首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正The Sanandaj-Sirjan metamorphic zone experienced a polyphase deformation history,which is related to the Zagros orogenic belt.At the northwestern part of Sanandaj-Sirjan zone many pegmatoied dykes intruded in  相似文献   

2.
Mineralogy and Petrology - The Ghorveh-Seranjic (GS) skarn is located in the northern part of the Sanandaj-Sirjan zone, NW Iran, which is part of Alpine-Himalaya orogenic belt. The GS metamorphic...  相似文献   

3.
正The study area is located at the northwestern Alvand pluton in northwest of the Sanandaj-Sirjan zone.The Sanandaj-Sirjan zone is metamorphic belt which is related to the Zagros orogenic belt.Granitic rocks in this area is  相似文献   

4.
ABSTRACT

The Early Cretaceous was an important epoch in the evolution of the Earth system in which major tectonic episodes occurred, especially along the Alpine–Himalayan belt. The paucity of reliable palaeogeographic data from the central segment of this geological puzzle, however, hampers the reconstruction of a panoramic view of its Early Cretaceous palaeogeography and geodynamic setting. Here we present multidisciplinary provenance data from Lower Cretaceous strata of the overriding plate of the Neo-Tethyan subduction zone (the Sanandaj–Sirjan Zone; SSZ, of central Iran), including structural, basin-fill evolution, petrographic and geochemical analyses. Sandstone provenance analysis of Lower Cretaceous red beds suggests the occurrence of sub-mature litho-quartzose sandstones attributed to an active continental arc margin in convergent setting predominantly derived from plutonic, quartzose sedimentary and metamorphic rocks exposed in the central SSZ. Weathering indices indicate moderate chemical weathering in the source area which may be related to close source-to-sink relationships or arid climate. Our palaeogeographic reconstructions and original geological mapping indicate that the erosion of uplifted basement rocks exposed in horst blocks provided the sediment sources for the syn-extensional deposition of uppermost Jurassic–lowermost Cretaceous conglomerates and Lower Cretaceous siliciclastic red beds within a continental retro-arc basin during initiation of the ‘Neo-Tethys 2?. The polyphase tectonic reactivation along the principal fault of the study area controlled the syn- and post-extensional tectonostratigraphic evolution that reflect the corresponding mechanical decoupling/coupling along the northern Neo-Tethyan plate margin.  相似文献   

5.
The Ebrahim-Attar (EBAT) leucogranite body is intruded within the Jurassic metamorphic complex of the Ghorveh area, located in the northern part of the Sanandaj Sirjan zone (SaSZ) of northwest Iran. The granite comprises alkali feldspar, quartz, Na-rich plagioclase and to a lesser extent, muscovite and biotite. Garnet and beryl are also observed as accessory minerals. Additionally, high SiO2 (71.4–81.0wt %) and Rb (145–440 ppm) content; low MgO (<0.12wt %), Fe2O3 (< 0.68 wt.%), Sr (mainly < 20 ppm), Ba (<57 ppm), Zr (10–53 ppm) and rare earth elements (REEs) low content (3.88–94.9 ppm with an average = 21.2 ppm); and flat REE patterns with a negative Eu anomaly characterize these rocks. The chemical composition and mineral paragenesis indicate that the rocks were formed by the partial melting of siliciclastic to pelitic rocks and can be classified as per-aluminous leucogranite or strongly per-aluminous (SP) granite. The Rb-Sr whole rock and mineral isochrons confirm that crystallization of the body occurred at 102.5 ± 6.1 Ma in Albian. The 87Sr/86Sr(i) and 143Nd/144Nd(i) ratios are 0.7081 ± 0.009 and 0.51220 ± 0.00005, respectively, and εNd(t) values range from −5.8 to −1.6. These values verify that the source of this body is continental crust. The Nd model ages (TDM2) vary between 1.0 and 1.3 Ga and are more consistent with the juvenile basement of Pan African crust. Based on these results, we suggest that the upwelling of the hot asthenospheric mantle in the SaSZ (likely during the Neo-Tethys rollback activity) occurred after the late Cimmerian orogeny. Consequently, we suggest that this process was responsible for a thinning and heating of the continental crust, from which the SP granite was produced by the partial melting of muscovite rich in pelitic or felsic-metapelitic rocks in the northern SaSZ.  相似文献   

