首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of particle size-fractionated POC/234Th ratios and 234Th and POC fluxes were conducted using surface-tethered, free-floating, sediment traps and large-volume in-situ pumps during four cruises in 2004 and 2005 to the oligotrophic eastern Mediterranean Sea and the seasonally productive western Mediterranean and northwest Atlantic. Analysis of POC/234Th ratios in sediment trap material and 10, 20, 53, 70, and 100 μm size-fractionated particles indicate, for most stations, decreasing ratios with depth, a weak dependence on particle size, and ratios that converge to ~1–5 μmol dpm?1 below the euphotic zone (~100–150 m) throughout the contrasting biogeochemical regimes. In the oligotrophic waters of the Aegean Sea, 234Th and POC fluxes estimated using sediment traps were consistently higher than respective fluxes estimated from water-column 234Th–238U disequilibrium, observations that are attributed to terrigenous particle scavenging of 234Th. In the more productive western Mediterranean and northwest Atlantic, 234Th and POC fluxes measured by sediment trap and 234Th–238U disequilibrium agreed within a factor of 2–4 throughout the water column. An implication of these results is that estimates of POC export by sediment traps and 234Th–238U disequilibrium can be biased differently because of differential settling speeds of POC and 234Th-carrying particles.  相似文献   

2.
Mass, carbon, and nitrogen fluxes and carbon and nitrogen compositions were determined for particulate samples from plankton net tows, shallow floating sediment traps, intermediate and deep moored sediment traps, and sediment cores collected along 140°W in the central equatorial Pacific Ocean during the US JGOFS EqPac program. Mass, particulate organic carbon (POC), and particulate inorganic carbon (PIC) fluxes measured by the floating sediment traps during the Survey I (El Niño) and Survey II (non-El Niño) cruises follow essentially the same pattern as primary production: high near the equator and decreasing poleward. POC fluxes caught in free-floating traps were compared with alternative estimates of export fluxes, including 234Th models, new production, and other sediment trap studies, resulting in widely differing estimates. Applying 234Th corrections to the trap-based fluxes yielded more consistent results relative to primary production and new production. Despite factors of five differences in measured fluxes between different trap types, POC : 234Th ratios of trap material were generally within a factor of two and provided a robust means of converting modeled 234Th export fluxes to POC export fluxes. All measured fluxes decrease with depth. Trap compositional data suggest that mineral “ballasting” may be a prerequisite for POC settling. POC remineralization is most pronounced in the epipelagic zone and at the sediment–water interface, with two orders of magnitude loss at each level. Despite seawater supersaturation with respect to calcium carbonate in the upper ocean, 80% of PIC is dissolved in the epipelagic zone. Given the time-scale differences of processes throughout the water column, the contrasting environments, and the fact that only 0.01% of primary production is buried, sedimentary organic carbon accumulation rates along the transect are remarkably well correlated to primary production in the overlying surface waters. POC to particulate total nitrogen (PTN) ratios for all samples are close to Redfield values, indicating that POC and PTN are non-selectively remineralized. This constancy is somewhat surprising given conventional wisdom and previous equatorial Pacific results suggesting that particulate nitrogen is lost preferentially to organic carbon.  相似文献   

