首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Tholeiitic basalts dredged from the Mid-Atlantic Ridge (MAR) axis at 43 ° N are enriched in incompatible trace elements compared to the ‘ normal’ incompatible element depleted tholeiites found from 49 ° N to 59 ° N and south of 33 ° N on the MAR. The most primitive 43 ° N glasses have MgO/FeO*= 1.2 and coexist with olivine (Fo90–91) and chrome-rich spinel. The tholeiitic basalts from the MAR 43 ° N are distinct from the strongly incompatible trace element depleted tholeiities found elsewhere in the Atlantic, and have trace element features typical of island tholeiities and MAR axis tholeiites from 45 ° N. Petrographic, major, and compatible trace element trends of the axial valley tholeiites at 43 ° N are consistent with shallow-level fractionation; in particular, evolution from primitive liquids with forsteritic olivine plus chrome spinel as liquidus phases to fractionated liquids with plagioclase plus clinopyroxene as major crystallizing phases. However, each dredge haul has distinctive incompatible trace element abundances. These trace element characteristics require a hetrogeneous mantle or complex processes such as open system fractional crystallization and magma mixing. Alkali basalts (~5% normative nepheline) were dredged from a prominent fracture zone at 43 ° N. Typical of alkali basalts they are strongly enriched (compared to tholeiites) in incompatible elements. Their highly fractionated rare-earth element (REE) abundances require residual garnet during partial melting. The 43 ° N tholeiites and alkali basalts could be derived from a garnet peridotite source with REE contents equal to 2 × chondrites by ~5% and 1% melting, respectively. Alternatively, they could be derived from a moderately light REE enriched source by ~25% and 9.5% melting, respectively.  相似文献   

2.
Basaltic lavas from the Three Sisters and Dalles Lakes were erupted from two isolated vents in the central Washington Cascades at 370–400 ka and 2.2 Ma, respectively, and have distinct trace element compositions that exemplify an important and poorly understood feature of arc basalts. The Three Sisters lavas are calc-alkaline basalts (CAB) with trace element compositions typical of most arc magmas: high ratios of large-ion-lithophile to high-field-strength elements (LILE/HFSE), and strong negative Nb and Ta anomalies. In contrast, the Dalles Lakes lavas have relatively low LILE/HFSE and no Nb or Ta anomalies, similar to ocean-island basalts (OIB). Nearly all Washington Cascade basalts with high to moderate incompatible element concentrations show this CAB or OIB-like compositional distinction, and there is pronounced divergence between the two magma types with a large compositional gap between them. We show that this trace element distinction can be easily explained by a simple model of flux-melting of the mantle wedge by a fluid-rich subduction component (SC), in which the degree of melting (F) of the peridotite source is correlated with the amount of SC added to it. Distinctive CAB and OIB-like trace element compositions are best explained by a flux-melting model in which dF/dSC decreases with increasing F, consistent with isenthalpic (heat-balanced) melting. In the context of this model, CAB trace element signatures simply reflect large degrees of melting of strongly SC-fluxed peridotite along relatively low dF/dSC melting trends, consistent with derivation from relatively cold mantle. Under other conditions (i.e., small degrees of melting or large degrees of melting of weakly SC-fluxed peridotite [high dF/dSC]), either OIB- or MORB (mid-ocean ridge basalt)-like compositions are produced. Trace element and isotopic compositions of Washington Cascade basalts are easily modeled by a correlation between SC and F across a range of mantle temperatures. This implies that the dominant cause of arc magmatism in this region is flux melting of the mantle wedge. Received: 2 March 1999 / Accepted: 18 August 1999  相似文献   