6.
Jurassic igneous bodies of the Sanandaj–Sirjan zone (SaSZ) in SW Iran are generally considered as a magmatic arc but critical evaluation of modern geochronology, geochemistry and radiogenic isotopes challenges this conclusion. There is no evidence for sustained igneous activity along the ~1,200 km long SaSZ, as expected for a convergent plate margin; instead activity was brief at most sites and propagated NW at ~20 mm/a. Jurassic igneous rocks define a bimodal suite of gabbro‐diorite and granite. Chemical and isotopic compositions of mafic rocks indicate subcontinental lithospheric mantle sources that mostly lacked subduction‐related modifications. The arc‐like features of S‐type granites reflect massive involvement of Cadomian crust and younger sediments to generate felsic melts in response to mafic intrusions. We conclude that Jurassic SaSZ igneous activity occurred in a continental rift, not an arc. SaSZ igneous rocks do not indicate that subduction along the SW margin of Eurasia began in Jurassic time.  相似文献   

7.
A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran)   总被引:3,自引:0,他引:3  
Recent geochemical studies of volcanic rocks forming part of the ophiolites within the Zagros and Naien-Baft orogen indicate that most of them were developed as supra-subduction ophiolites in intra-oceanic island arc environments. Intra-oceanic island arcs and ophiolites now forming the Naien-Baft zone were emplaced southwestward onto the northeastern margin of the South Sanandaj–Sirjan Zone, while those now in the High Zagros were emplaced southwestward onto the northern margin of Arabia. Thereafter, subduction continued on opposite sides of the remnant oceans. The floor of Neo-Tethys Ocean was subducted at a low angle beneath the entire Sanandaj–Sirjan Zone, and the floor of the Naien-Baft Ocean was subducted beneath the Central Iranian Micro-continent. The Naien-Baft Ocean extended into North-West Iran only temporarily. This failed ocean arm (between the Urumieh-Dokhtar Magmatic Assemblage and the main Zagros Thrust) was filled by thick Upper Triassic–Upper Jurassic sediments. The Naien-Baft Ocean finally closed in the Paleocene and Neo-Tethys closed in the Early to Middle Eocene. After Arabia was sutured to Iran, the Urumieh-Dokhtar Magmatic Assemblage recorded slab break-off in the Middle Eocene.  相似文献   

8.
9.
The South Dehgolan pluton, in NW Iran was emplaced into the Sanandaj–Sirjan magmatic–metamorphic zone. This composite intrusion comprises three main groups: (1) monzogabbro–monzodiorite rocks, (2) quartz monzonite–syenite rocks, and (3) a granite suite which crops out in most of the area. The granites generally show high SiO2 content from 72.1%–77.6 wt.% with diagnostic mineralogy consisting of biotite and amphibole along the boundaries of feldspar–quartz crystals which implies anhydrous primary magma compositions. The granite suite is metaluminous and distinguished by high FeOt/MgO ratios (av. 9.6 wt.%), typical of ferroan compositions with a pronounced A‐type affinity with high Na2O + K2O contents, high Ga/Al ratios, enrichment in Zr, Nb, REE, and depletion in Eu. The quartz monzonite–syenites show intermediate SiO2 levels (59.8%–64.5 wt.%) with metaluminous, magnesian to ferroan characteristics, intermediate Na2O + K2O contents, enrichment in Zr, Nb, REE, Ga/Al, and depletion in Eu. The monzogabbro–monzodiorites show overall lower SiO2 content (48.5%–55.9 wt.%) with metaluminous and calc‐alkaline compositions, relatively lower Na2O + K2O contents, low Ga/Al ratios, and FeOt/MgO (av. 1.6 wt.%) ratios, low abundances of Zr, Nb, and lower REE element concentrations relative to the granites and quartz monzonite–syenites. These geochemical differences among the three different rocks suites are likely to indicate different melt origins. We suggest that the South Dehgolan pluton resulted from a change in the geodynamic regime, from compression to extension in the Sanandaj–Sirjan zone during Mesozoic subduction of the Neo‐Tethys oceanic crust beneath the Central Iranian microcontinent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
11.
The suture zone between the Bhandara craton and the granulite-facies rocks of the Eastern Ghats Province in SE India contains a number of deformed alkaline and tholeiitic intrusives. The Khariar alkaline complex is one of the several occurrences which intruded in the Mesoproterozoic (1,480±17 Ma, 2σ) and was deformed during the Pan-African tectonothermal event. The geochemical signatures indicate a rift-related setting for the magmatic activity. The nepheline syenite parent magma may have been produced by in-mantle fractionation of clinopyroxene and Ti-rich amphibole from a basanitic primary magma derived from an enriched spinel lherzolite mantle source in the sub-continental lithosphere. Geochemical variations in the Khariar alkaline suite can be modeled by the fractionation of clinopyroxene, amphibole, titanite, zircon, apatite and allanite. The Mesoproterozoic alkaline magmatism at Khariar marks the initiation of a NE-SW rift which formed several craton margin basins and opened an ocean towards the south. The sediments of the cratogenic basins and the Eastern Ghats Province were deposited in these rift-related basins. A K-Ar age of 1,330±53 Ma from glauconites in sandstone suggests that the NW-SE trending Godavari–Pranhita graben formed at approximately the same time as the rift at the craton margin. If the two are related, the Godavari–Pranhita graben may represent the failed arm of a rift system in which the NE-SW arm was the active segment. The granulite-facies deformation and metamorphism of the Eastern Ghats Province sediments may be related to an episode of Grenvillian basin inversion. The Mesoproterozoic rifting and Grenvillian basin closure may thus represent two well-defined parts of a Wilson cycle i.e. the opening and closure of an ocean. The Khariar and other alkaline bodies were, however, deformed during a Pan-African collisional event associated with the westward thrusting of the Eastern Ghats Province granulites over the cratonic foreland.  相似文献   