3.
To gain new insights into the variability of particulate organic carbon (POC) fluxes and to better understand the factors controlling the POC/234Th ratios in suspended and sinking particulate matter, we investigated the relationships between POC/234Th ratios and biochemical composition (uronic acids, URA; total carbohydrates, TCHO; acid polysaccharides, APS; and POC) of suspended and sinking matter from the Gulf of Mexico in 2005 and 2006. Our data show that URA/POC in sediment traps (STs), APS/POC in the suspended particles, and turnover times of particulate 234Th in the water column and those of bacteria in STs inside eddies usually increased with depth, whereas particulate POC/234Th (10–50 μm) and the sediment-trap parameters (POC flux, POC/234Th ratio, bacterial biomass, and bacterial production) decreased with depth. However, this trend was not the case for most biological parameters (e.g., phytoplankton and bacterial biomass) or for the other parameters at the edges of eddies or at coastal-upwelling sites.In general, the following relationships were observed: 1) 234Th/POC ratios in STs were correlated with APS flux, and these ratios in the 10–50 μm suspended particles also correlated with URA/POC ratios; 2) neither URA fluxes nor URA/POC ratios were significantly related to bacterial biomass; 3) the sum of two uronic acids (G2, glucuronic, and galacturonic acid, which composed most of the URA pool) was positively related to bacterial biomass; and 4) the POC/234Th ratios in intermediate-sized particles (10–50 μm) were close to those in sinking particles but much lower than those in > 50 μm particles. The results indicate that acid polysaccharides, though a minor fraction (~ 1%) of the organic carbon, act more likely as proxy compound classes that might contain the more refractory 234Th-binding biopolymer, rather than acting as the original 234Th “scavenger” compound. Moreover, these acid polysaccharides, which might first be produced by phytoplankton and then modified by bacteria, also influence the on-and-off “piggy-back” processes of organic matter and 234Th, thus causing additional variability of the POC/234Th in particles of different sizes.  相似文献   

4.
234Th was used to quantify sinking fluxes and residence times of particles in surface waters of the north-western Mediterranean Sea. Measurements of dissolved and particulate 234Th were made at the DYFAMED station (43°25′N–7°51′E, JGOFS-France program). Sampling covered 1 year on four cruises in 1994 (February 9, April 29, June 3, October 1) and focused on a transition period in mid-spring with six repeated profiles collected during May 1995. 234Th was nearly in equilibrium with its parent 238U most of the year, except in spring. The intensive sampling in May shows a rapid evolution throughout the month from a moderate 234Th deficit to near-equilibrium values. The time-series of 234Th were treated with steady-state and non-steady-state models. 234Th particulate fluxes clearly indicate large variability in export, with the highest values observed in spring. Particle residence times in the upper 40 m range from <10 to >250 days, and could increase by a factor of 10 within 2 weeks. POC fluxes from the upper 40 m and export ratios (ThE: ratio of 234Th-derived POC export to primary production), derived from the 234Th/238U disequilibrium in the water column and POC/234Th ratio on trapped material, decrease from about 9.5 mmol C m−2 d−1 and >22% in early May to less than 5 mmol C m−2 d−1 and 15% after mid-May. The 234Th-derived information is in agreement with the annual variations in Mediterranean Sea productivity.  相似文献   

5.
234 Th was utilized as a tracer of particulate organic carbon (POC) export in the northwestern South China Sea (SCS) on the basis of the data collected at four stations during a spring cruise.Depth profiles of dissolved and particulate 234 Th activities were measured in the upper 60 m,showing a significant deficit relative to 238 U over the investigated stations.A stratified structure of 234 Th-238 U disequilibrium was in general observed in the upper 60 m water column,indicating that the euphotic zone of t...  相似文献   

6.
In order to better understand the relationship between the natural radionuclide 234Th and particulate organic carbon (POC), marine particles were collected in the northwestern Mediterranean Sea (spring/summer, 2003 and 2005) by sediment traps that separated them according to their in situ settling velocities. Particles also were collected in time-series sediment traps. Particles settling at rates of >100 m d−1 carried 50% and 60% of the POC and 234Th fluxes, respectively, in both sampling years. The POC flux decreased with depth for all particle settling velocity intervals, with the greatest decrease (factor of 2.3) in the slowly settling intervals (0.68–49 m d−1) over trap depths of 524–1918 m, likely due to dissolution and decomposition of material. In contrast the flux of 234Th associated with the slowly settling particles remained constant with depth, while 234Th fluxes on the rapidly settling particles increased. Taking into account decay of 234Th on the settling particles, the patterns of 234Th flux with depth suggest that either both slow and fast settling particles scavenge additional 234Th during their descent or there is significant exchange between the particle classes. The observed changes in POC and 234Th flux produce a general decrease in POC/234Th of the settling particles with depth. There is no consistent trend in POC/234Th with settling velocity, such as might be expected from surface area and volume considerations. Good correlations are observed between 234Th and POC, lithogenic material and CaCO3 for all settling velocity intervals. Pseudo-Kds calculated for 234Th in the shallow traps (2005) are ranked as lithogenic material opal <calcium carbonate <organic carbon. Organic carbon contributes 33% to the bulk Kd, and for lithogenic material, opal and CaCO3, the fraction is 22% each. Decreases in POC/234Th with depth are accompanied by increases in the ratio of 234Th to lithogenic material and opal. No change in the relationship between 234Th and CaCO3 was evident with depth. These patterns are consistent with loss of POC through decomposition, opal through dissolution and additional scavenging of 234Th onto lithogenic material as the particles sink.  相似文献   

