首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tills from an exposure in Wildschönau Valley, northern Austria were examined using microsedimentological techniques. The tills exhibit a range of microstructures indicative of soft sediment deformation within temperate subglacial bed conditions. The tills can be subdivided at the macroscale into a lower grey and upper red till both of which exhibit some sedimentological variations; however, at the micro-level the tills appear essentially identical. The microstructures in the tills are illustrative of structures developed during deformation both during and following their emplacement. Of note are the microshears within these tills that are demonstrative of changes in applied stress. Both low (<25°) and high angle (>25°) microshears were mapped and their fabric data analyzed. The microshears show a change in stress levels ascending through successive till units. The changes in stress are demonstrative of spatially and temporally changing rheological conditions undergone by the subglacial tills during deformation, ongoing deposition/ emplacement and stress localization. These findings indicate that microstructures reveal local deformation conditions in tills and a more detailed micro-history of paleo-stress.  相似文献   

3.
Summary ?The Betroka sinistral shear belt is a major geotectonic unit in the Precambrian of southern Madagascar. It consists of migmatitic paragneiss commonly interlayered with phlogopite-bearing diopsidite, phlogopite-humite-diopside-spinel marble, sillimanite-garnet quartzite and syn-tectonic S-type leucogranite. H?gbomite occurs sporadically in the migmatitic paragneiss in patches of magnetite with hercynite, and at the border of magnetite where it is in contact with hercynite, rare ilmenite, rutile and cordierite, which contains a network of chlorite, pyrophyllite and rare corundum/diaspore. XMg = Mg/(Mg + Fe) decreases as follows: Crd > Bt > Chl > H?g > Hc. The textural relations suggest the following h?gbomite-participating reactions: Ti-bearing hercynite ↠ hercynite + h?gbomite (intergrown/exsolution lamellae) ilmenite + cordierite ↠ hercynite + h?gbomite + rutile + chlorite/pyrophyllite   h?gbomite ↠ hercynite + ilmenite + corundum The chemical composition of h?gbomite varies substantially from grain to grain in individual samples and from sample to sample, this variation being highly dependent on the associated minerals. There is a weak zoning from core to rim in individual grains intergrown with hercynite and also in grains at the margin of hercynite, but this zoning is overprinted by zones formed at grain rims depending on the surrounding phases. In contact with hercynite, h?gbomite has FeO (total Fe as FeO) 27.1–28.5 wt.%, and MgO 4.5–5.8 wt.%, and in contact with magnetite FeO 24.9–26.5 wt.%, and MgO 6.0–8.5 wt.% and the core contents are within these values. TiO27.5–4.0 wt.% and Al2O362.0–59.0 wt.% show zonations with increase from core to rim. Estimated P-T conditions are 6.0 ± 1.0 kbar and 700 ± 100 °C reached during a peak metamorphic stage of the Pan-African orogeny. However, the presence of diaspore with exsolved hercynite-magnetite indicates extreme retrograde metamorphism in the decompressional central part of this shear belt of southern Madagascar.
Zusammenfassung ?H?gbomit in migmatitischem Paragneis von Vohidava in der Betroka Scherzone im südlichen Pr?kambrium von Madagaskar Die sinistrale Betroka Scherzone ist eine ausgepr?gte tektonische Einheit des Pr?kambriums in Süd Madagaskar. Sie besteht aus migmatitischem Paragneis, in dem Phlogopit-führender Diopsidit, Phlogopit-Humit-Diopsid-Spinell-Marmor, Sillimanit-Granat-Quarzit und syntektonischer S-Typ Granit eingelagert sind. Im migmatitischen Paragneis kommen sporadisch H?gbomit/Hercynit Nester im Magnetit vor und am Magnetitrand findet sich H?gbomit im Kontakt mit Hercynit und Cordierit, der mit einem Netzwerk aus Chlorit/Pyrophyllit gefüllt ist, sowie sporadisch mit Korund/Diaspor, Ilmenit und Rutil. XMg = Mg/(Mg + Fe) nimmt in folgender Reihung ab: Crd > Bt > Chl > H?g > Hc. Aus den texturellen Beziehungen werden folgende H?gbomit-partizipierende Reaktionen abgeleitet: Ti-führender Hercynit ↠ Hercynit + H?gbomit (verwachsen/Entmischungslamellen)   H?gbomit ↠ Hercynit + Ilmenit + Korund Die chemische Zusammensetzung von H?gbomit variiert betr?chtlich von Korn zu Korn in einer Probe und von Probe zu Probe; wobei die Variation von den Kontaktmineralen abh?ngt. H?gbomit im Hercynit hat eine schwache Zonierung von Kern zum Rand. Im H?gbomit am Hercynitrand ist die Kern-Rand-Zonierung durch die von den Kontaktmineralen abh?ngige Randzusammensetzung überpr?gt. Im Kontakt zum Hercynit hat H?gbomit 27,1–28,5 Gew.% FeO (total Fe als FeO) und 4,5–5,8 Gew.% MgO und im Kontakt zu Magnetit 24,9–26,5 Gew.% FeO und 6,0–8,5 Gew.% MgO, die Kernzusammensetzung liegt zwischen den beiden Randwerten. TiO2nimmt vom Kern zu den R?ndern von 7,5 bis 4,0 Gew.% ab und Al2O3von 62,0 bis 59,0 Gew.%. Die P-T Bedingungen des Metamorphose-Peaks w?hrend der Pan-Afrikanischen Orogenese erreichten 6,0 ± 1,0 Kbar und 700 ± 100 °C. Die sp?te Bildung von Diaspor und die Hercynit-Magnetit-Entmischung weisen auf eine tiefgreifende retrograde Metamorphose im Dekompressions-Zentralbereich der Betroka-Scherzone im südlichen Madagaskar hin.