3.
Flood basalt provinces may constitute some of the most catastrophic volcanic events in the Earth's history. A popular model to explain them involves adiabatic ascent of plumes of anomalously hot peridotite from a thermal boundary layer deep in the mantle, across the peridotite solidus. However, peridotitic plumes probably require unreasonably high potential temperatures to generate sufficient volumes of magma and high enough melting rates to produce flood volcanism. This lead to the suggestion that low melting eclogitic or pyroxenitic heterogeneities may be present in the source regions of the flood basalts. In order to constrain petrogenetic models for flood basalts generated in this way, an experimental investigation of the melting relations of homogeneous peridotite + oceanic basalt mixtures has been performed. Experiments were conducted at 3.5 GPa on a fertile peridotite (MPY90)–oceanic basalt (GA1) compositional join. The hybrid basalt + peridotite compositions crystallised garnet lherzolite at subsolidus temperatures plus quenched ne-normative picritic liquids at temperatures just above the solidus, over the compositional range MPY90 to GA150MPY9050. The solidus temperature decreased slightly from ∼1500 °C for MPY90 to ∼1450 °C for GA150MPY9050. Compositions similar to GA130MPY9070 have 100% melting compressed into a melting interval which is approximately 50–60% smaller than that for pure MPY90, due to a liquidus minimum. During adiabatic ascent of hybrid source material containing a few tens of percent basalt in peridotite, the lower solidus and compressed solidus–liquidus temperature interval may conspire to substantially enhance melt productivity. Mixtures of recycled oceanic crust and peridotite in mantle plumes may therefore provide a viable source for some flood volcanics. Evidence for this would include higher than normal Fe/Mg values in natural primary liquids, consistent with equilibration with more Fe-rich olivine than normal pyrolitic olivine (i.e. <Fo89–92). Modelling of fractionation trends in West Greenland picrites is presented to demonstrate that melts parental to the Greenland picrites were in equilibrium at mantle P–T conditions with olivine with Fo84–86, suggesting an Fe-enriched source compared with normal peridotite, and consistent with the presence of a basaltic component in the source. Received: 29 October 1999 / Accepted: 3 February 2000  相似文献   

4.
 This paper uses the geochemistry of primitive mafic lavas from the Rungwe volcanic province (southwestern Tanzania) to infer the source mineralogy and melting history. Post-Miocene mafic lavas from Rungwe include alkali basalts, basanites, nephelinites and picrites with up to 18.9 wt% MgO; nephelinites (>13.5% normative nepheline) are restricted to Kiejo volcano in the southern portion of the province. Rungwe lavas differ from most Western Rift volcanics in that they are not unusually potassic (K2O/Na2O ca. 0.40). Sparsely phyric mafic lavas contain phenocrysts and xenocrysts of plagioclase (An82–90), clinopyroxene (4.5–9.5 wt% Al2O3), and olivine (Fo79–88); one basanite contains a 1 mm xenocryst of apatite included in magnesian clinopyroxene. All samples have high abundances of incompatible elements (e.g., 0.7–2.2 wt% P2O5) and are enriched in REE relative to HFSE (Hf, Zr, Ti, Y), Cs, Ba, and K. Some incompatible element ratios are constant throughout the Rungwe suite (e.g., Zr/Nb, Sr/Ce, K/Rb), but other ratios are extremely variable and exceed the range measured in global Ocean Island Basalts (OIB) (e.g., Ba/Nb, Sm/Zr, La/Nb, Pb/Ce, Nb/U). The range in degree of silica saturation, and its excellent correlation with P2O5/Al2O3, indicate that the Rungwe suite records variable degrees of melting. Variations of individual incompatible trace element abundances in nephelinite and basanite samples suggest that the source contains metasomatic amphibole, ilmenite, apatite, and zircon. The Rungwe suite is interpreted as a series of low-percentage melts of CO2-rich peridotite at pressures that span the garnet-spinel transition. A geochemical comparison of Rungwe samples to lavas from other Western Rift volcanic centers requires that the source mineralogy varies along the rift axis, although each province is underlain by metasomatized peridotite. The incompatible trace element signatures of Western Rift lavas indicate that the source area is typically homogeneous on the scale of individual volcanoes, although lavas from each volcano reflect a range in degree of melting. Significantly, volcanoes with distinct geochemistry are always separated by major rift faults, suggesting that volcanic and tectonic surface features may correspond to metasomatic provinces within the subcontinental lithospheric mantle. Received: 30 May 1994 / Accepted: 5 April 1995  相似文献   

