首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stomach contents of thin-lipped grey mullets Liza ramado were analysed in terms of granulometric composition and compared to the sediment of potential feeding areas in the Tagus estuary. Total organic matter (TOM) content and heavy metal content were determined in the surface sediment of three areas and eight trace elements were quantified: Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. The three sampled areas did not differ in TOM; and the heavy metal content was below Effects Range-Low level for most elements. The mean observed concentrations were present in the following sequence: Zn > Pb > Cr > Cu ≈ Ni > Co > Cd > Hg. Stomach contents granulometric composition provided information about the feeding selectivity of the mullets. Sediment fractions with particle size between 20 and 50 μm are preferred, independently of the fishes' length. Smaller standard length (SL) fishes have a higher positive selection of fine grained sediments than those with a larger SL. Finer fractions usually have higher concentration of heavy metals, which makes younger specimens of the thin-lipped grey mullet potentially more exposed to heavy metal load in the estuary. Metal concentration was not independent from the sampling point, presenting higher values near the margins and the estuary tidal drainage system. This means that during the first period of each tidal cycle, the mullets will feed first on the most contaminated areas, as a consequence of their movement following the rising tide to feed on previously exposed areas.  相似文献   

2.
The concentrations of the trace metals Cd, Cu, Fe, Ni, Pb and Zn in the Göta River estuary have been investigated. The following metal fractions have been determined: acid-leachable, dissolved, labile and particulate.The estuary represents a salt wedge type estuary and is situated in a densely populated region of Sweden. The metal concentrations found for the dissolved fraction is in the range of what can be considered as background levels for freshwater. It is difficult to evaluate any estuarine processes other than conservative mixing for Cd, Cu, Ni and Zn. The dissolved levels in the freshwater end member are Cd, 9–25 ngl?1; Cu, 1·1–1·4 μgl?1; Fe, 20–75 μg l?1: Ni, 0·7–0·9 μg l?1: Pb 0·09–0·2 μg l?1; and Zn, 6–7 μg l?1:The results from the acid-leachable fraction show that at high suspended load the particles sediment in the river mouth. The trace metal levels in this fraction are subject to large variations.  相似文献   

3.
The distributions, contamination status and annual sedimentation flux of trace metals in surface sediments of the East China Sea (ECS) were studied. Higher concentrations of the studied metals were generally found in the inner shelf and the concentrations decreased seaward. The sequences of the enrichment factor (EF) of the studied metals are Cu > Mn > Ni > Zn > Pb > Fe. The values of EF suggest that the metals contamination in the middle and outer shelves of the ECS is still minor. The annual sedimentation fluxes of trace metals in the ECS were: Fe, 3.48 × 107 t/y; Mn, 9.07 × 105 t/y; Zn, 1.08 × 105 t/y; Ni, 4.48 × 104 t/y; Pb, 4.32 × 104 t/y and Cu, 3.1 × 104 t/y, respectively. Approximately 55–70% and 10–17% of the sedimentation fluxes of trace metals were deposited in the inner shelf and the Changjiang estuarine zone.  相似文献   