Received January 15, 1999;/revised version accepted July 6, 1999  相似文献   

4.
An important design parameter in cement-grouted soil nailed structures is the shear strength at the interface between the grouted nail and the surrounding soil. Both field and laboratory pull-out tests are normally used to investigate this interface shear strength. However, these tests have some limitations. In this study, direct shear box tests are adopted to investigate the interface shear strength behaviour between a completely decomposed granite (CDG) soil and a cement grout plate. Tests were carried out in a large direct shear test apparatus over a range of constant normal stress, soil moisture content, and soil–cement grout interface surface waviness. The laboratory test procedures are briefly described and the main test results are presented, followed by a discussion of the shear behaviour of the soil–cement grout interface. The interface shear behaviour is compared with the shear strength behaviour of the same soil tested under comparable conditions. It is shown that the shear stress–displacement behaviour of the soil–cement grout interface is similar to that of the soil alone. The test results indicate that the interface shear strength of the CDG and cement grout material depends on the normal stress level, the soil moisture content, and the interface surface waviness.  相似文献   

5.
Zhai  Qian  Rahardjo  Harianto  Satyanaga  Alfrendo  Dai  Guoliang 《Acta Geotechnica》2019,14(6):1977-1990
Acta Geotechnica - Many shallow foundations are constructed within the soil layer above the groundwater table, where the soil remains unsaturated, and the failure of shallow foundation is mostly...  相似文献   

6.
This paper presents a series of cyclic 2D direct shear tests on sand–rough material interfaces under constant normal load (CNL) and constant normal stiffness (CNS) conditions. The aim of these tests is to describe the behavior of the soil–pile contact subjected to a large number of cycles due to environmental or anthropic loadings. These cycles (typically 104 or less due to an early rupture) are small (10, 20 and 40 kPa in terms of shear stress). A new interpretation of the direct shear tests is proposed. The sample of soil is schematically composed of a sheared interface and of a buffer under oedometric load. The problem of sand leakage between the shear box and the rough plate, classical phenomenon in this type of test, is focused. The effect of initial density, position of “center of cycles” in stress plane (mean cyclic variables) and cyclic amplitude is investigated. The cycles are defined by the initial mean cyclic normal stress, the level of initial mean cyclic stress ratio and the normalized cyclic amplitude. Under CNL condition, either dilation or contraction is exhibited, in agreement with the characteristic state developed by Luong (International symposium on soils under cyclic and transient loading, Swansea, 7–11 January, pp 315–324, 1980). The influence of a prescribed normal stiffness is especially considered. It can be highlighted that CNS cyclic paths are always contractive. This contraction results in a drop of mean cyclic normal stress often called degradation of friction.  相似文献   