5.
Late Carboniferous (300–290 Ma) calc-alkaline basalts, andesites, and rhyolites typical of volcanic arc settings occur in the intermontane Saar-Nahe basin (SW Germany) within the Variscan orogenic belt. The volcanic rock suite was emplaced under a regime of tensional tectonics during orogenic collapse and its origin has been explained by melting of mantle and crust in the course of limited lithospheric rifting. We report major, trace and rare-earth-element data (REE), and Nd-Pb-Sr-O isotope ratios for a representative sample suite, which are fully consistent with an origin closely related to plate subduction. Major and trace element data define continuous melt differentiation trends from a precursor basaltic magma involving fractional crystallization of olivine, pyroxene, plagioclase, and magnetite typical of magma evolution in a volcanic arc. This finding precludes an origin of the andesitic compositions by mixing of mafic and felsic melts as can be expected in anorogenic settings. The mafic samples have high Mg numbers (Mg# = 65–73), and high Cr (up to 330 ppm) and Ni (up to 200 ppm) contents indicating derivation from a primitive parental melt that was formed in equilibrium with mantle peridotite. We interpret the geochemical characteristics of the near-primary basalts as reflecting their mantle source. The volcanic rocks are characterized by enrichment in the large ion lithophile elements (LILE), negative Nb and Ti, and positive Pb anomalies relative to the neighboring REE, suggesting melting of a subduction-modified mantle. Initial Nd values of −0.7 to −4.6, Pb, and 87Sr/86Sr(t) isotope ratios for mafic and felsic volcanics are similar and indicate partial melting of an isotopically heterogeneous and enriched mantle reservoir. The enrichment in incompatible trace elements and radiogenic isotopes of a precursor depleted mantle may be attributed to addition of an old sedimentary component. The geochemical characteristics of the Saar-Nahe volcanic rocks are distinct from typical post-collisional rock suites and they may be interpreted as geochemical evidence for ongoing plate subduction at the margin of the Variscan orogenic belt not obvious from the regional geologic context. Received: 3 August 1998 / Accepted: 2 January 1999  相似文献   

6.
Peridotite xenoliths found in Cenozoic alkali basalts of northern Victoria Land, Antarctica, vary from fertile spinel-lherzolite to harzburgite. They often contain glass-bearing pockets formed after primary pyroxenes and spinel. Few samples are composite and consist of depleted spinel lherzolite crosscut by amphibole veins and/or lherzolite in contact with poikilitic wehrlite. Peridotite xenoliths are characterized by negative Al2O3–Mg# and TiO2–Mg# covariations of clino- and orthopyroxenes, low to intermediate HREE concentrations in clinopyroxene, negative Cr–Al trend in spinel, suggesting variable degrees of partial melting. Metasomatic overprint is evidenced by trace element enrichment in clinopyroxene and sporadic increase of Ti–Fetot. Preferential Nb, Zr, Sr enrichments in clinopyroxene associated with high Ti–Fetot contents constrain the metasomatic agent to be an alkaline basic melt. In composite xenoliths, clinopyroxene REE contents increase next to the veins suggesting metasomatic diffusion of incompatible element. Oxygen isotope data indicate disequilibrium conditions among clinopyroxene, olivine and orthopyroxene. The highest δ18O values are observed in minerals of the amphibole-bearing xenolith. The δ18Ocpx correlations with clinopyroxene modal abundance and geochemical parameters (e.g. Mg# and Cr#) suggest a possible influence of partial melting on oxygen isotope composition. Thermobarometric estimates define a geotherm of 80°C/GPa for the refractory lithosphere of NVL, in a pressure range between 1 and 2.5 GPa. Clinopyroxene microlites of melt pockets provide P–T data close to the anhydrous peridotite solidus and confirm that they originated from heating and decompression during transport in the host magma. All these geothermometric data constrain the mantle potential temperature to values of 1250–1350°C, consistent with the occurrence of mantle decompressional melting in a transtensive tectonic regime for the Ross Sea region.  相似文献   

