首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为准确探讨破碎波作用下气体如何卷入以及气泡的形成与输运特性, 文章结合粒子图像测速技术(particle image velocimetry, PIV)、高速相机和气泡测量系统, 以及基于Navier-Stokes方程的三维数值模型对气泡形成及其运动过程进行研究。研究结果表明: 文章建立的数值模型能合理地捕捉到破碎波作用下气体的卷入及其输运过程; 波浪的破碎会形成较大的气腔, 其破裂过程又将产生大量的气体微团; 气泡会增加水体的紊动, 造成水体与空气交界面附近形成大量的漩涡以及水体的飞溅; 气泡的破裂会消耗大量的水体能量, 同时发现较大的紊动动能与气泡的生成有关, 且气泡数随平均紊动动能的增加呈线性增长关系。  相似文献   

2.
This paper follows from the work of Blenkinsopp and Chaplin (2007) and describes detailed measurements of the time-varying distribution of void fractions generated by breaking waves in freshwater, artificial seawater and natural seawater under laboratory conditions, along with flow visualisation of the entrainment process. The measurements were made with highly sensitive optical fibre phase detection probes and the results demonstrate that although an additional population of fine (d < 0.3 mm) bubbles existed in the seawater cases, the total volume and distribution of entrained air, and the spatial and temporal evolution of the bubble plumes were very similar in all three water types. The influence of water type may be relatively insignificant, but a numerical bubble tracking model shows that the effect of scale is an important consideration when modelling the post-entrainment evolution of breaker-entrained bubble plumes. Consequently the results suggest that while the use of freshwater in laboratory models of oceanic processes can be considered valid in most situations, the effect of scale may impact interpretation of the results.  相似文献   

3.
Highly dependent on boundary conditions, the behaviors of underwater explosion (UNDEX) bubbles would be quite unusual near boundaries that are discontinuous with abrupt changes in shape, e.g. ship structures that have already been deformed by previous attacks. The oscillation features of the UNDEX bubble near the bilge with a circular opening representing previous deformation are studied experimentally with electric-spark-generated bubbles and high-speed photographing. The bubble behaviors are found highly dependent on two non-dimensional variables, D and Φ, representing the opening-bubble distance and the opening diameter, respectively. Seven distinctive oscillation scenarios are summarized from 180 experiments, namely the ‘rim-constrained oscillation’, the ‘inward jet’, the ‘outward jet’, the ‘bump and dimple’, the ‘quasi-spherical oscillation’, the ‘spherical oscillation with jet’ and the ‘spherical oscillation without jet’. The occurrence domains of the scenarios are identified as functions of D and Φ. Significantly affected by the opening, the bubble behaviors are quite different from that near a non-opening bilge; the bubble jet might not be formed, or even develop from inside the bilge, which indicates that the bubble load on the bilge should be re-evaluated. Finally the speeds, initiation time and displacements of the jets in different scenarios are measured and noticeable variation trends are found.  相似文献   

4.
Understanding the upward motion of CO2 droplets or CH4 bubbles in oceanic waters is prerequisite to predict the vertical distribution of the two most important greenhouse gases in the water column after these have been released from the seabed. One of the key parameters governing the fate of droplets or bubbles dissolving into the surrounding seawater as they rise, is the terminal velocity, uT. The latter is strongly influenced by the ability of both compounds to form skins of gas hydrate, if pressure and temperature satisfy thermodynamic framework conditions. Experimental efforts aiming to elucidate the rise properties of CO2 droplets and CH4 bubbles and specifically the influence of hydrate skins open the possibility to obtain a parameterization of uT applicable to both hydrate-coated and pure fluid particles of CH4 and CO2. With the present study, we report on experimentally determined terminal velocities of single CH4 bubbles released to pressurized and temperature-regulated seawater. Hydrate skins were identified by high bubble sphericities and changed motion characteristics. Based on these experiments as well as published data on the rise of hydrate-coated and pure liquid CO2 droplets and physical principles previously successfully used for clean bubbles near atmospheric pressures, a new parameterization of uT is proposed. Model predictions show a good agreement with the data base established from the laboratory-based measurements.  相似文献   