7.
The common assumption that the ratio between particulate organic carbon (POC) and particulate 234Th obtained from shallow sediment traps and filterable particles are representative of the ratio in the total particle settling flux should be treated with caution in view of well-known biases associated with tethered shallow sediment traps and the decoupling between size and settling velocity of many natural particle regimes. To make progress toward reliably constraining the POC / 234Th ratio on truly settling particles, we have tested here a settling collection technique designed to remove any hydrodynamic bias; split flow-thin cell fractionation (SPLITT). These first results from a North Sea fjord and an open Baltic Sea time-series station indicates that the POC / 234Th ratio on the more complete particle-settling spectrum, isolated with SPLITT, was higher than the POC / 234Th ratio obtained simultaneously from tethered shallow sediment traps in seven out of seven parallel deployments with an average factor of 210%. The POC / 234Th ratio from the SPLITT was either in the same range or higher than that obtained on filtered “bulk” particles. To explain this novel data we hypothesize that the slowest settling fraction is organic-matter rich and does not strongly complex 234Th (i.e., high POC / 234Th). We suggest that this ultra-slow sinking fraction is better collected by SPLITT than with tethered sediment traps because of minimized hydrodynamic bias.This was tested using the ratio of POC / Al as a tracer of detrital mineral-ballast influenced settling velocity. The higher POC / Al ratios in SPLITT samples relative to in traps is consistent with the hypothesis that SPLITT is better suited for collecting also the slow-settling component of sinking particles. This important slow-settling component appears to here consist primarily of non-APS/TEP components of plankton exudates or other less-strongly 234Th-complexing organic matter. Further applications of the SPLITT technique are likely to return increasingly new insights on the composition (including “truly settling” POC / 234Th) of the total spectrum of particles settling out of the upper ocean.  相似文献   

8.
234Th is widely used to quantify the magnitude of upper ocean particulate organic carbon(POC)export in oceans.In the present work,the rates of particulate organic carbon export were measured based on the distribution patterns of234Th/238U disequilibrium in the water column within the continental slope of the East China Sea(ECS)during May 2011.The profiles of particulate and dissolved234Th activities at all three stations showed a relative deficit with respect to238U in the upper 100 m of the water column.The dissolved234Th scavenging rates and the particulate234Th removal rates and their residence times were calculated by a one-dimensional steady state model.The results showed that the dissolved234Th scavenging rates and the particulate234Th removal rates ranged from 12.4–61.4 dpm/(m3·d)andfrom3.8–21.8 dpm/(m3·d),respectively.The residence times of dissolved and particulate234Th were in the range of 3.4–158 d and 63.7–96.5 d,respectively.Combined with the measurement of POC/234Th ratios of suspended particles,POC export flux(calculated by carbon)from the euphotic zone was estimated in the study region,which ranged from 4.14–14.7 mmol/(m2·d),withanaverageof8.21mmol/(m2·d),occupying35%oftheprimeproductivity in the study area.The results of this study can provide new information for better understanding the carbon biogeochemical cycle within the continental slope of the ECS.  相似文献   

