首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
宁芜(南京-芜湖)盆地火山岩的年代学及其意义   总被引:9,自引:0,他引:9  
宁芜盆地是长江中下游地区最重要的火山岩盆地之一,发育有龙王山、大王山、姑山和娘娘山4组以安山质火山岩为主的地层.通过对4组火山岩中熔岩的锆石LA-ICP MS同位素定年,得到各组火山岩形成的时间分别为:龙王山组(134.8±1.3)Ma、大王山组(132.2±1.6)Ma、姑山组(129.5±0.8)Ma和娘娘山组(126.6±1.1)Ma.宁芜盆地内火山岩皆形成于早白垩世,火山岩浆活动发生的起止时间约为135~127Ma,持续时间在8~10Ma左右.包括宁芜盆地在内的长江中下游地区各火山岩盆地均不存在侏罗纪火山岩浆活动.研究结果为进一步探讨和认识长江中下游及中国东部中生代构造-岩浆-成矿作用提供了新的年代学成果.  相似文献   

2.
安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义   总被引:34,自引:0,他引:34  
庐枞盆地是长江中下游地区最重要的火山岩盆地之一,发育有龙门院、砖桥、双庙和浮山4组以橄榄安粗岩系为特征的火山岩地层.通过对4组火山岩中熔岩的锆石LA-ICP MS同位素定年,得到各组火山岩形成的时间分别为:龙门院组(134.8±1.8)Ma、砖桥组(134.1±1.6)Ma、双庙组(130.5±0.8)Ma和浮山组(127.1±1.2)Ma.庐枞盆地内火山岩皆形成于早白垩世,火山岩浆活动发生的起止时间约为135~127Ma,持续时间在8~10Ma左右.包括庐枞盆地在内的长江中下游地区各火山岩盆地均不存在侏罗纪火山岩浆活动.研究结果为进一步探讨和认识长江中下游及中国东部中生代构造-岩浆-成矿作用提供了新的年代学成果.  相似文献   

3.
新疆西天山乌孙山地区科库萨依系列石英正长斑岩呈岩瘤状、岩脉状产出,侵入于早石炭世大哈拉军山组地层中。其LA-ICP-MS锆石U-Pb年龄为314.4±3.7 Ma(MSWD=0.51),属石炭世晚期,为本区岩浆活动及构造环境探讨提供年代学依据。  相似文献   

4.
腾冲火山活动的时代和岩浆来源问题   总被引:35,自引:0,他引:35       下载免费PDF全文
47个腾冲火山岩样品的K-Ar年龄值域在0.09和17.84Ma之间。4条火山岩的40Ar/36Ar-40K/36Ar等时线年龄分别为2.93、0.81、0.31和0.13Ma。火山喷发的时代从中新世到更新世,喷发的高潮在晚更新世。腾冲火山目前还不是死火山,而腾冲及其邻区的热事件(侵入-热变质-喷发)又是连续发生的。20个样品的Rb和Sr含量、稳定Sr同位素初始比(0.70578-0.71437)以及其它地球化学资料还表明,这些火山岩是属于板块碰撞带生成的高钾钙碱性岩浆系列。火山岩的母岩浆来源于地幔的玄武岩浆,但在上升过程中受到过富含放射性成因Sr的地壳物质的强烈渐进混染。  相似文献   

5.
新疆阿尔泰成矿带花岗岩发育,其中很多花岗岩与成矿作用有着密切的联系,特别是400Ma左右的岩浆活动是阿尔泰地区一次重要的岩浆成矿活动,阿尔泰许多金属矿床与这一时期的岩浆构造作用有关。本次研究的出露于可可塔勒铅锌矿区的黑云母花岗岩体,其锆石LA-ICPMSU-Pb年龄为(401.8士1.5)Ma,表明可可塔勒花岗岩是阿尔泰成矿带400Ma左右发生的一次重要岩浆构造作用的产物,该黑云母花岗岩体侵入于矿区下泥盆统康布铁堡组火山岩地层中,岩体与围岩接触带附近的围岩蚀变明显,该黑云母花岗岩的侵入以及其后期的岩浆热液活动可能对区内成矿物质的活化、迁移、富集、成矿具有一定的贡献。  相似文献   