12.
In Santonian-Early Campanian sedimentary melanges of the External Liguride units (northern Apennine), slide blocks of subcontinental mantle and MOR basalts are associated with lithologies derived from the continental crust. One of these sedimentary melanges, the Mt. Ragola complex, is characterized by the close association of mantle ultramafic, mafic and quartzo-feldspathic granulites. Mafic granulites show a wide compositional range. They generally display a marked metamorphic layering, but undeformed rocks which preserve a gabbroic fabric are found locally. The most frequent lithologies are Al-spinel gabbronorites, generally containing minor olivine, and Fe-Ti oxidebearing gabbronorites. Troctolites, olivine gabbronorites and anorthosites were also recovered. Relics of primary textures as well as mineral and bulk-rock compositional variations indicate a comagmatic intrusive origin for the protoliths of the mafic granulites. This intrusive mafic complex underwent a subsolidus reequilibration under granulite facies conditions, at 0.6–0.9 GPa and 810–920°C, and was derived from crystallization at intermediate levels of tholeiite-derived liquids, possibly affected by crustal contamination. Its primary features are similar to those of the upper zone of the Ivrea layered complex. The gabbroic protolith for the granulites of External Liguride units were probably crystallized into the extending Adria lithosphere in relation to the initial stages of the opening of the western Tethys.  相似文献   

13.
From the Permian onwards, the Gondwana-derived Iran Plate drifted northward to collide with Eurasia in the Late Triassic, thereby closing the Palaeotethys. This Eo-Cimmerian Orogeny formed the Cimmeride fold-and-thrust belt. The Upper Triassic–Middle Jurassic Shemshak Group of northern Iran is commonly regarded as the Cimmerian foreland molasse. However, our tectono-stratigraphic analysis of the Shemshak Group resulted in a revised and precisely dated model for the Triassic–Jurassic geodynamic evolution of the Iran Plate: initial Cimmerian collision started in the Carnian with subsequent Late Triassic synorogenic peripheral foreland deposition (flysch, lower Shemshak Group). Subduction shifted south in the Norian (onset of Neotethys subduction below Iran) and slab break-off around the Triassic–Jurassic boundary caused rapid uplift of the Cimmerides followed by Liassic post-orogenic molasse (middle Shemshak Group). During the Toarcian–Aalenian (upper Shemshak Group), Neotethys back-arc rifting formed a deep-marine basin, which developed into the oceanic South Caspian Basin during the Late Bajocian–Late Jurassic.  相似文献   

14.
Macdonald  Leat  Doubleday  & Kelly 《地学学报》1999,11(4):186-193
The Middle Jurassic–Lower Cretaceous Fossil Bluff Group of Alexander Island, Antarctica represents the fill of a fore-arc basin unconformably overlying an accretionary complex. Like most fore-arc basins, this example had been considered to have a passive origin, as a topographic hollow between the arc and the trench-slope break. Recent discoveries of igneous rock coeval with sedimentation have altered this view. Oxfordian–Kimmeridgian basaltic and rhyolitic sills and lava flows are found in a restricted area at the north of the basin, within a single formation. Chemically, most basalts are high-Nb types, which cannot have originated in a supra-subduction zone setting. Since the age of emplacement of these rocks coincides with a gap in the record of plutonism in the Antarctic Peninsula volcanic arc, it is concluded that a late Jurassic pause in subduction led to active rifting to form the fore-arc basin.  相似文献   