4.
During mesoscale Fe enrichment (SEEDS II) in the western North Pacific ocean, we investigated dissolved and particulate Co, Ni, Cu, Zn, Cd and Pb in seawater from both field observation and shipboard bottle incubation of a natural phytoplankton assemblage with Fe addition. Before the Fe enrichment, strong correlations between dissolved trace metals (Ni, Zn and Cd) and PO43−, and between particulate trace metals (Ni, Zn and Cd) and chlorophyll-a were obtained, suggesting that biogeochemical cycles mainly control the distributions of Ni, Zn and Cd in the study area. Average concentrations of dissolved Co, Ni, Cu, Zn, Cd and Pb in the surface mixed layer (0–20 m) were 70 pM, 4.9, 2.1, 1.6, 0.48 nM and 52 pM, respectively, and those for the particulate species were 1.7 pM, 0.052, 0.094, 0.46, 0.037 nM and 5.2 pM, respectively. After Fe enrichment, chlorophyll-a increased 3 fold (up to 3 μg L−1) during developing phases of the bloom (<12 days). Mesozooplankton biomass also increased. Particulate Co, Ni, Cu and Cd inside the patch hinted at an increase in the concentrations, but there were no analytically significant differences between concentrations inside and outside the patch. The bottle incubation with Fe addition (1 nM) showed an increase in chlorophyll-a (8.9 μg L−1) and raised the particulate fraction up to 3–45% for all the metals, accompanying changes in Si/P, Zn/P and Cd/P. These results suggest that Fe addition lead to changes in biogeochemical cycling of trace metals. The comparison between the mesoscale Fe enrichment and the bottle incubation experiment suggests that although Fe was a limiting factor for the growth of phytoplankton, the enhanced biomass of mesozooplankton also limited the growth of phytoplankton and the transformation of trace metal speciation during the mesoscale Fe enrichment. Sediment trap data and the elemental ratios taken up by phytoplankton suggest that export loss was another reason that no detectable change in the concentrations of particulate trace metals was observed during the mesoscale Fe enrichment.  相似文献   

5.
A total of 150 samples were collected at a 10-days' anchor station in the Bornholm basin (55° 31.1′N, 15° 32.1′E) and analyzed for dissolved (< 0.4 μm) and particulate trace metals. For dissolved Mn, large gradients have been found in the vertical distribution with minimum concentrations (< 0.2 μgl?1) in the halocline zone and considerably higher values in the deep waters (up to 50 μgl?1). Ultrafiltration studies indicate that dissolved Mn is probably present as Mn2+ in the oxygenated bottom layer. The primary production process was not evident in the particulate Mn profile; the suspended particulate material (SPM), however, shows a considerable enrichment with depth, apparently due to Mn-oxide precipitation.The distribution of dissolved Fe was rather homogeneous, with average concentrations throughout the water column between 0.86 and 1.1 μgl?1, indicating that the oxidation of Fe2+ ions released from the sediments must already be complete in the very near oxidation boundary layer. Relatively high concentrations of particulate Fe were actually measured in the bottom layer, with the maximum mean of 11.2 μgl?1 at 72 m. Similarly to Mn, the profile of particulate Fe does not reflect the SPM curve of the eutrophic layer. On average, about 70% of the total Fe in surface waters was found to be particulate.The average concentrations of dissolved Zn, Cd and Cu were found to be rather homogeneous in the water column but showed a relatively high variability with time. A simplified model on trace-metal uptake by phytoplankton indicates no significant change in dissolved metal concentrations during the period of investigation. On average, only 1.7% Zn, 3.3% Cd and 9.8% Cu of the total metal concentrations were found in particulate form. SPM analyses showed significant correlations of Zn, Cd and Cu with Fe, indicating that particulate iron is an important carrier for particulate trace metals in Baltic waters.  相似文献   

6.
The present study aimed to assess the sediment quality in a tropical estuary located in the northeast of Brazil under semi-arid conditions and multiple sources of contamination, using both toxicity bioassays and metal distribution. The metal distribution followed a concentration gradient decreasing one order of magnitude from the inner station toward the outer estuary, with amounts in the following order: Fe > Al > Zn > Cr > Pb > Cu. The index of geoaccumulation indicated a metal enrichment in the Ceará river sediment, mainly at inner sites, considered from moderately to strongly contaminated by Al, Cu, Cr and Zn. Sediment samples were considered toxic by means of whole sediment tests with copepods (reproduction) and amphipods (survival), and also elutriate fraction and sediment–water interface with sea urchin embryos (development). Acute and chronic toxicity did not exhibit a significant correlation with metals, emphasizing the influence of other contaminants mainly related to the pollution sources installed in the mid-estuary.  相似文献   