9.
Repeated measurements of depth profiles of 234Th (dissolved, 1–70 and >70 μm particulate) at three stations (Orca, Minke, Sei) in the Ross Sea have been used to estimate the export of Th and particulate organic carbon (POC) from the euphotic zone. Sampling was carried out on three JGOFS cruises covering the period from October 1996 (austral early spring) to April 1997 (austral fall). Deficiencies of 234Th relative to its parent 238U in the upper 100 m are small during the early spring cruise, increase to maximum values during the summer, and decrease over the course of the fall. Application of a non-steady-state model to the 234Th data shows that the flux of Th from the euphotic zone occurs principally during the summer cruise and in the interval between summer and fall. Station Minke in the southwestern Ross Sea appears to sustain significant 234Th removal for a longer period than is evident at Orca or Sei. Particulate 234Th activities and POC are greater in the 1–70 μm size fraction, except late in the summer cruise, when the >70 μm POC fraction exceeds that of the 1–70 μm fraction. The POC/234Th ratio in the >70 μm fraction exceeds that in the 1–70 μm fraction, likely due in part to the greater availability of surface sites for Th adsorption in the latter. Particulate 234Th fluxes are converted to POC fluxes by multiplying by the POC/234Th ratio of the >70 μm fraction (assumed to be representative of sinking particles). POC fluxes calculated from a steady-state Th scavenging model range from 7 to 91 mmol C m−2 d−1 during late January–early February, with the greatest flux observed at station Minke late in the cruise. Fluxes estimated with a non-steady-state Th model are 85 mmol C m−2 d−1 at Minke (1/13–2/1/97) and 50 mmol C m−2 d−1 at Orca (1/19–2/1/97). The decline in POC inventories (0–100 m) is most rapid in the southern Ross Sea during the austral summer cruise (Smith et al., 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3119–3140. Gardner et al., 2000. Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3423–3449), and the 234Th-derived POC fluxes indicate that the sinking flux of POC is 30–50% of the POC decrease, depending on whether steady-state or non-steady-state Th fluxes are used. Rate constants for particle POC aggregation and disaggregation rates are calculated at station Orca by coupling particulate 234Th data with 228Th data on the same samples. Late in the early spring cruise, as well as during the summer cruise, POC aggregation rates are highest in near-surface waters and decrease with depth. POC disaggregation rates during the same time generally increase to a maximum and are low at depth (>200 m). Subsurface aggregation rates increase to high values late in the summer, while disaggregation rates decrease. This trend helps explain higher values of POC in the >70 m fraction relative to the 1–70 m fraction late in the summer cruise. Increases in disaggregation rate below 100 m transfer POC from the large to small size fraction and may attenuate the flux of POC sinking out of the euphotic zone.  相似文献   

10.
Export fluxes of particulate organic carbon (POC) were estimated from the 234Th/238U disequilibrium in the Ulleung Basin1 (UB) of the East/Japan Sea1 (EJS) over four seasons. The fluxes were calculated by multiplying the average POC/234Th ratio of sinking particles larger than 0.7 μm at 100- and 200-m water depths to 234Th fluxes by the integrated 234Th/238U disequilibrium from the surface to 100-m water depth. In spring, the 234Th profiles changed dramatically with sampling time, and hence a non-steady-state 234Th model was used to estimate the 234Th fluxes. The 234Th flux estimated from the non-steady-state model was an order of magnitude higher than that estimated from the steady-state model. The 234Th fluxes estimated using the steady-state model showed distinct seasonal variation, with high values in summer and winter and low values in autumn. In spring, the phytoplankton biomass had the highest value, and primary production was higher than in summer and autumn, but the 234Th fluxes were moderate. However, these values might have been significantly underestimated, as the 234Th fluxes were estimated using the steady-state model. The POC export fluxes estimated in autumn were about four times lower than those in other seasons when they were rather similar. The annually averaged POC flux was estimated to be 161 ± 76 mgC m−2 day−1, which was somewhat lower than that in highly productive coastal areas, and higher than that in oligotrophic regions. The export/primary production (ThE) ratios ranged from 7.0 to 56.1%, with higher values in spring and summer and lower values in autumn and winter. In summer, a high ThE ratio of 48.4 ± 7.0% was measured. This may be attributed to the mass diatom sinking event following nitrate depletion. In the UB1, the annually averaged ThE ratio was estimated to be 34.4 ± 12.9%, much higher than that in oligotrophic oceans. The high ThE ratio may have contributed to the high organic carbon accumulation in the UB1.  相似文献   