15.
ABSTRACT

Albian–Cenomanian successions (Kazhdumi and Sarvak formations) represent remarkable variations in thickness, facies, fauna, and environments throughout the Zagros area. In the Coastal Fars (Charmu section), sedimentological and paleontological data evidence an intrashelf, with depths of 10s–100s m, surrounded by a shallow carbonate platform. Due to its depth, deposition of sequences in this setting has been controlled by eustatic sea-level changes rather than eurybathic changes, and several condensation episodes occurred related to marine transgressions. These observations are different from those in the adjacent sections in the Coastal Fars which recorded subaerial exposures instead. Combined with previous studies, this study denotes several intrashelf basins enclosed by a shallow carbonate platform on the southeastern margin of the Neo-Tethys during the Albian–Cenomanian. Development of intrashelf basins corresponds to basement faults in the Fars Salient. Likely, an extensional tectonic regime associated with a rifting event created horst–graben architecture by exerting extension along the basement faults and reactivating salt structures. Deposition on these troughs and highs led to the facies and thickness variations of the concomitant sequences. Development of several intrashelf basins on the southeastern margin of the Neo-Tethys indicates that syn-depositional continental rifting event could occur during the Albian–Cenomanian, prior to the tectonic inversion around the earliest Turonian.  相似文献   

16.
The paleontological investigations of the Jurassic of Western Thailand, districts of Mae Sot (Tak–Mae Sot highway, Padaeng Tak and Ban Mae Kut Luang Zinc mines) and Umphang (Klo Tho), provide age constraints for the Late Indosinian orogeny, the Paleotethys closure and the timing of the marine Jurassic inundation of Sundaland. The basal conglomerate of the Jurassic is derived from the pelagic Triassic Mae Sariang substratum. Stratigraphy, microfacies and paleontology of the Jurassic marine strata focus especially on ammonites, bivalves, large benthic foraminifera and algae. Among ammonites, the Tethyan Catulloceras perisphinctoides Gemmellaro marks the Upper Toarcian (Aalensis Zone) along the Tak–Mae Sot highway and Riccardiceras longalvum (Vacek), Malladaites pertinax (Vacek), Abbasites sp. and Vacekia sp. indicate Middle Aalenian to lowermost Bajocian in the Padaeng Mine (SE of Mae Sot) and Klo–Tho (Umphang). Vacekia sp., Spinammatoceras schindewolfi Linares and Sandoval and Malladaites vaceki Linares and Sandoval indicate Middle Aalenian to lowermost Upper Aalenian at Ban Mae Kut Luang (NE of Mae Sot). Among foraminifers, the large benthic foraminifer Timidonella sarda Bassoullet, Chabrier and Fourcade in the Western Tethys is indicative for Aalenian–Bajocian times, as characterized in the section at the Tak–Padaeng Zinc mine and the Klo–Tho Formation near Umphang. The endemic foraminifer Gutnicella kaempferi characterizes the Pu Khloe Khi Formation near Umphang. Among bivalves, shallow marine, dominantly endemic fauna includes Parvamussium donaiense (Mansuy) and Bositra ornate (Quenstedt), from the Toarcian to the Early Bajocian. A consideration of the faunal affinity shows that the fauna is partly endemic with Northern Tethyan (Eurasian) affinity.  相似文献   

17.
Integrated biostratigraphic (planktonic foraminifera, calcareous nannofossils), chemostratigraphic (bulk C and O isotopes) and compound-specific organic geochemical studies of a mid-Cretaceous pelagic carbonate—black shale succession of the Ionian Zone (western Greece), provide the first evidence for the Cenomanian–Turonian oceanic anoxic event (OAE2, ‘Bonarelli’ event) in mainland Greece. The event is manifested by the occurrence of a relatively thin (35 cm), yet exceptionally organic carbon-rich (44.5 wt% TOC), carbonate-free black shale, near the Cenomanian–Turonian boundary within the Vigla limestone formation (Berriasian–Turonian). Compared to the ‘Bonarelli’ black-shale interval from the type locality of OAE2 in Marche–Umbria, Italy, this black shale exhibits greatly reduced stratigraphic thickness, coupled with a considerable relative enrichment in TOC. Isotopically, enriched δ13C values for both bulk organic matter (−22.2‰) and specific organic compounds are up to 5‰ higher than those of underlying organic-rich strata of the Aptian-lower Albian Vigla Shale member, and thus compare very well with similar values of Cenomanian–Turonian black shale occurrences elsewhere. The relative predominance of bacterial hopanoids in the saturated, apolar lipid fraction of the OAE2 black shale of the Ionian Zone supports recent findings suggesting the abundance of N2-fixing cyanobacteria in Cretaceous oceans during the Cenomanian–Turonian and early Aptian oceanic anoxic events.  相似文献   