7.
The U-Tapao Canal is the main source of freshwater draining into the outer part of Songkhla Lake, which is the most important estuarine lagoon in Thailand. Songkhla Lake is located in southern Thailand between latitudes 7°08' and 7°50' N and longitudes 100°07' and 100°37' E. Acetic acid (HOAc)-soluble Cu, Fe, Mn, Pb, and Zn and the total concentration of these metals along with Al concentration, organic carbon, carbonate, sand, silt, and clay contents were determined in 4 sediment cores obtained at selected intervals from the mouth of the canal to 12 km upstream. Readily oxidizable organic matter in the cores varies from 1.52% to 7.30% and is generally found to decrease seaward. Total concentrations of Al (61.7–99.0 g kg−1; 2.29–3.67 mol kg−1), Cu (12.4–28.2 mg kg−1; 195–444 μmol kg−1), Fe (25.2–42.0 g kg−1; 451–752 mmol kg−1), Mn (0.22–0.49 g kg−1; 4.0–8.9 mmol kg−1), Pb (16.7–43.1 mg kg−1; 80.6–208 μmol kg−1), and Zn (48.6–122.7 mg kg−1; 0.74–1.88 mmol kg−1) vary to a certain extent vertically and seaward in the U-Tapao Canal core sediments. These concentrations are at or near natural levels and show no indication of anthropogenic contamination.Overall, the data show that total metal concentrations in the surface and near surface core sediments are enriched in varying degrees relative to Al in the order of Zn>Mn>Pb>Fe>Cu. Chemical partitioning shows that the enrichment in the surface and near surface sediments is related to the relatively high proportion of the total metal concentrations (Mn>Zn>Fe>Cu>Pb) that occur in the acetic acid-soluble (nondetrital) fraction, and they generally decrease with depth. Nondetrital Cu, Pb, and Zn likely derive from those metals held in ion exchange positions, certain carbonates, and from easily soluble amorphous compounds of Mn and perhaps those of Fe. Diagenetic processes involving Mn and to a lesser extent, Fe compounds, as well as the vertical changes in the oxidizing/reducing boundaries, appear to be the most important factors controlling the behavior of the metals in these cores. Organic matter and the aluminosilicate minerals, however, appear to be less important carriers of the metals studied.  相似文献   

8.
Methylmercury (MeHg) and trace elements (TE), mercury, selenium, cadmium, lead and copper, were determined in a microbial loop composed by three size classes of autotrophic and heterotrophic microorganism samples, 1.2–70 μm (seston, SPM), 70–290 μm (microplankton) and ≥290 μm (mesoplankton) from five sampling stations within a polluted eutrophic estuary in the Brazilian Southeast coast and one external point under the influence of the bay. TE concentrations were within the range reported for marine microorganisms from uncontaminated locations. Microplankton was primarily composed of proto-zooplankton and diatoms (>90%) while approximately 50% of mesoplankton was composed mainly of copepods. MeHg and TE in samples did not differ among the five sampling stations within the bay. Cd, Pb and Cu in seston were higher in the stations sampled inside Guanabara Bay (0.67 μg Cd g−1, 9.26 μg Pb g−1, 8.03 μg Cu g−1) than in the external one (0.17 μg Cd g−1, 3.98 μg Pb g−1 and 2.09 μg Cu g−1). Hg, MeHg and Se did not differ among the five points within the more eutrophic waters of the estuary and the external sampling station. The trophic transfer of MeHg and Se was observed between trophic levels from prey (seston and microplankton) to predator (mesoplankton). The successive amplification of the ratios of MeHg to Hg with increasing trophic levels from seston (43%), to microplankton (59%) and mesoplankton (77%) indicate that biomagnification may be occurring along the microbial food web. Selenium, that is efficiently accumulated by organisms through trophic transference, was biomagnified along the microbial food web, while Hg, Cd, Pb, Cu did not present the same behavior. Concentrations differed between the three size classes, indicating that MeHg and TE accumulation were size-dependent. MeHg and TE concentrations were not related to the taxonomic groups' composition of the planktonic microorganisms. Results suggest the importance of the role of the trophic level and microorganism size in regulating element transfers. Eutrophication dilution may provide a process-oriented explanation for lower MeHg and TE accumulation by the three size classes of microorganisms collected at the five sampling stations within the bay.  相似文献   