7.
In western Bohemia, the Drahotín (gabbro-diorite) and Mutěnín (gabbronorite-diorite-syenite) intrusions show different origins and patterns of geochemical evolution. Parental magmas of the Drahotín intrusion were derived predominantly from enriched mantle sources, and the melts have undergone a significant degree of assimilation-fractional crystallization (AFC) during their ascent and/or emplacement into the crust. In contrast, the compositional variation of the complex Mutěnín intrusion cannot be explained by simple AFC processes, but more likely reflects the involvement of several parental magmas. The gabbronorite was derived from a depleted mantle source, whereas the diorite/syenite stem from a mixed mantle-crust reservoir. The contrasting evolution of the Drahotín and Mutěnín intrusions may be due to their melt derivation and magma emplacement under different tectonothermal regimes at different times.  相似文献   

8.
Lineations within mylonites exhumed in the hanging wall of New Zealand's active Alpine Fault zone have a complicated relationship to contemporary plate kinematics. The shear zone is triclinic and macroscopic object lineations are not usually parallel to the simple shear direction, despite high total simple shear strains (γ ≥ 150). This is mostly because the lineations are inherited from pre-mylonitic fabrics, and have not been rotated into parallelism with the mylonitic stretching direction (which pitches c. 44° in the fault plane). Furthermore, some lineations have been variably rotated depending on whether they are present in shear bands or microlithons, which accommodated bulk strains with different vorticities. Total strains required to obtain parallelism between the finite maximum principal stretching direction calculated from transpression models and these mylonitic lineations, are pure shear stretch, S1 ∼ 3.5; simple shear 11.7 < γ < 150. The observations and numerical models also show that linear features are not rotated much during simple shear because they initially lie within the shear plane, and that inherited fabric components may not be destroyed until very high simple shear strains have been attained.  相似文献   

9.
By measuring S spacing, C spacing and the SC angle (α) in deformed rocks, this paper investigates the geometry of previously published examples of SC and SC-like structures on a scale range between micrometres and several hundred kilometres. The results indicate that common SC fabrics of thin-section, hand-specimen and outcrop scale, and conjugate fault/mylonite zones of map scale define a simple function Cspacing=2Sspacing, which depicts a scale-invariant geometry over ten orders of magnitude. Logarithmic plots of cumulative frequency suggest that the SC fractal set (D=0.13) is restricted to the scale range between 600–800 μm and 1 km where genuine SC structures, characterized by antithetic shear on the S planes, can be formed. Below 600–800 μm, grain scale processes seem to influence the development of SC structures. Above the upper limit (1 km), only SC-like structures with duplex kinematics (synthetic shear on S planes) occur. The SC and SCC′ fractals are envisaged as self-similar structures where the foliations work as both S or C planes, depending on which scale is considered.  相似文献   

10.
The authors analyze the geodynamic settings of large fields of spodumene pegmatites hosting Li and complex (Li, Cs, Ta, Be, and Sn) deposits of rare metals within the Central Asian Fold Belt. Most of the studied fields show a considerable time gap (from few tens of Myr to hundreds of Myr) between the spodumene pegmatites and the associated granites, which are usually considered parental. This evidence necessitates recognition of an independent pegmatite stage in the magmatic history of some pegmatite-bearing structures in Central Asia. The Precambrian–Late Mesozoic interval is marked by a close relationship between the large fields of spodumene pegmatites and extension settings of continental lithosphere. They occur either as (1) zones of long-lived deep faults bordering on trough (rift) structures experiencing the tectonic-magmatic activity or as (2) postcollisional zones of shearing and pull-apart dislocations. Thus, large fields of spodumene pegmatites might serve as indicators of continental-lithosphere extension. Important factors favoring the formation of rare-metal pegmatites both in collision zones and continental-rift settings are the presence of thick mature crust dissected by long-lived, deeply penetrating (down to the upper mantle) fault zones. They ease the effect of deep sources of energy and substance on crustal chambers of granite and pegmatite formation.  相似文献   