6.
通过对山西吕梁山东西两侧的界河口和西榆皮地区变基性火山岩的系统采样和测试分析,其常量、微量、稀土元素地球化学的特征表明该区的变基性火山岩形成于类似现代大陆裂谷的构造环境中.Sm-Nd,Rb-Sr同位素年代学的研究表明,界河口群变基性火山岩形成于2600Ma的壳幔分异事件中,在新太古晚期(2500Ma±)遭受了麻粒岩相变质作用的改造,使岩石的Sm-Nd体系发生了重设.而在古元古代晚期(1800Ma±)由于吕梁运动的影响,使岩石的Rb-Sr体系又一次发生变化,因其强度较小而未涉及Sm-Nd体系.该区所获得的1600Ma±的年龄值,可能与克拉通内局部的岩浆活动有关.研究结果不支持吕梁群生成于太古代的观点,而应该是古元古代时期的产物.  相似文献   

7.
Gauss-Matuyama极性转换期间地球磁场方向和强度变化特征   总被引:13,自引:2,他引:11  
粒度分析和风化强度研究表明 ,黄土高原渭南阳郭剖面黄土层L33沉积期间成壤化作用相对较弱 .在此基础上 ,为研究极性转换期间地球磁场变化特征 ,本文对黄土层L33进行了详细的岩石磁学和古地磁学研究 ,其结果表明黄土层L33的主要载磁矿物为磁铁矿和磁赤铁矿 ,并以沉积剩磁为主 ;由逐步热退磁确定的特征剩磁 (ChRM )揭示了G M(Gauss Matuyama)极性转换过程的持续时间为 9 43± 0 64ka;在G M极性转换之前 ,地球磁场曾发生过持续时间为 2 2± 0 1 3ka的短极性漂移事件 ;相对强度研究表明 ,G M极性转换期间地球磁场强度减弱 .  相似文献   

8.
用锆石SHRIMP U—Pb法测定了徐宿地区中生代岩浆岩携带的深源石榴辉石角闪岩包体的变质年龄为(1918±56)Ma,蚌埠隆起区五河群大理岩层所夹的榴闪岩透镜体变质年龄为(1857±19)Ma,蚌埠隆起东端石门山变形花岗岩的岩浆结晶年龄为(2054±22)Ma.徐宿地区和蚌埠隆起都位于华北克拉通东南缘,因此这些年代学结果指出华北陆块东南缘也存在一古元古代活动带,它的变质和岩浆事件发生时代与华北克拉通其他3个古元古代活动带一致.考虑到郯庐断裂带中生代曾发生过大规模的左行走滑,将胶东地区(胶-辽-吉古元古代活动带的南段)恢复到断裂带活动以前的位置,恰可与徐宿-蚌埠地区对应,说明徐宿-蚌埠古元古代活动带很可能是胶-辽-吉古元古代活动带的西南延伸.  相似文献   

9.
青藏高原的古高度及其时代迄今仍是青藏高原研究的重大课题. 通过对乌郁剖面近 145 m水平地层的磁性地层学研究和下伏火山岩定年, 建立了乌郁盆地15~2.5 Ma时段的年代地层学框架和盆地发育历史. 研究表明, 15 Ma以来乌郁经历了3个重要的构造发展阶段. 15~8.1 Ma 期间, 乌郁盆地发生了强烈的火山构造作用, 其中包括至少3期强烈的火山喷发并使地层倾斜、 褶皱. 其后, 盆地进入较长的构造平静期, 发育了8~2.5 Ma湖相沉积序列. 2.5 Ma期间, 乌郁盆地经历了一次较强的东西向拉张, 产生了南北向断裂, 结束了湖泊沉积, 沿断裂发育了河流. 与吉隆盆地对比结果表明, 8 Ma以来喜马拉雅造山带和冈底斯造山带经历的构造作用有高度的一致性. 因此, 上述3个不同的构造阶段具有区域性意义. 研究结果为深入探讨中新世以来藏南地区古气候环境演化和高原隆升历史提供了重要的年代学依据.  相似文献   

10.
青海省查查香卡地区晚三叠世火山岩岩石学及其构造环境   总被引:2,自引:0,他引:2  
通过对查查香卡地区晚三叠世火山岩岩石学特征、空间分布、形态、火山机构、火山岩与构造关系的研究,确定该套火山岩时代为晚三叠世。岩石地层单位为鄂拉山组,为一套陆相喷发火山岩,呈NW向展布于大海滩-都库隆瓦地区。以中-高钾、高钙、低钛为特征,属钙碱性系列。火山喷发活动由强到弱,岩性由中性向中酸性渐变,岩浆活动由喷发型向侵入型递进。表明岩石构造环境为陆内消减带火山岩中的造山区。是来自地壳下部的火山岩浆经分异结晶并在上涌过程中混入有上地壳物质而喷发形成。喷出时的大地构造环境为陆内造山环境,该火山岩最初可能形成于大陆边缘环境,由于A型俯冲构造活动,测区乃至鄂拉山地区产生一系列右旋走滑断裂带,受NW向右旋走滑断裂的影响,岩石孔隙加大,并出现强烈的热流活动,导致岩浆沿这些断裂带喷出地表。  相似文献   