11.
Direct measurements of new production and carbon export in the subtropical North Atlantic Ocean appear to be too low when compared to geochemical-based estimates. It has been hypothesized that episodic inputs of new nutrients into surface water via the passage of mesoscale eddies or winter storms may resolve at least some of this discrepancy. Here, we investigated particulate organic carbon (POC), particulate organic nitrogen (PON), and biogenic silica (BSiO2) export using a combination of water column 234Th:238U disequilibria and free-floating sediment traps during and immediately following two weather systems encountered in February and March 2004. While these storms resulted in a 2–4-fold increase in mixed layer NO3 inventories, total chlorophyll a and an increase in diatom biomass, the systems were dominated by generally low 234Th:238U disequilibria, suggesting limited particle export. Several 234Th models were tested, with only those including non-steady state and vertical upwelling processes able to describe the observed 234Th activities. Although upwelling velocities were not measured directly in this study, the 234Th model suggests reasonable rates of 2.2–3.7 m d?1.Given the uncertainties associated with 234Th derived particle export rates and sediment traps, both were used to provide a range in sinking particle fluxes from the upper ocean during the study. 234Th particle fluxes were determined applying the more commonly used steady state, one-dimensional model with element/234Th ratios measured in sediment traps. Export fluxes at 200 m ranged from 1.91±0.20 to 4.92±1.22 mmol C m?2 d?1, 0.25±0.08 to 0.54±0.09 mmol N m?2 d?1, and 0.22±0.04 to 0.50±0.06 mmol Si m?2 d?1. POC export efficiencies (Primary Production/Export) were not significantly different from the annual average or from time periods without storms, although absolute POC fluxes were elevated by 1–11%. This increase was not sufficient, however, to resolve the discrepancy between our observations and geochemical-based estimates of particle export. Comparison of PON export rates with simultaneous measurements of NO3? uptake derived new production rates suggest that only a fraction, <35%, of new production was exported as particles to deep waters during these events. Measured bSiO2 export rates were more than a factor of two higher (p<0.01) than the annual average, with storm events contributing as much as 50% of annual bSiO2 export in the Sargasso Sea. Furthermore it appears that 65–95% (average 86±14%) of the total POC export measured in this study was due to diatoms.Combined these results suggest that winter storms do not significantly increase POC and PON export to depth. Rather, these storms may play a role in the export of bSiO2 to deep waters. Given the slower remineralization rates of bSiO2 relative to POC and PON, this transport may, over time, slowly decrease water column silicate inventories, and further drive the Sargasso Sea towards increasing silica limitation. These storm events may further affect the quality of the POC and PON exported, given the large association of this material with diatoms during these periods.  相似文献   