11.
Use of scrap tyres in isolation systems for seismic damping, requires a knowledge of the engineering properties of sand–rubber mixtures (SRM). The primary objective of this study is to assess the influence of granulated rubber and tyre chips size and the gradation of sand on the strength behaviour of SRM by carrying out large-scale direct shear tests. A large direct shear test has been carried out on SRM considering different granulated rubber and tyre chip sizes and compositions. The following properties were investigated to know the effect of granulated rubber on dry sand; peak shear stress, cohesion, friction angle, secant modulus and volumetric strain. From the experiments, it was determined that the major factors influencing the above-mentioned properties were granulated rubber and tyre chip sizes, percentage of rubber in SRM and the normal stress applied. It was observed that the peak strength was significantly increased with increasing granulated rubber size up to rubber size VI (passing 12.5 mm and retained on 9.5 mm), and by adding granulated rubber up to 30%. This study shows that granulated rubber size VI gives maximum shear strength values at 30% rubber content. It was also found that more uniformly graded sand gives an improved value of shear strength with the inclusion of granulated rubber when compared to poorly graded sand.  相似文献   

12.
To place constraints on the formation and deformation history of the major Variscan shear zone in the Bavarian Forest, Bavarian Pfahl zone, SW Bohemian Massif, granitic dykes and their feldspar-phyric massive host rock (so-called palite), zircons were dated by the U–Pb isotope dilution and Pb-evaporation methods. The dated samples comprise two host rocks and four dykes from a K-rich calc-alkaline complex adjoining the SW part of the Bavarian Pfahl shear zone. The palites, which appear to be the oldest magmatic rocks emplaced in the shear zone, yield ages of 334±3, 334.5±1.1 Ma (average 207Pb/206Pb-evaporation zircon ages) and 327–342 Ma (range of U/Pb zircon ages) suggesting a Lower Carboniferous age for the initiation of the Pfahl zone. Absence of inherited older cores in all investigated zircons indicates that incorporation of crustal zircon material has played virtually no role or that the melting temperature was very high. Determination of the dyke emplacement age is complicated by partial Pb-loss in most of the fractions analysed. This Pb-loss can be ascribed to higher U content of the dyke zircons compared to those from host rock. Upper discordia intercept ages of the different dykes range from 322±5 to 331±9 Ma. The dykes are pre- to synkinematic with respect to penetrative regional mylonitisation along the Pfahl zone, and the upper intercept ages provide a maximum age for this tectonic event.  相似文献   

13.
As the boundary between the Indochina and the South China blocks, the Ailao Shan-Red River (ASRR) shear zone underwent a sinistral strike-slip shearing which is characterized by ductile deformation structures along the Ailao Shan range. The timing issue of left-lateral shearing along the ASRR shear zone is of first-order importance in constraining the nature and regional significance of the shear zone. It has been, therefore, focused on by many previous studies, but debates still exist on the age of initiation and termination of shearing along the shear zone. In this paper, we dated 5 samples of granitic plutons (dykes) along the Ailao Shan shear zone. Zircon U–Pb ages of four sheared or partly sheared granitic rocks give ages of 30.9 ± 0.7, 36.6 ± 0.1, 25.9 ± 1.0 and 27.2 ± 0.2 Ma, respectively. An undeformed granitic dyke intruding mylonitic foliation gives crystallization age of 21.8 ± 1 Ma. The Th/U ratios of zircon grains from these rocks fall into two populations (0.17–1.01 and 0.07–0.08), reflecting magmatic and metamorphic origins of the zircons. Detailed structural and microstructural analysis reveals that the granitic intrusions are ascribed to pre-, syn- and post-shearing magmatisms. The zircon U–Pb ages of these granites provide constraints on timing of the initiation (later than 31 Ma from pre-shearing granitic plutons, but earlier than 27 Ma from syn-shearing granitic dykes) and termination (ca. 21 Ma from the post-shearing granitic dykes) of strong ductile left-lateral shearing, which is consistent with previous results on the Diancang Shan and Day Nui Con Voi massifs in the literature. We also conclude that the left-lateral shearing along the ASRR shear zone is the result of southeastward extrusion of the Indochina block during the Indian–Eurasian plate collision. Furthermore, the left-lateral shearing was accompanied by the ridge jump, postdating the opening, of the South China Sea.  相似文献   