11.
This paper considers results from isotope-geochronological (K-Ar) studies of the products of Neogene-Quaternary volcanism in the Karacada? area, which is situated within the northern frontal part of the Arabian plate. It was found that magmatic activity has been evolving at this location for at least the last 11–10 Myr and was distinctly discrete in character. Three stages of volcanism have been identified: (I) Early or Miocene, ~11–6.7 Ma; (II) Middle or Pliocene-Early Quaternary, 4–1 Ma; and (III) Late or Late Quaternary, 0.4–0.1 Ma. The most recent manifestations of magmatic activity in the region date back to about 100000 years ago. An analysis of the spatial distribution of volcanic centers of different ages in the Karacada? neovolcanic area shows that the magmatism of that region involved a lateral migration of activity from northwest to southeast along a major regional tectonic fault. The migration was caused by the movement of local tension zones where the lithosphere was thinner and deep-seated mantle magmas were ascending.  相似文献   

12.
Twenty-four K-Ar radiometric ages are presented for late Cenozoic continental volcanic rocks of the Cordillera Occidental of southernmost Perú (lat. 16° 57′–17° 36′S). Rhyodacitic ignimbrite eruptions began in this transect during the Late Oligocene and continued episodically through the Miocene. The development of andesitic-dacitic strato volcanoes was initiated in the Pliocene and continues to the present.The earliest ignimbrite flows (25.3–22.7 Ma) are intercalated in the upper, coarsely-elastic member of the Moquegua Formation and demonstrate that this sedimentary unit accumulated in a trough, parallel to Andean tectonic trends, largely in the Oligocene. More voluminous ash-flow eruptions prevailed in the Early Miocene (22.8–17.6 Ma) and formed the extensively preserved Huaylillas Formation. This episode was coeval with a major phase of Andean uplift, and the pyroclastics overlie an erosional surface of regional extent incised into a Paleogene volcano-plutonic arc terrain. An age span of 14.2–8.9 Ma (mid-Late Miocene) is indicated for the younger Chuntacala Formation, which again comprises felsic ignimbrite flows, largely restricted to valleys incised into the pre-Huaylillas Formation lithologies, and, at lower altitudes, an extensive aggradational elastic facies. The youngest areally extensive ignimbrites, constituting the Sencca Formation, were extruded during the Late Miocene.In the earliest Pliocene, the ignimbrites were succeeded by more voluminous calcalkaline, intermediate flows which generated numerous large and small stratovolcanoes; these range in age from 5.3 to 1.6 Ma. Present-day, or Holocene, volcanism is restricted to several large stratovolcanoes which had begun their development during the Pleistocene (by 0.7 Ma).The late Oligocene/Early Miocene (ca. 22–23 Ma) reactivation of the volcanic arc coincided with a comparable increase in magmatic activity throughout much of the Cordilleras Occidental and Oriental of the Central Andes.  相似文献   

13.
Once a mafic intrusive rock has become altered, it is generally difficult to obtain a reliable intrusion age using conventional isotopic dating methods. To overcome this problem, this study used zircon fission track (ZFT) thermochronometry to determine the timing of crystallization of altered mafic intrusions. ZFT dating was carried out on samples of baked granite country rock adjacent to dolerite dikes (5–10 m thick) in the Takato area of central Japan. Three granite samples collected within 8 mm of a dike contact yielded consistent ZFT ages of 17–16 Ma, with confined track lengths indicative of the complete annealing of pre‐existing tracks by reheating due to dike intrusion. An older ZFT age was obtained for one granite sample collected within 20 mm of the contact, but confined track length measurements indicate that this is an incompletely reset age that lies between the ZFT age of the unbaked granitic country rocks (ca. 55 Ma) and the emplacement age of the dike. Petrographic examinations suggest that post‐intrusion hydrothermal activity did not influence the ZFT ages. We conclude that the 17–16 Ma ZFT age represents the emplacement age of the dikes. Our results show that ZFT dating of baked country rock is an effective tool for dating altered mafic intrusions, for which other dating techniques are not applicable. In the eastern part of Southwest Japan, dispersed volcanic activity occurred in the late Early to early Middle Miocene (18–15 Ma), and the volcanic belt extended into the forearc. This pulse of activity was possibly related to the injection of asthenospheric material into the trench‐side mantle wedge beneath the Japan arc. We also present young apatite fission track ages (ca. 4 Ma) that may reflect a Middle Miocene or later thermal event associated with local magmatic activity near the Takato area.  相似文献   