12.
The deficit of 234Th relative to its radioactive parent 238U in the surface ocean can yield reliable estimates of vertical Particulate Organic Carbon (POC) fluxes to deeper waters, but only when coupled with an accurate ratio of POC concentration to activity of 234Th on sinking matter. Assuming a simple partitioning of suspended phytoplankton mass between single cells and flocs, we calculate the ratio of the POC flux estimated from 234Th deficit to the actual POC flux (p ratio, Smith, J.N., Moran, S.B., Speicher, E.A., in press. The p-ratio: a new diagnostic for evaluating the accuracy of upper ocean particulate organic carbon export fluxes estimated from 234Th/238U disequilibrium. Deep-Sea Research I.). The p ratios are calculated under the assumption that particle surface area is correlated with 234Th activity and particle volume is correlated with POC concentration. The value of the p ratio depends on the relative contributions of single cells and flocs to the vertical flux. When large single cells make up a significant fraction of the vertical flux, p ratios are less than one, meaning POC fluxes estimated from 234Th deficits underestimate actual POC fluxes. When large single cells are abundant but do not sink fast enough to contribute to vertical POC flux, p ratios are greater than one (up to 3 × overestimate). Factor analysis of the model indicates that altering the extent of flocculation in suspension and changing the density and maximum size of phytoplankton cells have the greatest effects on the p ratio. Failure to measure the properties of flocs when characterizing the ratio of POC to thorium on sinking matter potentially leads to large overestimation of the POC flux (over 20 ×). Failure to characterize the POC to thorium ratio of large particles, by, for example, destruction of phytoplankton cells in pumps, can lead to underestimation of POC flux. Estimates of POC flux should be most reliable in highly flocculated suspensions populated by small cells and rapidly sinking flocs. These conditions are often associated with intense phytoplankton blooms.  相似文献   

13.
The activity of234Th (t 1/2=24.1 days) in dissolved, particulate and sediment trap samples was determined in the water column off southwestern Taiwan during 2–4 October, 1993. Vertical234Th fluxes measured by the free-floating sediment traps ranged from 363 to 2290 dpm m–2 d–1 in the upper 450 m. Th-234 fluxes predicted from the irreversible scavenging model concur with those measured by the sediment traps. Comparison of the residence times of particulate234Th and particulate organic carbon showed that their respective values differ by a factor of approximately 23, which suggests organic carbon is preferentially recycled relative to234Th in the euphotic zone.  相似文献   

14.
An extensive 234Th data set was collected at two sites in the North Pacific: ALOHA, an oligotrophic site near Hawaii, and K2, a mesotrophic HNLC site in the NW Pacific as part of the VERTIGO (VERtical Transport In the Global Ocean) study. Total 234Th:238U activity ratios near 1.0 indicated low particle fluxes at ALOHA, while 234Th:238U ~0.6 in the euphotic zone at K2 indicated higher particle export. However, spatial variability was large at both sites—even greater than seasonal variability as reported in prior studies. This variability in space and time confounds the use of single profiles of 234Th for sediment trap calibration purposes. At K2, there was a decrease in export flux and increase in 234Th activities over time associated with the declining phase of a summer diatom bloom, which required the use of non-steady state models for flux predictions. This variability in space and time confounds the use of single profiles of 234Th for sediment trap calibration purposes. High vertical resolution profiles show narrow layers (20–30 m) of excess 234Th below the deep chlorophyll maximum at K2 associated with particle remineralization resulting in a decrease in flux at depth that may be missed with standard sampling for 234Th and/or with sediment traps. Also, the application of 234Th as POC flux tracer relies on accurate sampling of particulate POC/234Th ratios and here the ratio is similar on sinking particles and mid-sized particles collected by in-situ filtration (>10–50 μm at ALOHA and >5–350 μm at K2). To further address variability in particle fluxes at K2, a simple model of the drawdown of 234Th and nutrients is used to demonstrate that while coupled during export, their ratios in the water column will vary with time and depth after export. Overall these 234Th data provide a detailed view into particle flux and remineralization in the North Pacific over time and space scales that are varying over days to weeks, and 10's–100's km at a resolution that is difficult to obtain with other methods.  相似文献   