7.
The Tertiary to Recent basalts of Victoria and Tasmania havemineralogical and major element characteristics of magmas encompassingthe range from quartz tholeiites to olivine melilitites. Abundancesof trace elements such as incompatible elements, including therare earth elements (REE), and the compatible elements Ni, Coand Sc, vary systematically through this compositional spectrum.On the basis of included mantle xenoliths, appropriate 100 Mg/Mg+ Fe+2 (68–72) and high Ni contents many of these basaltsrepresent primary magmas (i.e., unmodified partial melts ofmantle peridotite). For fractionated basalts we have derivedmodel primary magma compositions by estimating the compositionalchanges caused by fractional crystallization of olivine andpyroxene at low or moderate pressure. A pyrolite model mantlecomposition has been used to establish and evaluate partialmelting models for these primary magmas. By definition and experimentaltesting the specific pyrolite composition yields parental olivinetholeiite magma similar to that of KilaeauIki, Hawaii (1959–60)and residual harzburgite by 33 per cent melting. It is shownthat a source pyrolite composition differing only in having0.3–0.4 per cent TiO2 rather than 0.7 per cent TiO2, isable to yield the spectrum of primary basalts for the Victorian-Tasmanianprovince by 4 per cent to 25 per cent partial melting. The mineralogiesof residual peridotites are consistent with known liquidus phaserelationships of the primary magmas at high pressures and thechemical compositions of residual peridotite are similar tonatural depleted or refractory lherzolites and harzburgites.For low degrees of melting the nature of the liquid and of theresidual peridotite are sensitively dependent on the contentof H2O, CO2 and the CO2/H2O in the source pyrolite. The melting models have been tested for their ability to accountfor the minor and trace element, particularly the distinctivelyfractionated REE, contents of the primary magmas. A single sourcepyrolite composition can yield the observed minor and traceelement abundances (within at most a factor of 2 and commonlymuch closer) for olivine melilitite (4–6 per cent melt),olivine nephelinite, basanite (5–7 per cent melt), alkaliolivine basalt (11–15 per cent melt), olivine basalt andolivine tholeiite (20–25 per cent melt) provided thatthe source pyrolite was already enriched in strongly incompatibleelements (Ba, Sr, Th, U, LREE) at 6–9 x chondritic abundancesand less enriched (2.5–3 x chondrites) in moderately incompatible(Ti, Zr, Hf, Y, HREE) prior to the partial melting event. Thesources regions for S.E. Australian basalts are similar to thosefor oceanic island basalts (Hawaii, Comores, Iceland, Azores)or for continental and rift-valley basaltic provinces and verydifferent in trace element abundances from the model sourceregions for most mid-ocean ridge basalts. We infer that thismantle heterogeneity has resulted from migration within theupper mantle (LVZ or below the LVZ) of a melt or fluid (H2O,CO2-enriched) with incompatible element concentrations similarto those of olivine melilitite, kimberlite or carbonatite. Asa result of this migration, some mantle regions are enrichedin incompatible elements and other areas are depleted. Although it is possible, within the general framework of a lherzolitesource composition, to derive the basanites, olivine nephelinitesand olivine melilitites from a source rock with chondritic relativeREE abundances at 2–5 x chondritic levels, these modelsrequire extremely small degrees of melting (0.4 per cent forolivine melilitite to 1 per cent for basanite). Furthermore,it is not possible to derive the olivine tholeiite magmas fromsource regions with chondritic relative REE abundances withoutconflicting with major element and experimental petrology argumentsrequiring high degrees (15 per cent) of melting and the absenceof residual garnet. If these arguments are disregarded, andpartial melting models are constrained to source regions withchondritic relative REE abundances, then magmas from olivinemelilitites to olivine tholeiites can be modelled if degreesof melting are sufficiently small, e.g., 7 per cent meltingfor olivine tholeiite. However, the source regions must be heterogenousfrom 1 to 5 x chondritic in absolute REE abundances and heterogerieousin other trace elements as well. This model is rejected in favorof the model requiring variation in degree of melting from 4per cent to 25 per cent and mantle source regions ranging fromLREE-enriched to LREE-depleted relative to chondritic REE abundances.  相似文献   

8.
Melt-rock reaction in the upper mantle is recorded in a variety of ultramafic rocks and is an important process in modifying melt composition on its way from the source region towards the surface. This experimental study evaluates the compositional variability of tholeiitic basalts upon reaction with depleted peridotite at uppermost-mantle conditions. Infiltration-reaction processes are simulated by employing a three-layered set-up: primitive basaltic powder (‘melt layer’) is overlain by a ‘peridotite layer’ and a layer of vitreous carbon spheres (‘melt trap’). Melt from the melt layer is forced to move through the peridotite layer into the melt trap. Experiments were conducted at 0.65 and 0.8 GPa in the temperature range 1,170–1,290°C. In this P-T range, representing conditions encountered in the transition zone (thermal boundary layer) between the asthenosphere and the lithosphere underneath oceanic spreading centres, the melt is subjected to fractionation, and the peridotite is partially melting (T s ~ 1,260°C). The effect of reaction between melt and peridotite on the melt composition was investigated across each experimental charge. Quenched melts in the peridotite layers display larger compositional variations than melt layer glasses. A difference between glasses in the melt and peridotite layer becomes more important at decreasing temperature through a combination of enrichment in incompatible elements in the melt layer and less efficient diffusive equilibration in the melt phase. At 1,290°C, preferential dissolution of pyroxenes enriches the melt in silica and dilutes it in incompatible elements. Moreover, liquids become increasingly enriched in Cr2O3 at higher temperatures due to the dissolution of spinel. Silica contents of liquids decrease at 1,260°C, whereas incompatible elements start to concentrate in the melt due to increasing levels of crystallization. At the lowest temperatures investigated, increasing alkali contents cause silica to increase as a consequence of reactive fractionation. Pervasive percolation of tholeiitic basalt through an upper-mantle thermal boundary layer can thus impose a high-Si ‘low-pressure’ signature on MORB. This could explain opx + plag enrichment in shallow plagioclase peridotites and prolonged formation of olivine gabbros.  相似文献   