5.
The relationship between surface bubble composition and gas flux to the atmosphere was examined at five large seeps from the Coal Oil Point seep field (Santa Barbara Channel, CA, USA). The field research was conducted using a flux buoy designed to simultaneously measure the surface bubbling gas flux and the buoy’s position with differential GPS, and to collect gas samples. Results show that the flux from the five seeps surveyed a total of 11 times ranged from 800–5,500 m3 day?1. The spatial distribution of flux from the five seeps was well described by two lognormal distributions fitted to two flux ranges. The seafloor and sea surface composition of bubbles differed, with the seafloor bubbles containing significantly more CO2 (3–25%) and less air (N2 and O2). At the sea surface, the mole fraction of N2 correlated directly with O2 (R 2 = 0.95) and inversely with CH4 (R 2 = 0.97); the CO2 content was reduced to the detection limit (<0.1%). These data demonstrate that the bubble composition is modified by gas exchange during ascent: dissolved air enters, and CO2 and hydrocarbon gases leave the bubbles. The mean surface composition at the five seeps varied with water depth and gas flux, with more CH4 and higher CH4/N2 ratios found in shallower seeps with higher flux. It is suggested that the CH4/N2 ratio is a good proxy for total or integrated gas loss from the rising bubbles, although additional study is needed before this ratio can be used quantitatively.  相似文献   

6.
High-frequency propagation close to an active surf line is explored with 12and 100-kHz propagation paths together with measurements of bubble clouds, bubble size distributions, and waves. Breaking waves inject massive bubble plumes that are mixed downwards from the roller region by intense turbulence. If these injections follow one another at intervals less than the time taken for the bubbles to rise to the surface, acoustic signals will be continuously blocked, forming an acoustical barrier that effectively inhibits any propagation. Occasionally, waves break seaward of this barrier. In this case, dense bubble clouds are mixed down beneath the air entrainment zone, but there is sufficient time for them to disappear before succeeding breakers, allowing intermittent high-frequency propagation recharge the bubble field. The duration and shape of signal dropouts are then determined by the selective removal of bubbles by buoyancy and dissolution. In addition to turbulence created by the air entrainment process, a lower level of continuous background turbulence may be generated by interaction of residual currents with the wave boundary layer. Our observations illustrate the variable character of acoustic blocking by bubble clouds and serve as a basis for quantitative analysis of these effects with a 2D propagation model coupled to 2D models of bubble cloud evolution and background turbulence  相似文献   

7.
水-气平衡法被广泛地应用于海水CO2分压(partial pressure,pCO2)的测定。该方法采用水-气平衡器,使海水与平衡器上部顶空中的空气进行CO2交换,达到平衡后测定该顶空空气中CO2的浓度,再换算成海水pCO2。水-气平衡器是海水pCO2测量仪器的关键部件,其性能在很大程度上决定所获得的pCO2数据的准确度和可靠性。本文介绍了水-气平衡器的平衡原理、平衡器时间常数的测量方法及影响因素,归纳了现有的4种用于海水pCO2测量的水-气平衡器即喷淋式、鼓泡式、层流式及混合式平衡器的结构与特点,着重介绍了两种新型的水-气平衡器即基于射流器的鼓泡式平衡器和基于球形降膜的层流式平衡器,比较了不同水-气平衡器的尺寸、运行参数及时间常数,分析了设计和应用水-气平衡器时需考虑的因素。本文可为使用水-气平衡器测定海水pCO2的技术人员提供技术参考。  相似文献   

8.
It has been shown that the main mechanism which produces the Knudsen region of the ambient noise spectrum is the free oscillations of bubbles. Some experimental results which seem to confirm these facts and to refute various alternative theories involving spray impacts and turbulent forcing of bubble oscillations are described. The results show that the mechanism which excites the bubbles is their formation at the surface; once a bubble has been formed and has radiated the excess energy resulting from its formation, it is more or less silent. It is possible for extremely violent conditions to re-excite bubbles by breaking them into smaller fractions, but it is not clear how important this process would be in the ocean. How the entrainment process imparts energy to the bubble is discussed  相似文献   