14.
Sixty-six K---Ar dates from igneous rocks in the central Chilean Andes between 33° and 38°S are reported in this study. From these results and observed field relations, major Cenozoic volcanic and intrusive rock units are divided into chronologic groups representing igneous events.Volcanic units of Oligocene (33.3–27.9 m.y.) and Early Miocene (20.2 m.y.) age have been dated west of the present range at 33°S but neither the magnitude nor extent of these volcanic events has yet been established. Extensive Middle to Late Miocene volcanism (15.3–6.4 m.y.) followed by regional folding is recognized in the map area between 35° 20′ and 36°S. Partly contemporaneous Middle Miocene volcanism (18.4–13.7 m.y.) also followed by regional folding is recorded in the Andes between 37° 30′ and 38°S. General volcanic quiescence from 6.4 to 2.5 m.y. is observed in the map area but whether this volcanic hiatus is of regional significance is not known.The majority of the K---Ar dates document a history of nearly continuous volcanism throughout the last 2.5 m.y. in the map area. The abundant and diverse sequences of volcanic strata formed during this time, have been divided into four successive age groups which as map units show the evolution and distribution of latest volcanic activity.Landforms preserved by this volcanic series show that topographic relief similar to the present has prevailed during this time. Deep incision of rivers into young volcanic terrain, estimated to be on the order of 1–2 m/1000 years, has produced a complex volcanic and morphologic record.Four plutons dated in this study give ages of 62.0, 41.3, 19.5, and 7.0 m.y. No spatial pattern of emplacement is observed in the map area where three of these plutons are represented.Similarities in structural style, orientation and degree of deformation of Miocene and Mesozoic strata suggest that Late Miocene regional folding may have accounted for a significant part of the observed deformation in older basement strata previously ascribed to earlier orogenies.A regional comparison of ages of recognized igneous and tectonic event at different latitudes in the central and southern Andes shows the gross chronology of Cenozoic events which can be correlated with sea-floor spreading and subduction events.  相似文献   

15.
The Early Andean Magmatic Province (EAMP), consists of about 150 000 km3 of volcanic and plutonic units in the Coastal Cordillera of northern Chile and southern Peru and represents a major magmatic Mesozoic event in the world, for which the precise age of the thick volcanic series was unknown.Thirty 40Ar/39Ar analyses were carried out on primary mineral phases of volcanic and plutonic rocks from northern Chile (18°30′–24°S). Reliable plateau and “mini plateau” ages were obtained on plagioclase, amphibole and biotite from volcanic and plutonic rocks, despite widespread strong alteration degree. In the Arica, Tocopilla and Antofagasta (700 km apart) regions, the ages obtained on lava flows constrain the volcanic activity between 164 and 150 Ma and no N–S migration of volcanism is observed. The uppermost lava flows of the volcanic sequence at the type locality of the La Negra Formation extruded at ca. 153–150 Ma, suggesting the end of the volcanic activity of the arc at that time. The oldest volcanic activity occurred probably at ca. 175–170 Ma in the Iquique area, although no plateau age could be obtained.The plutonic bodies of the same regions were dated between ca. 160 and 142 Ma, indicating that they were partly contemporaneous with the volcanic activity. At least one volcanic pulse around 160 Ma is evidenced over the entire investigated reach of the EAMP, according to the ages found in Arica, Tocopilla, Michilla and Mantos Blancos regions.The episodic emplacement of huge amounts of subduction related volcanism is observed throughout the whole Andean history and particularly during the Jurassic (southern Peru, northern Chile and southern Argentina). These events probably correspond to periodic extensional geodynamic episodes, as a consequence of particular subduction conditions, such as change of obliquity of the convergence, change in the subduction angle, slab roll back effect or lower convergence rate, that remain to be precisely defined.  相似文献   