9.
The Alpine peridotite massif of Lanzo (Italy) contains three generations of basic dikes (gabbros and basalts). The older gabbros are plagioclase-rich mantle segregates while the younger gabbro dikes are cumulates very similar in chemical composition to recent oceanic gabbros and gabbros from ophiolitic complexes. They both were derived from the N-type mid-ocean ridge basalt (MORB) magmas which were progressively more depleted in incompatible elements and were probably generated during a dynamic melting of a rising mantle diapir. The basaltic dikes are the N-type MORB and closely resemble the Alpine-Apennine ophiolitic basalts. They were derived from a different upper mantle source than the parental magmas of the gabbros. The source of the basalts was less depleted in light REE. The presence of basic magmas with N-type MORB affinities in the Lanzo massif is consistent with the close genetic relationship between the Alpine peridotite body and the ophiolites of the Liguro-Piemontese basin.  相似文献   

10.
Three major volcanic rock sequences in the P2β formation(Emeishan basalts)were sampled dur-ing a comprehensive study of the Late Permian volcanics associated with the Panxi paleorift in southwestern China .Two of the three sections-Emei and Tangfang are composed of continental flood basalts(CFB) while the third-Ertan is an alkalic center.Multi-element chemical analyses indi-cate a predominance of low MgO transitional quartz tholeiites at Emei and Tangfang,whereas the Ertan suite ranges from high-MgO alkaline olivine basalts to rhombic porphyry trachytes and quartz-bearing aegerine-augite syenites.Consanguineity of the rocks from the three sections is sug-gested by consistently high TiO2 ,K2O,incompatible trace elements and uniformly fractionated REE patterns typical of alkalic compositions,but antypical of CFB.Sr isotope data for ten Emei basalt samples(^87Sr/^86Sr=0.7066-0.7082)which show no correla-tion with Rb/Sr ratios (0.02-0.12) and Nd isotopes for two of the samples(^143Nd/^144Nd=0.51171-0.51174)are interpreted as being related to the mantle evolution.The primary magmas re-sponsible for all the three sequences have been modeled in terms of a uniformly metasomatized man-tle source.Trace element models support the derivation of the Emei and Tangfang primary magmas from 10-15 percent partial melting of spinel lherzolite,followed by fractional crystallization of olivive and clinopyroxene.The primary alkaline olivine basalts at Ertan are generated by 7-10 percent par-tial melting of a chemically equivalent source in the garnet-peridodite stability region.The assumed mantle composition is characterixzed by Rb=3.8-5.5 ppm,Sr=62-83ppm,Ba=45-64 ppm,La=3.8-5.6ppm,and Yb=0.46-0.57ppm.The proposed mechanism of regional mantle enrichment requires metasomatic stabilization of phlogopite which becomes depleted later during par-tial melting.Such enrichment is consistent with the models proposed for alkalic systems in which a large mantle diaper acts as the agent for upward enrichment as well as uplift and extension of the crust.  相似文献   

11.
The concentrations of titanium and rare earth elements (REE) in olivines, orthopyroxenes, clinopyroxenes and spinels from four anhydrous, spinel-bearing peridotite xenoliths have been determined. The distribution of titanium (used as an analogue for the high field strength elements: HFSE) relative to the REE between clinopyroxenes and orthopyroxenes varies as a function of the whole rock composition and modal mineralogy. The distribution coefficients for titanium and the REE in these peridotites do not reflect mineral-melt equilibria. It is believed that subsolidus distribution coefficients for HFSE relative to REE vary with temperature. Ratios of various incompatible elements (e.g., Ti/Eu, Zr/Sm, Hf/Sm and P/Nd) in peridotite minerals differ from those in most primary basalts. However, the abundance ratios of incompatible elements in the bulk peridotite are comparable to those found in modern basalts. Given this and the differing contribution of melt from each phase during melting, near constant ratios of such incompatible elements in primary and primitive basalts and komatiites reflect the buffering of the melt by its residue. These ratios are fixed in the magma during the initial stages of melting because of similar and low distribution coefficients between melt and bulk residue for these element pairs. Differences in the relative abundances of titanium and REE in clinopyroxenes and orthopyroxenes demonstrate that mantle normalized abundance patterns for clinopyroxene are not equivalent to those of the whole rock. Therefore, claims of a widespread HFSE-depleted reservoir in the upper mantle base solely on the relative abundances of incompatible elements in peridotitic clinopyroxenes are invalid.  相似文献   