9.
In order to clarify the structure of the strong tidal current at the Naruto Strait in the Seto Inland Sea of Japan, the sea-level values were observed in the strait and the current measurements were made with an Acoustic Doppler Current Profiler (ADCP).The tidal volume transports for M2 and S2 tides were about 74×103 and 26×103 m3 sec–1, respectively. The horizontal profile of the velocity at the phase of the strong tidal current compares favorably with a theoretical profile of the two-dimensional steady turbulent jet except for the side parts of the profile. Moreover, the entrainment rate of the surrounding water into the strong tidal jet was estimated from the difference of mass flux between two cross-sections at the strait, the entrainment rate and entrainment constant for both the northward and southward flows being about 1.3–2.5×10–4m–1 and about 0.03–0.05, respectively.  相似文献   

10.
The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be generated. In real application, the bubble may move under the combined action of walls in different directions when it forms at the corner of a pipe or at the bottom of a dam. The motion of the bubble shows complex and nonlinear characteristics under these conditions. In order to investigate the bubble pulse features near complex walls, a horizontal wall and a vertical wall are put into the experimental water tank synchronously, and an electric circuit with 200 voltages is designed to generate discharge bubbles, and then experimental study on the bubble pulse features under the combined action of horizontal and vertical walls is carried out. The influences of the combined action of two walls on the bubble shape, pulse period, moving trace and inside jet are obtained by changing the distances from bubble center to the two walls. It aims at providing references for the relevant theoretical and numerical research.  相似文献   

11.
This research quantifies the rate and volume of oil and gas released from two natural seep sites in the Gulf of Mexico: lease blocks GC600 (1200 m depth) and MC118 (850 m depth). Our objectives were to determine variability in release rates and bubble size at five individual vents and to investigate the effects of tidal fluctuations on bubble release. Observations with autonomous video cameras captured the formation of individual bubbles as they were released through partially exposed deposits of gas hydrate. Image processing techniques determined bubble type (oily, gaseous, and mixed: oily and gaseous), size distribution, release rate, and temporal variations (observation intervals ranged from 3 h to 26 d). A semi-automatic bubble counting algorithm was developed to analyze bubble count and release rates from video data. This method is suitable for discrete vents with small bubble streams commonly seen at seeps and is adaptable to multiple in situ set-ups. Two vents at GC600 (Birthday Candles 1 and Birthday Candles 2) were analyzed. They released oily bubbles with an average diameter of 5.0 mm at a rate of 4.7 bubbles s−1, and 1.3 bubbles s−1, respectively. Approximately 1 km away, within the GC600 seep site, two more vents (Mega Plume 1 and Mega Plume 2) were analyzed. These vents released a mixture of oily and gaseous bubbles with an average diameter of 3.9 mm at a rate of 49 bubbles s−1, and 81 bubbles s−1, respectively. The fifth vent at MC118 (Rudyville) released gaseous bubbles with an average diameter of 3.0 mm at a rate of 127 bubbles s−1. Pressure records at Mega Plume and Rudyville showed a diurnal tidal cycle (24.5 h). Rudyville was the only vent that demonstrated any positive correlation (ρ = 0.60) to the 24.5 h diurnal tidal cycle. However, these observations were not conclusive regarding tidal effects on bubble release.  相似文献   

12.
13.
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to ∼650 mmol L−1 at ∼150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at ∼60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (δD-CH4 = −170.8‰ (SMOW), δ13C-CH4 = −61.0‰ (V-PDB), δ13C-C2H6 = −44.0‰ (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 × 106 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.  相似文献   