16.
赵孟为 《地球物理学报》1996,39(Z1):237-248
对鄂尔多斯盆地磷灰石裂变径迹资料深入分析表明.最迟23Ma以来盆地发生了一期由于快速抬升剥蚀引起的冷却事件.盆地东部以95m/Ma的速率抬升,造成约2000m的剥蚀量;而盆地西部则以56m/Ma的速率抬升,导致了约1000m的剥蚀量.盆地东、西部的差异抬升剥蚀导致了盆地现今微微西倾的构造面貌.这一抬升剥蚀事件是印度板块与欧亚板块碰撞引起亚洲构造运动形式以挤压为主,转换为中新世以来以地壳增厚为主的结果.K-Ar年龄和镜质体反射率资料分析表明,盆地在170-160Ma(中侏罗末)曾发生一期热事件,使古地温梯度达57℃/km,古热流值达96-109mw/m.  相似文献   

17.
This petrologic analysis of the Negra Muerta Volcanic Complex (NMVC) contributes to understanding the magmatic evolution of eruptive centres associated with prominent NW-striking fault zones in the southern Central Andes. Specifically, the geochemical characteristics and magmatic evolution of the two eruptive episodes of this Complex are analysed. The first one occurred as an explosive eruption at 9 Ma and is represented by a strongly welded, fiamme-rich, andesitic to dacitic ignimbrite deposit. The second commenced with an eruption of a rhyolitic ignimbrite at 7.6 Ma followed by effusive discharge of hybrid lavas at 7.3 Ma and by emplacement of andesitic to rhyodacitic dykes and domes. Both explosive and effusive eruptions of the second episode occurred within a short time span, but geochemical interpretations permit consideration of the existence of different magmas interacting in the same magma chamber. Our model involves an andesitic recharge into a partially cooled rhyolitic magma chamber, pressurising the magmatic system and triggering explosive eruption of rhyolitic magma. Chemical or mechanical evidence for interaction between the rhyolitic and andesitic magma in the initial stages are not obvious because of their difference in composition, which could have been strong enough to inhibit the interaction between the two magmas. After the initial explosive stages of the eruption at 7.6 Ma, the magma chamber become more depressurised and the most mafic magma settled in compositional layers by fractional crystallisation. Restricted hybridisation occurred and was effective between adjacent and thermally equivalent layers close to the top of the magma chamber. At 7.3 Ma, increments of caldera formation were accompanied by effusive discharge of hybrid lavas through radially disposed dykes whereby andesitic magma gained in importance toward the end of this effusive episode in the central portion of the caldera. Assimilation during turbulent ascent (ATA) is invoked to explain a conspicuous reversed isotopic signature (87Sr/86Sr and 143Nd/144Nd) in the entire volcanic series. Therefore, the 7.6 to 7.3 Ma volcanic rocks of the NMVC resulted from synchronous and mutually interacting petrological processes such as recharge, fractional crystallization, hybridisation, and Assimilation during Turbulent Ascent (ATA).Geochemical characteristics of both volcanic episodes show diverse type and/or depth in the sources and variable influence of upper crustal processes, and indicate a recurrence in the magma-forming conditions. Similarly, other minor volcanic centres in the transversal volcanic belts of the Central Andes repeated their geochemical signatures throughout the Miocene.  相似文献   

18.
Early Miocene sediments of the Morozaki Group in central Japan contain deep-sea fossils that have been dated using biostratigraphic and radiometric data. In this study, we utilize magnetostratigraphy to provide a more precise age for mudstones from just below the layer containing the fossils. Rock magnetic experiments suggest that both magnetic iron sulfide and Ti-poor titanomagnetite carry the remanent magnetization of the mudstones. Two different stratigraphic sites have normal polarity directions with a northeastern declination, which can be correlated with Chronozone C5Dn. Given their magnetostratigraphic position near the C5Dn/C5Dr chronozone boundary (17.466 Ma) and a high sedimentation rate, the estimated age for both the sites and the deep-sea fossils is ~17.4 Ma. The northeasterly-directed site-mean directions suggest clockwise tectonic rotation, most likely due to the Early Miocene clockwise rotation of Southwest Japan associated with the back-arc opening of the Japan Sea. The deep-sea fossils, dated at ~17.4 Ma, represent organisms deposited within a submarine structural depression formed by crustal extension during the back-arc opening stage.  相似文献   

19.
计凤桔  李齐 《地震地质》1998,20(4):15-304
首次利用TL测年技术,测定了五大连池火山群中两座最新喷发的火山熔岩中的烘烤捕虏体的年代。测定结果((264±19)aB.P.,(273±19)aB.P.)在误差范围内与喷发的历史记载(1719~1721年)一致,表明这两座火山是同期喷发的产物,同时也表明利用TL测年技术能比较准确地测定年轻火山活动的年代,它为恢复火山最新喷发历史的研究提供了一种比较可靠的年代测定途径  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号