9.
The article presents the results for enrichment of acid-leachable trace metals (ALTMs) from Ennore Creek in north Chennai, a metropolis on the southeast coast of India. ALTMs Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd along with sediment texture, OC and CaCO3 were analyzed in surface sediments collected during two different seasons, pre-monsoon (PRM) and post-monsoon (POM) seasons to identify and observe the input of trace metals in the creek from various sources in the city limits. The most prominent feature of the ALTMs is the enrichment of Fe, Cr, Cu, Ni, Pb and Zn in the sediments, which is mainly attributed to the intense industrial activities around Chennai, and to the rapid industrialization policies. The ALTMs also indicate their association with the finer fractions, OC and Fe–Mn oxyhydroxides. The enrichment is very well supported by the correlation, grouping and clustering of ALTMs in statistical analysis. The differential behavior of ALTMs in POM season compared to PRM season is possibly due to the excess level of industrial effluents in the channel feeding Ennore Creek. Comparative results of ALTMs with other estuarine regions also indicate that the study area has been enriched with trace metals during the past two decades. The results of the present study suggest the need for a regular monitoring program which will help to improve the quality of Ennore Creek.  相似文献   

10.
The physico-chemical speciation of organic carbon and selected metals was measured during a coastal bloom in Ekhagen Bay, Baltic Sea, using ultrafiltration.One important objective with the study was to see if any depletion of trace metals could be measured in the directly bioavailable fraction (<1000 Da, the soluble low molecular weight fraction, LMW) during a plankton bloom. Filters with five different cut-offs were used (1 kD (1000 Da), 5 kD, 10 kD, 100 kD and 0.22 μm) in order to delineate the size distribution of colloidal organic carbon (COC) and trace metals.During the bloom in May, LMW Al, Co, Cu, Mn and Ni concentrations decreased although the colloidal and particulate concentrations were relatively high. Data show that desorption of colloidal and particulate bound trace metals to the LMW fraction was slower than the process depleting the LMW fraction.Estimates of the maximum active uptake of Cu, Ni and Mn by the phytoplankton, and the loss of non-bioactive Al from the LMW fraction, indicate that processes other than active uptake by phytoplankton must contribute to the observed depletion of trace metals in the LMW fraction. Hence, in order to estimate the bioavailable pool of trace metals for plankton during bloom conditions, these other processes must be understood and quantified.Transparent Exopolymeric Particles (TEP, reflecting sugar-rich phytoplankton exudates) increased around eight times during the plankton bloom. We hypothesize that the formation of TEP is a process that might be important for the transfer of trace metals from the LMW to the particulate fraction during the phytoplankton bloom, but the significance of TEP for this depletion in Baltic Sea surface water remains to be shown.  相似文献   

11.
The concentrations of Pb, Cu, Cd and Zn were determined in above- and belowground parts of eelgrass (Zostera marina L.) at forty stations in a shallow, brackish water area (the Limfjord, Denmark). The concentrations of the trace metals were significantly elevated near the cities of Aalborg (Pb, Cu) and Struer (Cd). Trace metal concentrations in above and belowground parts of eelgrass were log-normal distributed and the concentrations of Cd, Cu and Zn in aboveground parts were significantly higher than in belowground parts. Furthermore, a significant correlation between trace metal concentrations in above- and belowground parts was found. The background level of trace metal concentrations in eelgrass in the Limfjord was estimated.The application of eelgrass as a monitoring organism is discussed; it is suggested that the concentration of some trace metals in above- and belowground parts of eelgrass may be used as a measure of the bioavailable fraction of these trace metals in ambient and interstitial water (sediment), respectively.  相似文献   