15.
《Marine Chemistry》2007,103(1-2):185-196
Large-volume sampling of 234Th and drifting sediment trap deployments were conducted as part of the 2004 Western Arctic Shelf–Basin Interactions (SBI) spring (May 15–June 23) and summer (July 17–August 26) process cruises in the Chukchi Sea. Measurements of 234Th and particulate organic carbon (POC) export fluxes were obtained at five stations during the spring cruise and four stations during the summer cruise along Barrow Canyon (BC) and along a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. 234Th and POC fluxes obtained with in situ pumps and drifting sediment traps agreed to within a factor of 2 for 70% of the measurements. POC export fluxes measured with in situ pumps at 50 m along BC were similar in spring and summer (average = 14.0 ± 8.0 mmol C m 2 day 1 and 16.5 ± 6.5 mmol C m 2 day 1, respectively), but increased from spring to summer at the EHS transect (average = 1.9 ± 1.1 mmol C m 2 day 1 and 19.5 ± 3.3 mmol C m 2 day 1, respectively). POC fluxes measured with sediment traps at 50 m along BC were also similar in both seasons (31.3 ± 9.3 mmol C m 2 day 1 and 29.1 ± 14.2 mmol C m 2 day 1, respectively), but were approximately twice as high as POC fluxes measured with in situ pumps. Sediment trap POC fluxes measured along the EHS transect also increased from spring to summer (3.0 ± 1.9 mmol C m 2 day 1 and 13.0 ± 6.4 mmol C m 2 day 1, respectively), and these fluxes were similar to the POC fluxes obtained with in situ pumps. Discrepancies in POC export fluxes measured using in situ pumps and sediment traps may be reasonably explained by differences in the estimated POC/234Th ratios that arise from differences between the techniques, such as time-scale of measurement and size and composition of the collected particles. Despite this variability, in situ pump and sediment trap-derived POC fluxes were only significantly different at a highly productive station in BC during the spring.  相似文献   

16.
Dissolved and particulate 234Th activities in surface seawater were determined at 27 stations along the coastline of western Taiwan during 19–23 November 2004. Contrasting scavenging settings were observed between the northern and southern regimes of the nearshore water off western Taiwan, separated by the Cho-Shui River. The northern regime is characterized by a large quantity of suspended load contributed by northward transport of a suspension plume from the Cho-Shui River, while the southern regime, low in suspended load and high in chlorophyll concentration, is a system controlled by biological activity. A scavenging model that takes account of the physical transport was used to estimate the 234Th budget in order to estimate the scavenging and removal rates from the nearshore water. The scavenging and removal rates ranged from 21 to 127 dpm m−3d−1 and from 36 to 525 dpm m−3d−1, for dissolved and particulate 234Th, respectively. The removal fluxes of particulate organic carbon (POC) and particulate organic nitrogen (PON) were estimated by multiplying the particulate 234Th removal flux to the organic carbon/234Th and nitrogen/234Th ratios in suspended particles, which ranged from 4.5 to 275.2 mmol-C m−2d−1 and from 1.3 to 50.1 mmol-N m−2d−1, respectively. These fluxes resulted in residence times of 1∼20 days for the POC in the surface water of nearshore water off western Taiwan.  相似文献   

17.
The flux and composition of material caught using two different upper ocean sediment trap designs was compared at the Bermuda Atlantic Time-series Study site (BATS). The standard surface-tethered trap array at BATS was compared to a newly designed neutrally buoyant sediment trap (NBST). Both traps used identical cylindrical collection tubes. Of particular concern was the effect of horizontal flow on trap collection efficiency. In one experiment, mass, particulate organic carbon (POC) and particulate organic nitrogen (PON) fluxes were slightly lower (20–30%) in the NBST than in the standard BATS trap. In contrast, 234Th and fecal pellet fluxes were up to a factor of two to three lower in the NBST. In a second experiment, mass and POC fluxes decreased significantly with depth in the BATS surface-tethered trap, but not in the NBST. Different brine treatments had no measurable effect on collection efficiencies. A striking observation was that the swimmer “flux” was much larger in the standard BATS traps than in the NBST. Overall, these results show that different components of the sinking flux can be collected with differing efficiencies, depending upon how traps are deployed in the ambient environment.  相似文献   