14.
The local surface deformation resulting from the oblique impact of a columnar water jet has been computed, using a three-dimensional large eddy simulation, as a model of the overturning jet of a breaking wave. The emergence of the secondary jet from the front face of the initial jet has been examined and the organisation of the vortices within the jet characterised. As the secondary jet emerges, the vorticity field becomes unstable under the action of the strong shear beneath the jet surface and pairs of longitudinal counter-rotating vortices stretched along the direction of the jet projection are formed. The presence of these longitudinal vortex pairs creates convergent surface flows, resulting in the formation of longitudinal scars on the rear face of the projecting jet. Following significant growth of the scars on both its upper and lower surfaces, the jet decouples into fingers. The lateral widths of the longitudinal vortices provide a minimum measure of the finger size. A horizontal Froude number Frh, representing a measure of strength of horizontal shear in a gravity-dominated impacting flow is defined, which characterises the organisation of the longitudinal vortices occurring in the shear flow, and the resultant formation of scars and fingers. For higher Frh, stronger longitudinal vortices and deeper scars are formed at longer lateral intervals, enhancing the fingering process during the splashing event. Fundamental features of material transport in the vicinity of the surface of jets (e.g. gas transfer across a sea surface) are related to the entrainment of surface fluid by the longitudinal vortices, and is thus also characterised by Frh.  相似文献   

15.
Focusing on physical processes, we aim at constraining the dynamics of argon (Ar), a biogeochemically inert gas, within first year sea ice, using observation data and a one-dimensional halo-thermodynamic sea ice model, including parameterization of gas physics. The incorporation and transport of dissolved Ar within sea ice and its rejection via gas-enriched brine drainage to the ocean, are modeled following fluid transport equations through sea ice. Gas bubbles nucleate within sea ice when Ar is above saturation and when the total partial pressure of all three major atmospheric gases (N2, O2 and Ar) is above the brine hydrostatic pressure. The uplift of gas bubbles due to buoyancy is allowed when the brine network is connected with a brine volume above a given threshold. Ice-atmosphere Ar fluxes are formulated as a diffusive process proportional to the differential partial pressure of Ar between brine inclusions and the atmosphere. Two simulations corresponding to two case studies that took place at Point Barrow (Alaska, 2009) and during an ice-tank experiment (INTERICE IV, Hamburg, Germany, 2009) are presented. Basal entrapment and vertical transport due to brine motion enable a qualitatively sound representation of the vertical profile of the total Ar (i.e. the Ar dissolved in brine inclusions and contained in gas bubbles; TAr). Sensitivity analyses suggest that gas bubble nucleation and rise are of most importance to describe gas dynamics within sea ice. Ice-atmosphere Ar fluxes and the associated parameters do not drastically change the simulated TAr. Ar dynamics are dominated by uptake, transport by brine dynamics and bubble nucleation in winter and early spring; and by an intense and rapid release of gas bubbles to the atmosphere in spring. Important physical processes driving gas dynamics in sea ice are identified, pointing to the need for further field and experimental studies.  相似文献   

16.
Vessels operating in shallow waters require careful observation of the finite-depth effect. In present study, a Rankine source method that includes the shallow water effect and double body steady flow effect is developed in frequency domain. In order to verify present numerical methods, two experiments were carried out respectively to measure the wave loads and free motions for ship advancing with forward speed in head regular waves. Numerical results are systematically compared with experiments and other solutions using the double body basis flow approach, the Neumann-Kelvin approach with simplified m-terms, and linearized free surface boundary conditions with double-body m-terms. Furthermore, the influence of water depths on added mass and damping coefficients, wave excitation forces, motions and unsteady wave patterns are deeply investigated. It is found that finite-depth effect is important and unsteady wave pattern in shallow water is dependent on both of the Brard number τ and depth Froude number Fh.  相似文献   

17.
Two results that are fundamentally different from what takes place in a dry atmosphere have been obtained for adiabatic motions of unsaturated moist air: (1) the steady helical motion of moist air with collinear velocity and vorticity vectors everywhere is dynamically impossible; (2) the spontaneous amplification (generation) of helicity in a moist air due to baroclinicity is dynamically and thermodynamically feasible. In the absence of helicity flux through the boundary of the domain occupied by air flows, the difference between the values of integral helicity H at time instant t delaying at a small time interval from the initial instant t 0 (at which the instantaneous state of air motion is isomorphic either to a steady Beltrami flow or to an irrotational flow) and the initial value of H increases proportionally to (t ? t 0)4. The nonzero value of the proportionality factor is ensured by the difference in values of the Poisson ratio for dry air and water vapor, respectively.  相似文献   