18.
Mafic dikes of late Proterozoic age which cut Grenvillian crust in the northeastern Adirondack Mountains are mostly mildly alkaline basalts except for a few tholeiitic examples. All dikes are high in Ti, P, K, Zr, Y, and LREE, and plot in within-plate fields on tectonic discriminant diagrams. The dikes are similar in composition to Hudson Highland dikes in southern New York and New Jersey and to the Bakersville dike swarm in the southern Appalachians. They differ from the Grenville dike swarm in Ontario and Quebec in being alkaline and having higher Ti and P contents. Mesozoic alkaline dikes in the same geographic area as the Proterozoic ones are strongly enriched in Ba, K, Rb and LREE, and approach lamprophyre in composition. The Proterozoic dikes have low La/Nb and La/Ta ratios, suggesting that subduction-modified mantle lithosphere was not substantially involved in their genesis. This contrasts with certain Mesozoic tholeiitic dikes, associated with the opening of the Atlantic, which show sharp negative Nb or Ta anomalies relative to La indicating they were derived from subduction-modified lithospheric mantle. The trace element chemistry suggests that the source for the Proterozoic dikes was trace element-enriched asthenosphere (OIB-like source), as postulated for certain basalts erupted in the East African Rift system, and in parts of the Basin and Range Province of the southwestern United States of America. Finally, the Proterozoic dikes are chemically similar to rift volcanics from the western Vermont Appalachians, and thus they are thought to represent magmatism associated with extension of the Grenvillian crust prior to opening of the Iapetus ocean.  相似文献   

19.
The Variscan orogenesis in Europe peaked during the Late Devonian–Early Carboniferous times when Gondwanan terranes collided with Laurasia. Hitherto it has been thought that Carboniferous tectonics in northern Arabia and the adjacent parts of NE Africa were broad swells (‘arches’) and depressions (‘basins’) that formed as a far-field contractional effect of the Variscan compression. The discovery of a 351 ± 3 Ma (U–Pb in zircon) within-plate felsic volcanism in the Helez borehole, southern coastal Israel, suggests that the Levant Arch is, instead, extensional in origin. Felsic volcanism was associated with gabbro underplating of the crust, an extreme (~50°C/km) crustal thermal gradient, major uplift, and truncation of the ≥2.5 km section. Taken together with the recent discovery of the ~340 Ma oceanic crust in the Eastern Mediterranean, the Levant Arch is interpreted as an uplifted shoulder of a rift, preceding ocean spreading.  相似文献   

20.
Late Neoproterozoic-Early Cambrian calc-alkaline granitoids are ubiquitous in the continental basement of Iran and indicate formation within a Cadomian arc system at the northern margin of Gondwana. A basement complex comprising mainly mica schist, paragneisses, and metagranite along with metabasite and rare pegmatite is exposed in the Zayanderud region north of Shahrekord located in the hinterland of the Zagros mountain range. This complex is unique in the Neotethyan realm because it includes eclogites with Jurassic metamorphic ages implying involvement of continental crust at the onset of subduction. Ion microprobe UPb zircon dating along with trace element and oxygen isotope analyses for metagranites define two zircon age clusters of ca. 552 and 565 Ma confirming connection with the other Ediacaran age basement arc plutons in the belt. Zircon geochronology for pegmatite, by contrast, yielded a concordant age population averaging 176.5 ± 3.3 (2σ) Ma. Zircon crystals from the pegmatite also have unusually low rare earth element (REE) abundances with sharp increases towards the heavy REE. Along with an absence of a negative Eu anomaly, this indicates a high-grade metamorphic origin of zircon crystallizing from a pegmatite which was formed by melting of mica schist and possibly amphibole eclogite during decompression where incipient garnet breakdown released Zr and HREE to form zircon, and LREE were retained in stable apatite and titanite. Corresponding 40Ar/39Ar phengite dates from the pegmatite and the mica schist country-rock are overlapping with or only slightly postdate the UPb zircon ages, indicating rapid cooling after reaching maximum metamorphic pressure in the Early Jurassic. The Zayanderud basement complex is thus potentially a rare example of deep burial of continental crust and rapid exhumation due to buoyant escape during the incipient stages of subduction, well before the ultimate closing of the Neotethys ocean basin between Arabia and Eurasia in the mid-Tertiary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号