drop in temperature. Subsequently, evolving salt doming with associated fault activity and erosion of the Jebel allows progressively more input of colder meteoric fluids, which mix with the saline warmer fluid, as derived from stable isotope data measured in the progressively younger barite-associated calcite, fault zone calcite and macro-columnar calcite. The reconstructed mixing model indicates a 50/50 to 90/10 meteoric/saline fluid mixing ratio for the formation of fault zone calcite, and a 10 times higher concentration of carbon in the saline fluid end member compared to the meteoric fluid end member. The presented mixing model of salt-derived fluids with meteoric fluids is suggested to be a general model applicable to structural diagenetic evolution of salt domes world wide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号