12.
Some workers have held that mid-ocean ridge basalts are fractionated from high pressure (15–30 kbar) picritic primary magmas whereas others have favored primary magmas generated at about 10 kbar with compositions close to those of mid-ocean ridge basalts. Of critical significance are presumed differences in composition between experimentally determined primary magmas and the least fractionated mid-ocean ridge basalts. To evaluate the significance of these differences, all based on electron microprobe analyses, we consider three sources of uncertainty: (1) analytical uncertainties for a single microprobe laboratory, (2) systematic interlaboratory analytical differences, and (3) real variations in the possible compositions of primary magmas that can be produced from a peridotite source at a given pressure. The first source of error is surprisingly large and can account for a substantial part of the total variation of normative quartz (hypersthene calculated as equivalent olivine and quartz) in FAMOUS basalts. The second is not as serious but remains undetermined for many laboratories. The third is potentially the largest but is not yet fully documented. The least fractionated FA-MOUS basalts have high mg numbers (70–73) compatible with derivation from the mantle by direct partial melting with little or no subsequent fractional crystallization. Because of the wide range of normative quartz content in these basalts, it appears necessary to consider them as representatives of multiple parental magmas. When all the sources of uncertainty are taken into account, we conclude that the experimental data by various investigators are all fairly consistent and favor derivation of the least fractionated mid-ocean ridge basalts by at most only a small amount of fractional crystallization from primary magmas having a wide range of normative quartz content and generated over a range of pressures from about 7–11 kbar. Contribution No. 420, Department of Geosciences, The University of Texas at Dallas  相似文献   

13.
Plio-Pleistocene volcanism in the Golan and Galilee (northeasternIsrael) shows systematic variability with time and location:alkali basalts were erupted in the south during the Early Pliocene,whereas enriched basanitic lavas erupted in the north duringthe Late Pliocene (Galilee) and Pleistocene (Golan). The basaltsshow positive correlations in plots of ratios of highly to moderatelyincompatible elements versus the concentration of the highlyincompatible element (e.g. Nb/Zr vs Nb, La/Sm vs La) and indiagrams of REE/HFSE (rare earth elements/high field strengthelements) vs REE concentration (e.g. La/Nb vs La). Some of thesecorrelations are not linear but upward convex. 87Sr/86Sr ratiosvary between 0·7031 and 0·7034 and correlate negativelywith incompatible element concentrations and positively withRb/Sr ratios. We interpret these observations as an indicationthat the main control on magma composition is binary mixingof melts derived from two end-member mantle source components.Based on the high Sr/Ba ratios and negative Rb anomalies inprimitive mantle normalized trace element diagrams and the moderateslopes of MREE–HREE (middle REE–heavy REE) in chondrite-normalizeddiagrams, we suggest that the source for the alkali basalticend-member was a garnet-bearing amphibole peridotite that hadexperienced partial dehydration. The very high incompatibleelement concentrations, low K content, very low Rb contentsand steep MREE–HREE patterns in the basanites are attributedto derivation from amphibole- and garnet-bearing pyroxeniteveins. It is suggested that the veins were produced via partialmelting of amphibole peridotites, followed by complete solidificationand dehydration that effectively removed Rb and K. The requirementfor the presence of amphibole limits both sources to lithosphericdepths. The spatial geochemical variability of the basalts indicatesthat the lithosphere beneath the region is heterogeneous, composedof vein-rich and vein-poor domains. The relatively uniform 143Nd/144Nd(Nd = 4·0–5·2) suggests that the two mantlesources were formed by dehydration and partial melting of anoriginally isotopically uniform reservoir, probably as a resultof a Paleozoic thermal event. KEY WORDS: basanites; lithospheric heterogeneity; magma mixing; amphibole peridotite; pyroxenites  相似文献   

14.
Process identification diagrams based on trace element data show that mafic lavas from Tubuai, including alkali basalts, basanites, analcitites and nephelinites, result from different degrees of partial melting of an isotopically homogeneous mantle source. Our fractionation-corrected data are consistent with a batch melting model or a dynamic melting model involving a threshold value for melt separation close to 1% and degrees of melting ranging from 5–8% (alkali basalts) to 1.5–3% (nephelinites). The relative source concentration pattern, calculated using an inverse numerical method, shows an enrichment in highly incompatible elements. We propose that the Tubuai lava suite was derived from a two-stage partial melting process. Melting first affected the plume material located within the transition zone between garnet and spinel domains, producing alkali basalts and basanites. Then, the melting zone migrated upwards to the base of the overlying spinel-bearing lithospheric mantle, producing highly silica-undersaturated lavas. The lower lithosphere had previously been enriched by intrusion of pyroxenite veins representing plume-derived melts which percolated away from the main magma conduits. Received: 11 June 1996 / Accepted: 8 January 1997  相似文献   