18.
Formation of seep bubble plumes in the Coal Oil Point seep field   总被引:2,自引:2,他引:0  
The fate of marine seep gases (transport to the atmosphere or dissolution, and either bacterial oxidation or diffusion to the atmosphere) is intimately connected with bubble and bubble-plume processes, which are strongly size-dependent. Based on measurements with a video bubble measurement system in the Coal Oil Point seep field in the Santa Barbara Channel, California, which recorded the bubble-emission size distribution (Φ) for a range of seep vents, three distinct plume types were identified, termed minor, major, and mixed. Minor plumes generally emitted bubbles with a lower emission flux, Q, and had narrow, peaked Φ that were well described by a Gaussian function. Major plumes showed broad Φ spanning very small to very large bubbles, and were well described by a power law function. Mixed plumes showed characteristics of both major and minor plume classes, i.e., they were described by a combination of Gaussian and power law functions, albeit poorly. To understand the underlying formation mechanism, laboratory bubble plumes were created from fixed capillary tubes, and by percolating air through sediment beds of four different grain sizes for a range of Q. Capillary tubes produced a Φ that was Gaussian for low Q. The peak radius of the Gaussian function describing Φ increased with capillary diameter. At high Q, they produced a broad distribution, which was primarily described by a power law. Sediment-bed bubble plumes were mixed plumes for low Q, and major plumes for high Q. For low-Q sediment-bed Φ, the peak radius decreased with increasing grain size. For high Q, sediment-bed Φ exhibited a decreased sensitivity to grain size, and Φ tended toward a power law, similar to that for major seep plumes.  相似文献   

19.
An axisymmetric underwater vehicle (UV) at a steady drift angle experiences the complex three-dimensional crossflow separation. This separation arises from the unfavorable circumferential pressure gradient developed from the windward side toward the leeward side. As is well known, the separated flow in the leeward side gives rise to the formation of a pair of vortices, which affects considerably the forces and moments acting on the UV. In this regard, the main purpose of the present study is to evaluate the role of the leeward vortical flow structure in the hydrodynamic behavior of a shallowly submerged UV at a moderate drift angle traveling beneath the free surface. Accordingly, the static drift tests are performed on the SUBOFF UV model using URANS equations coupled with a Reynolds stress turbulence model. The simulations are carried out in the commercial code STARCCM+ at a constant advance velocity based on Froude number equal to Fn = 0.512 over submergence depths and drift angles ranging from h = 1.1D to h = ∞ and from β = 0 to β = 18.11°, respectively. The validation of the numerical model is partially conducted by using the existing experimental data of the forces and moment acting on the totally submerged bare hull model. Significant interaction between the low-pressure region created by the leeward vortical flow structure and the free surface is observed. As a result of this interaction, the leeward vortical flow structure appears to be largely responsible for the behavior of the forces and moments exerted on a shallowly submerged UV at steady drift.  相似文献   

20.
《Coastal Engineering》1987,11(2):115-129
The continuity equation for mean longshore current velocity, V = gmT sin 2θb, agrees with selected field and laboratory data covering a wide range of conditions. Agreement between continuity equation and data is improved by eliminating those laboratory data which imply deep-water wave crests at angles near or greater than 90 degrees to the shoreline. Agreement between continuity equation and data is further improved by adjusting breaker angles to account for convection of the breaker point by the longshore current. Breaker point convection increases breaker angle by an amount predictable from the analysis developed here. This increase in angle is significant in those laboratory experiments with breaking wave crests at high angles to the shoreline.In the continuity equation, m is bottom slope, T is wave period, and θb is breaker angle, but breaker height does not appear. According to radiation stress theory, mean velocity does depend on breaker height, but only weakly. Consistency between the two approaches would require a dimensionless velocity, Cb/gT, to be relatively constant, which it is. (The same dimensionless velocity appears in the analyses of breaker point convection.) The continuity equation is functionally independent of friction and mixing, in keeping with its derivation from simple conservation of mass considerations. The equation has no adjustable coefficients. The degress of agreement with data and the internal consistency of the analysis suggests that it is a good predictor of mean velocity in ordinary longshore currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号