14.
The microstructures of cm-scale displacement faults offsetting unlithified sequences of finely interbedded sands, silts and clays from outcrops in Denmark have been examined. A variety of shear band types are recognised based on their grain-scale deformation mechanism and internal structure. Shear bands in a Jurassic sequence exposed along the coastline of Bornholm are characterised by intense cataclasis of both sand and clay layers. This deformation mechanism is accompanied by extensive grain scale mixing along discrete shear bands to give a fault rock composition that reflects the relative amount of sand and clay within the faulted sequence. In contrast, shear bands at Nr. Lyngby and Jensgaard, both on the Jutland coast, are characterised by granular flow within the sand units. Grain scale mixing is subdued at these locations so that layers maintain their integrity across the shear band to form a layered internal structure of sand, silt and clay smears. In some instances, particularly at Nr. Lyngby, clays have deformed in a brittle manner so that they do not contribute material to the shear band, which is then comprised exclusively of coarser-grained components. The different deformation mechanisms and internal structures of shear bands are thought to be controlled by burial depth at the time of faulting.  相似文献   

15.
Sun  Meng  Cao  Junnan  Cao  Jingjing  Zhang  Shuai  Chen  Yunmin  Bate  Bate 《Acta Geotechnica》2022,17(7):2633-2649

Bioremediation is widely used to improve ground soil by introducing calcium carbonate (CaCO3). Shear wave velocity (Vs) is usually adopted to evaluate effect but the microscopic mechanism is unclear. The discrete element method (DEM), a promising tool for simulating the behaviors of cohesive and noncohesive materials, was used in this study to simulate Vs evolution and wave propagation path of sand reinforced by calcite precipitates. Two basic calcite precipitate forms are proposed for representing individual calcite precipitation (CaCO3-P) and calcite aggregation (CaCO3-C). Contact cementation between adjacent sand grain pairs was the primary association pattern for calcite precipitates at a low calcite content. At a higher calcite content, the preferential shear wave propagation pathway is the clusters cemented by CaCO3-C. With calcite content increasing from 0 to 9%, the coordination number and average contact force increased. Vs increased from 169.73 to 2132.64 m/s but had high variability due to the spatial distribution. The results suggest that the calibrated DEM model can elucidate the microscopic mechanisms and evaluate the enhancement effect of microorganism-reinforced soil.

  相似文献   

16.
International Journal of Earth Sciences - In the Western Alps, a steeply dipping km-scale shear zone (the Ferriere-Mollières shear zone) cross-cuts Variscan migmatites in the...  相似文献   

17.
Jinfeng Ma  Igor B. Morozov   《Tectonophysics》2007,441(1-4):97-114
A nearly 160-km long Wollaston Lake Reflector (WLR) observed in seismic reflection profile S2b of the 1994 Lithoprobe Trans-Hudson Orogen transect (THOT) in northern Saskatchewan (Canada) is among the most spectacular and well-recorded features imaged within the crystalline crust. Based on modeling of its normal-incidence reflectivity, the observed bright spot reflector was originally interpreted as a series of tabular diabase intrusions. In order to further elucidate its structure, we reprocessed line S2b and analysed the WLR for the Amplitude Variations with Offset (AVO). By contrast to conventional (approximate) AVO analysis, we used the exact Zoeppritz equations and considered a thin-layer (mixed positive and negative polarities) reflectivity. The results suggest two possible interpretations of the WLR: 1) the reflector caused by a massive mafic intrusion as suggested earlier, in which case the intruded rocks should have anomalous Poisson's ratios of σ ≥ 0.33, and 2) the WLR represents a silicified shear zone, with only moderate (e.g.,  5–10%) alteration of the host rock and σ ≈ 0.2. Although both of these models may to some extent co-exist within the WLR, its brightness, sharpness, great lateral extent and smooth shape favour the second interpretation.In both models, a fractured fluid-filled zone within a major crustal detachment should have played a key role in the formation of the WLR. The association of the reflector with laterally- and depth-migrating fluids is also supported by magneto-telluric measurements of crustal conductivity beneath the WLR. Analogies from the studies of the Kola Superdeep Borehole (Russia), where free or metamorphic fluids were found at comparable depths, also suggest that fluids may contribute to WLR structure and formation.  相似文献   

18.
The small strain shear stiffness G0 of the soil is of interest and importance in both theory and practice. It is expected that for granular materials G0 would slightly increases with over-consolidation ratio (OCR). However, laboratory tests indicate that G0 may decrease with increasing OCR, especially for loose specimens, which is counterintuitive. To explore the underlying mechanism, discrete element method (DEM) is used to investigate the effect of OCR on G0. The DEM simulations successfully capture the laboratory observations. The analyses at the particulate level reveal that the decrease in small strain stiffness is mainly due to the decreases in coordination number and the uniformity of contact force distribution during unloading process.  相似文献   