15.
The Sula Mountains greenstone belt is the largest of the late-Archaean greenstone belts in the West African Craton. It comprises a thick (5 km) lower volcanic formation and a thinner (2 km) upper metasedimentary formation. Komatiites and basalts dominate the volcanic formation and komatiites form almost half of the succession. All the volcanic rocks are metamorphosed to amphibolite grade and have been significantly chemically altered. Two stages of alteration are recognised and are tentatively ascribed to hydrothermal alteration and later regional amphibolite facies metamorphism. Ratios of immobile trace elements and REE patterns preserve, for the most part, original igneous signatures and these are used to identify five magma types. These are: low-Ti komatiites – depleted in light REE; low-Ti komatiites – with flat REE patterns; high-Ti komatiitic basalts – with flat REE; low-Ti basalts – depleted in light REE; high-Ti basalts – with flat REE patterns. Much of the variation between the magma types can be explained in terms of different melt fractions of the mantle source, although there were two separate mantle sources one light REE depleted, the other not. The interleaving of the basalts and komatiites produced by this melting indicates that the two mantle sources were melted simultaneously. The simplest model with which to explain these complex melting processes is during melting within a rising mantle plume in which there were two different mantle compositions. The very high proportion of komatiites in the Sula Mountains relative to other greenstone belts suggests either extensive deep melting and/or the absence of a thick pre-existing crust which would have acted as a “filter” to komatiite eruption. Received: 10 February 1998 / Accepted: 28 July 1998  相似文献   

16.
 Mafic and ultramafic rocks sampled in the Garrett transform fault at 13°28′S on the East Pacific Rise (EPR) provide insight on magmatic processes occurring under a fast-spreading ridge system. Serpentinized harzburgite from Garrett have modal, mineral and bulk chemical compositions consistent with being mantle residue of a high degree of partial melting. Along with other EPR localities (Terevaka transform fault and Hess Deep), these harzburgites are among the most residual and depleted in magmatophile elements of the entire mid-ocean ridge system. Geothermometric calculations using olivine-spinel pairs indicate a mean temperature of 759 ± 25 °C for Garrett residual harzburgite similar to the average of 755 °C for tectonite peridotites from slow-spreading ridges. Results of this study show that mid-ocean ridge peridotites are subject to both fractional melting and metasomatic processes. Evidence for mantle metasomatism is ubiquitous in harzburgite and is likely widespread in the entire Garrett peridotite massif. Magma-harzburgite interactions are very well preserved as pyroxenite lenses, plagioclase dunite pockets or dunitic wall rock to intrusive gabbros. Abundant gabbroic rocks are found as intrusive pockets and dikes in harzburgite and have been injected in the following sequence: olivine-gabbro, gabbro, gabbronorite, and ferrogabbro. The wide variety of magmas that crystallized into gabbros contrast sharply with present-day intratransform basalts, which have a highly primitive composition. Ferrogabbro dikes have been intruded at the ridge-transform intersection and as they represent the last event of a succession of gabbros intrusive into the peridotite, they likely constrain the origin of the entire peridotite massif to the same location. In peridotite massifs from Pacific transform faults (Garrett and Terevaka), primitive to fractionated basaltic magmas have flowed and crystallized variable amounts of dunite (±plagioclase) and minor pyroxenite, followed by a succession of cumulate gabbroic dikes which have extensively intruded and modified the host harzburgitic rocks. The lithosphere and style of magmatic activity within a fast-slipping transform fault (outcrops of ultramafic massif, discontinuous gabbro pockets intrusive in peridotite, magnesian and phyric basalts) are more analogous to slow-spreading Mid-Atlantic Ridge type than the East Pacific Rise. Received: 13 October 1997 / Accepted: 5 February 1999  相似文献   