12.
The relative contributions of adsorption to particulate surfaces, complexation with surface-active organic ligands and uptake by micro-organisms were evaluated with respect to their importance in the surface microlayer enrichment (‘partitioning’) of Cd, Pb and Cu. The contributions of each process were inferred from field data in which partitioning of the dissolved and particulate forms of Cd, Pb and Cu, total and dissolved organic carbon, particles and total bacteria were observed. In the South San Francisco Bay estuary, particle enrichment appears to control trace metal partitioning. Trace metal association with the particulate phase and the levels of partitioning observed were in the order Pb > Cu > Cd and reflect the calculated equilibrium chemical speciation of these metals in computer-simulated seawater matrices.  相似文献   

13.
采集胶州湾表层和底层海水样品,分析了Cu、Cr、Cd、Pb、Ni、Co等痕量金属在海水中的空间分布特征及其在不同分子量溶解有机质中的分配特征,并探讨了痕量金属?溶解有机质分配机理及浮游生物活动与盐度等环境因素对该分配过程的影响。结果表明,胶州湾海水中痕量金属呈近岸浓度较高的分布特征,在湾东北部出现高值区,Cd和Pb还分别在湾口与湾中部出现高值区。胶州湾海水中痕量金属平均有70.1%分配于低分子量(<1 kDa)组分中,其中Cu和Cd低分子量组分所占平均比例分别达79.0%与77.6%,Cr、Ni和Co稍低,分别为71.5%、67.3%及66.9%,Pb则仅为58.2%。海水中的溶解有机碳也以低分子量组分为主,所占比例平均达73.1%,且光谱特征显示低分子量溶解有机质中类腐殖质含量更高,含有丰富的羧基和羟基,金属配合能力较高,导致痕量金属多分配于低分子量溶解有机质中。高分子量溶解有机质(>1 kDa)所占比例与叶绿素a浓度呈显著正相关,表明浮游植物初级生产通过释放高分子量溶解有机质影响海水痕量金属?溶解有机质的分配过程。胶州湾湾顶盐度较低海域痕量金属高分子量组分略高,可能是生物活动及陆源输入(产生更多高分子量溶解有机质)与盐度(低盐有利于高分子量有机质的稳定性)共同作用的结果。  相似文献   

14.
The concentrations of suspended matter and particulate Cd, Cu, Pb and Zn were determined for 36 samples collected at 6 stations in the Antarctic Ocean during December, 1970 and January, 1971 using membrane filters. The concentration of suspended matter was determined gravimetrically and trace metal levels were determined using anodic stripping voltammetry. For waters deeper than 100 m the concentration of suspended matter was < 100 μg l?1. Concentrations up to 542 μg l?1 were recorded between surface and 100 m. Individual concentrations of the metals were scattered with depth. Average concentrations of particulate metals were: Cd, 3.5 ng l?1; Cu, 100 ng l?1; Pb, 35 ng l?1; and Zn, 230 ng ;l?1 These measurements represent non-steady state conditions of early Antarctic summer as the ice pack disintegrates and biological activity increases.  相似文献   

15.
Urban run‐off from a catchment in Dunedin, New Zealand was sampled and chemically characterised (iron (Fe), lead (Pb), copper (Cu), zinc (Zn) in total and <0.4 (im fractions, suspended solids, nitrogen (N), phosphorus (P), dissolved organic carbon, major ions, pH) during base flows, and storm flows from five rainfall events. Fe and Pb were found to be predominantly particle‐associated (>0.4 μm) and their concentrations increased significantly at the beginning of storm run‐off. In contrast, the majority of Cu and Zn was found in the <0.4μm fraction before rainfall events but during the initial period of storm flows a significant proportion of Cu and Zn was also present in the >0.4 μm fraction. The results indicate that Cu and Zn may be more bio‐available, and more difficult to remove by storm‐water treatment, than Pb. The pH level and the concentration of major ions (Ca+2, Na+, Mg+2, K+), dissolved reactive phosphorus, and nitrate generally decreased during storm flows as a result of dilution by rainwater. Concentrations of total N and P often increased during the initial period of storm run‐off, which was likely because of wash‐off of particulate plant material.  相似文献   