19.
The northerly dipping Sha’it–Nugrus shear zone (SNSZ) is the boundary separating the Central Eastern Desert from the South Eastern Desert of Egypt. The hangingwall of this shear zone is composed of low-grade metavolcanics and ophiolitic nappes of the Central Eastern Desert, while the footwall consists of South Eastern Desert high-grade metapsammitic gneisses (Migif-Hafafit gneissic complex). The SNSZ is about 700 m thick and represents the shear foliated lower parts of the hangingwall and upper parts of the footwall. A significant part of the SNSZ has been truncated by a later normal fault along Wadi Sha’it, however the SNSZ is well-preserved along Wadi Nugrus. Features of the SNSZ include shear-related schistosity (termed Ss), mylonite zones, sheared syn-kinematic granitoid intrusions, diverse metasomatism and metamorphic effects (higher T overprinting of hangingwall lithologies and retrogression of footwall lithologies). Shear-sense indicators clearly show top-to-N or NW displacement sense. SNSZ structures overprint arc collision related nappe structures (~680 Ma) and are therefore post-arc collision. SNSZ syn-kinematic intrusives have been dated at ~600 Ma. The SNSZ is deformed (regionally and locally folded and thrust dissected) during later NE–SW compressive tectonism. The SNSZ had an originally approximately E–W strike, low-angle N-dip and a normal shear sense, making this an example of a low-angle normal ductile shear (LANF) or detachment fault. The steep NE dip of Ss foliations and low-pitching slip lineations along Wadi Nugrus are due to NW–SE folding of the SNSZ, and do not indicate a sinistral strike-slip shear zone. The normal shear sense activity is responsible for juxtaposing the low-grade Central Eastern Desert lithologies against South Eastern Desert gneisses. A displacement of 15–30 km is estimated on the SNSZ, which is comparable to LANF displacements in the Basin and Range province of the western USA. Frictional resistance along this shear was probably reduced by high magmatic fluid pressure and hydrothermal fluid pressure. The vastness and diversity of the hydrothermal activity along this shear zone is a characteristic of other LANFs in the Eastern Desert, e.g. at Gabal El-Sibai, and may be Gabal Meatiq. The SNSZ formed during the Neoproterozoic extensional tectonic phase of Eastern Desert that began ~600 Ma, and followed arc collision and NW-ward ejection of nappes.  相似文献   

20.
Geological, petrological and structural observations were obtained along a 30-km-long traverse across a segment of the Valle Fértil shear zone, central-western Argentina. On a regional scale, the shear zone appears as numerous discontinues belts over 25 km in width and is approximately 140 km in length, extended on the western section of the Sierras Valle Fértil – La Huerta mountain range. The steeply dipping shear zone with a vertical mylonitic lineation is composed of amphibolite facies ribbon mylonites and amphibolite to greenschist facies ultramylonites derived from Early Ordovician plutonic and metasedimentary parent rocks. Locally, syn-kinematic retrogression of mylonites formed greenschist facies phyllonites. During the later stages of deformation, unstrained parent rocks, mylonites, ultramylonites and phyllonites were affected by pervasive cataclasis under low greenschist facies conditions associated with localized faulting. One new 40Ar/39Ar age on biotite and published 40Ar/39Ar ages on amphibole in the shear zone yield an average cooling rate of 6.2 °C/Ma for a time period that crosses the Silurian–Devonian boundary. Since in metasedimentary rocks the youngest zircon's rims dated at 465 Ma marks the beginning of cooling, nearly continuous uplift of rocks within the shear zone occurred over a minimum time span of 55 Ma. During the period of active deformation, dip-slip movement can explain uplift of several kilometers of the Early Ordovician arc crust. The Valle Fértil shear zone, which was formed near above the inferred suture zone between the Famatinian arc and Cuyania microcontinent, is a major structural boundary nucleated within the Early Ordovician crust. The simplest geodynamic model to explain the evolution of the Valle Fértil shear zone involves the collision of the composite Cuyania/Precodillera microcontinent against the Famatinian arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号