17.
High-alumina basalts and basic andesites, which represent the most “primitive” magma types of the Cenozoic andesitic series of Sardinia, show a spatial chemical zonation with respect to REE. The basaltic rocks from the northern and south-central part of the island have REE patterns typical of calc-alkaline rocks with an enrichment of light REE and fractionation of heavy REE. In contrast, those from the southernmost part have a pattern similar to typical continental tholeiites with only a small light-REE enrichment and unfractionated heavy REE.The present data suggest that basaltic rocks may be formed by anatexis of upper-mantle material with mineral assemblages containing either garnet (calc-alkaline rocks) or spinel (rocks of tholeiitic affinities). The presence of garnet or spinel could merely reflect mineral phase transformation and indicates a different depth of fusion for the various types of basaltic rocks with those of tholeiitic affinities originating at a shallower depth than the calcalkaline rocks. The REE data are consistent with the generation of the basaltic rocks by partial melting of mantle peridotite overlying a subducted plate.  相似文献   

18.
Trace element geochemistry of basalt samples collected from 6°S-24°S of the southern EPR, representing a super-fast spreading axis is discussed. Trace element data classify these basalts into Normal and Transitional types of MORB, however, LREE enrichment is also observed in few of them. Chondrite normalized REE data plots show highly fractionated nature of these lavas, suggesting their derivation from the primitive mantle source. Petrogenetic modeling of the data suggests variation in the solidus pressure (14–20 kb.) and temperature (1316–1425°C), where 15 to 20% partial melting of the mantle is accountable for the generation of the melt. The pressure and temperature conditions at the beginning of the mantle melting were high along higher latitudes (24°S of EPR), but it gradually lowered down in the lower latitudinal areas (6°S of EPR), supporting for the presence of passively rising upper mantle beneath the Southern EPR.  相似文献   

19.
Carbonate and calcareous-quartzite of Miri-Buxa Group in the Siang Window of Eastern Himalaya intruded by mafic rocks of gabbroic affinity. These intrusive rocks are low-Ti tholeiites (Ti/Y = 379−478; Nb/La = 0.99−1.88) and characterized by enriched LILE-LREE, depleted in HFSE with minor REE fractionation [(La/Yb)N = 2.72−3.35)]. Geochemical behaviour of the incompatible trace elements with the rare earth elements abundances indicates their cogenetic nature and their emplacement in a continental rift tectonic environment. The liquidus olivine temperature of these mafic rocks ranges from 1262°C to 1380°C showing a gentle decrease of [Mg] with a steep increase of [Fe]. These charters thus imply that the rocks are either related to the extent of common source or fractionational crystallization of plagioclase and clinopyroxene from a single batch parental magma. Petrogenetic modeling of [Mg]-[Fe] and REE indicates that these mafic intrusives probably derived from a mantle source similar to komatiitic composition at moderate to high degree (8%–20%) of partial melting.  相似文献   

20.
内蒙古天和永新生代玄武岩成因及其地质意义   总被引:1,自引:0,他引:1       下载免费PDF全文
天和永玄武岩为碧玄岩,至少可以划分出3种矿物共生组合类型。天和永玄武岩总体具有贫硅(w(SiO2)=43.97%~45.68%)、富碱(w(K2O+Na2O)=5.91%~7.65%)、富钾(w(K2O)=2.04%~2.89%)、高钛(w(TiO2)=2.18%~2.37%)、高Mg值(Mg#=68~76)的特征;稀土元素含量高(∑REE=(246.62~329.82)×10-6),稀土配分曲线呈右倾平滑直线,强烈富集轻稀土,轻重稀土强烈分馏((La/Yb)N>30),无明显的Eu(δEu=0.90~1.02)和Ce异常(δCe=0.96~1.00);强烈富集不相容元素,其中高场强元素(HFSE)Nb、Ta和Th出现峰值,具有近似OIB配分型式的特征;玄武岩富含相容元素Co((39.1~48.9)×10-6)、Ni((130~257)×10-6)、Cr((138~320)×10-6)。上述所有特征以及岩石结晶程度低、富含橄榄岩包体和少量捕虏晶、元素变异关系等均表明,天和永玄武岩是原生玄武岩质岩浆固结的产物。微量元素比值Ba/Rb(12~35)和碱金属的变化暗示源区可能遭受过流体的交代作用,源岩可能是富集的二辉橄榄岩。岩石成因模拟表明,形成天和永玄武岩的原生岩浆是在变压、部分熔融的条件下富集地幔源区岩石非实比熔融的产物,变压熔融柱穿切了Sp/Gt二辉橄榄岩相边界。岩浆形成于源区岩石的低度(约<5%)部分熔融,其中石榴石二辉橄榄岩部分熔融约为1%,尖晶石二辉橄榄岩部分熔融2%~5%。综合分析显示,源区部分熔融的触发机制是边际驱动的地幔对流,因而其形成深度大于东部的集宁玄武岩和汉诺坝玄武岩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号