16.
Anoxic sulfidic waters provide important media for studying the effect of reducing conditions on the cycling of trace metals. In 1987–1988, dissolved and particulate trace metal (Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb) concentrations were determined in the water column of the anoxic Drammensfjord basins, southeastern Norway. The iminodiacetic acid type chelating resin (Chelex 100) was used for the preconcentration of trace metals. The trace metal concentrations were determined using atomic absorption spectrophotometry (AAS), differential pulse polarography (DPP), and differential pulse-anodic stripping voltammetry (DP-ASV).It was observed that the trace metals Mn and Fe were actively involved in the processes of redox cycling (oxidationreduction and precipitation-dissolution) at the O2/H2S interface. The dissolved concentrations of Mn, Fe and Co showed maxima just below the O2/H2S interface. The seasonal enhancement in the maxima of both dissolved and particulate Mn and Fe at the redox cline is mainly governed by the downward movement of water which carries oxygen. An association of Co with the Mn cycle was observed, while the total dissolved Ni was decreased by only 10–35% in the anoxic waters. The dissolved concentrations of Cu, Zn, Pb and, to a lesser extent, Cd decreased in the anoxic zone.  相似文献   

17.
《Marine Chemistry》2007,103(3-4):211-226
A vertical mixing event was simulated in shipboard incubation experiments on the mid-continental shelf of the eastern Bering Sea to investigate Fe and Zn cycling between the soluble (< 0.03 μm or 200 kDa), colloidal (0.03–0.2 μm), and particulate (0.2–10 μm, > 10 μm) size-fractions. The particulate Fe and Zn were further separated into chemically labile (25% acetic acid-leachable) and refractory pools. The experiment employed 57Fe (+ 0.90 nM) and 68Zn (+ 0.99 nM) as stable, low-abundance isotope amendments to the soluble fraction, and the exchange of Fe and Zn between the different physico-chemical fractions was measured using high resolution-inductively coupled plasma-mass spectrometry (HR-ICP-MS). More than 50% of the added 57Fe partitioned to the colloidal fraction within 45 min of adding the tracer. Both the 57Fe and 56Fe colloidal fraction were removed from the dissolved phase at a faster rate than the soluble Fe fraction. In contrast, the colloidal 66Zn and 68Zn concentrations remained constant over the 5-day experiment, suggesting a unique removal mechanism for colloidal Fe. The net removal of dissolved 57Fe was observed to be 3 to 4 times more rapid than dissolved 56Fe, which can be attributed to the regeneration of particulate Fe. Using a simple first-order model, it was determined that the net removal of 2.0 nM of dissolved Fe during the experiment was a consequence of dynamic cycling, whereby 2.9 nM of particulate Fe was regenerated and contributed to an overall removal of 4.9 nM of Fe from the dissolved phase. The amended 68Zn tracer resided in the soluble fraction and was assimilated by the diatom biomass (> 10 μm size-fraction) at the same rate as 66Zn. This similarity in rates suggests that nearly all of the net removal of Zn was due to assimilation and that regeneration did not play a significant role in Zn cycling within the incubation experiment. This research demonstrates the advantage of using low-abundance isotopes as tracers and the importance of particulate and colloidal Fe in the overall biogeochemical cycling of Fe in ocean surface waters.  相似文献   