18.
1Introduction CarboncyclingintheArcticOceanplaysanim- portantroletoglobalchange.Traditionally,marine productivityintheArcticOceanisthoughttobevery low,andthussomebiogeochemicalprocessessuchas particleexportandcyclingofnutrientsarenotsoac- tivebecauseofthembeingcoveredperenniallybyice, lowtemperatureandshorttimeofphotosynthesis (PlattandRao,1975).Afewpreviousestimatesof particulateorganiccarbon(POC)exportindicateda neglectablemagnitudeinthecentralArcticOcean (Baconetal.,1989).However,recen…  相似文献   

19.
We utilized 234Th, a naturally occurring radionuclide, to quantify the particulate organic carbon (POC) export rates in the northern South China Sea (SCS) based on data collected in July 2000 (summer), May 2001 (spring) and November 2002 (autumn). Th-234 deficit was enhanced with depth in the euphotic zone, reaching a subsurface maximum at the Chl-a maximum in most cases, as commonly observed in many oceanic regimes. Th-234 was in general in equilibrium with 238U at a depth of ∼100 m, the bottom of the euphotic zone. In this study the 234Th deficit appeared to be less significant in November than in July and May. A surface excess of 234Th relative to 238U was found in the summer over the shelf of the northern SCS, most likely due to the accumulation of suspended particles entrapped by a salinity front. Comparison of the 234Th fluxes from the upper 10 m water column between 2-D and traditional 1-D models revealed agreement within the errors of estimation, suggesting the applicability of the 1-D model to this particular shelf region. 1-D model-based 234Th fluxes were converted to POC export rates using the ratios of bottle POC to 234Th. The values ranged from 5.3 to 26.6 mmol C m−2d−1 and were slightly higher than those in the southern SCS and other oligotrophic areas. POC export overall showed larger values in spring and summer than in autumn, the seasonality of which was, however, not significant. The highest POC export rate (26.6 mmol C m−2d−1) appeared at the shelf break in spring (May), when Chl-a increased and the community structure changed from pico-phytoplankton (<2 μm) dominated to nano-phytoplankton (2–20 μm) and micro-phytoplankton (20–200 μm) dominated.  相似文献   

20.
The likelihood that the carbon fluxes measured as part of the US-JGOFS field program in the equatorial Pacific ocean (EgPac) during 1992 yielded a balanced carbon budget for the surface ocean was determined. The major carbon fluxes incorporated into a surface carbon budget were: new production, particulate organic carbon (POC) and dissolved organic carbon (DOC) export, CaC03 export, C02 gas evasion, dissolved inorganic carbon (DIC) supply, and the time rate of charge. The ratio of the measured concentration gradients of DOC and DIC provided a constraint on the ratio of POC/DOC export. Uncertainties of ±30–50% for individual carbon flux measurements reduce the likelihood that a carbon balance can be measured during a JGOFS process-type study. As a benchmark, carbon fluxes were prescribed to yield a hypothetical surface carbon budget that was, on average, balanced. Given the typical errors in the individual carbon fluxes, however, there was only about a 30% chance that this hypothetical budget could be measured to be balanced to ±50%. Using this benchmark, it was determined that there was a 95 % chance that the carbon flux measurements yielded a surface DIC budget balanced (to ±50%) during El Nino conditions in boreal spring 1992, when the total organic carbon export rate was - 5 mmol C m-2 day- 1 and the POC export was 3 mmol C m−2 day−1. In boreal fall 1992, during cold period conditions, there was a 70% chance that the surface carbon DIC budget was balanced when the total organic carbon export rate was 20 mmol C m−2 day−1 and export was -13 mmol C m-2 day-'. The DOC to DIC concentration gradient ratio of - -0.15, measured in depth profiles down to 100m and in surface waters, was used as an important constraint that most (> 70%) of the organic carbon exported from the euphotic zone was POC rather than DOC. If a balanced surface DIC budget was used to test the compatibility of individual carbon fluxes measured during EgPac, then a three- to four-fold increase in total and particulate organic carbon export between spring and fall is indicated. This increase was not reflected in the POC loss rates measured by drifting sediment trap collections or estimated by234Th deficiencies coupled with the C/Th measured on suspended particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号