18.
Determinations of Zn, Ni, Mn, Cd, Cu, and Fe have been carried out on 51 near-shore and 38 open-ocean surface seawaters from various regions of the World Ocean.The concentrations of the trace metals have been established in the open-ocean waters, and have been used as “baselines” to evaluate trace-metal enhancement in near-shore regions. The factors by which the trace metals are enriched in near-shore regions vary from one element to another and, according to the highest concentration factors found, decrease in the order Zn = Mn > Cd = Cu = Ni.These elements exhibit differences in their distributions between near-shore and open-ocean waters, and they have been divided into two types on this basis: Type I, in which the largest number of samples in both shelf and open-ocean waters lie in the same concentration range. Zinc, cadmium, and copper are Type I elements. Type 2, in which the largest number of samples of near-shore waters lie in a higher concentration range than the largest number of samples of open-ocean waters. Nickel and manganese are Type 2 elements.The concentrations of Mn, Cd and Zn are similar in open-ocean surface waters from the South Atlantic and Indian Ocean, but Cu and Ni have higher concentrations in the former ocean.There is considerable variation in the concentrations of the trace metals in near-shore surface waters from various regions of the World Ocean. These variations are discussed in detail.  相似文献   

19.
Dissolved and particulate trace metals (Cu, Cd, Pb, Zn, Ni, Fe and Mn) measured at six stations along the Scheldt estuary in October/November 1978 are compared with more recent data. Based on Ca content in the suspended matter, three distinct geochemical regions could be distinguished: the upper estuary (salinity 1–7) dominated by fluvial mud, mid-estuary (salinity 7–17) where the composition of the suspended matter remained relatively constant, and the lower estuary where marine mud prevailed. Re-suspension of sediments is the major factor controlling the composition of the particles in the upstream region. Anoxic conditions prevailed in the upper part of the estuary extending to a salinity of 15 in 1978, while at present the seaward boundary of the anoxic water body is located at less saline waters. Furthermore, the present-day metal load is much lower than in 1978. As a consequence of the changed situation, maxima in dissolved concentrations of redox-sensitive metals in the mid/lower estuary have moved as well, which affects the trace metal re-distribution pattern. In the anoxic zone, exchange processes between dissolved and particulate metal fractions were strongly redox regulated, with Fe and Mn as excellent examples. Iron was removed from the dissolved phase in the early stages of mixing resulting in an increase in the suspended particulate matter of the leachable ‘non-residual' Fe fraction from 2 to 3.5%. Due to its slower kinetics, removal of Mn from solution occurred in mid-estuary where oxygen concentrations increased. Cu, Cd and Zn on the contrary were mobilised from the suspended particles during estuarine mixing. External inputs of Pb, and to a lesser extent of Cu, in the lower estuary resulted in the increase of their particulate and the dissolved concentrations. Calculated Kd (distribution coefficient) values were used to assess the redistribution between the dissolved and particulate phase of the investigated metals. Due to the existence of the anoxic water body in the upper estuary, the importance of redox processes in determining the Kd values could be demonstrated. The sequence of Kd values in the upper estuary (Fe, Cd, Zn, Pb > Cu > Ni, Mn) is significantly different from that in the lower estuary (Fe > Mn > Pb, Ni, Zn, Cu, Cd). Thus, in such a dynamic estuary single metal-specific Kd values cannot be used to describe redistribution processes.  相似文献   

20.
Concentrations of trace metals (As, Cd, Cr, Cu, Pb, Hg, Se, and Zn) were determined in the livers, kidneys, muscles, intestines, and hearts of twelve long-beaked common dolphins (Delphinus capensis) from the East Sea, Korea, in 2006. All specimens were entangled in various commercial fishing nets or traps and as such are recorded as by-catch. The concentrations of Cu, Hg, Se, and Zn were much higher in the liver than in the kidney, muscle, intestine, or heart. Trace metals that accumulated in the liver were, in descending order: Zn > Hg > Cd > Se > Cu > As > Cr > Pb. In contrast, the concentration of Cd was higher in the kidney than in any other organs. The trace metals accumulated in the kidney were, in descending order: Cd > Zn > Cu > Hg > Se > As > Pb > Cr. No significant differences were found in the concentrations of As, Cr, or Pb in all the tissues examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号