首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Carius管结合MC-ICPMS法分析了内蒙古柯单山蛇绿岩地幔橄榄岩中Ir、Ru、 Pt 和Pd 的含量,与典型的地幔橄榄岩进行对比研究,发现柯单山地幔橄榄岩中Ir和Ru明显亏损,Pt和Pd强烈富集,具有极高的Pd/Ir值,PGEs地幔标准化配分模式具有较陡的正斜率,明显不同于通常观测到的代表部分熔融残留相中铂族元素配分模式(负斜率或平坦型)。柯单山地幔橄榄岩的Ir和Ru与MgO呈正相关关系,表明Ir和Ru的亏损可能与部分熔融过程中硫化物的消耗程度有关,而与PGEs在硫化物/硅酸盐间的能斯特分配系数没有直接关系; Pt、Pd的富集表明本区的地幔橄榄岩不仅仅是经历过部分熔融的残余,而与来自深海的橄榄岩和大陆岩石圈地幔(SCLM)中的方辉橄榄岩相似,因此推测,本区地幔橄榄岩在部分熔融后又经历了富Pd的熔/流体交代,而熔/流体的来源可能是在岩浆分异演化过程中"熔离"出来的硫化物。  相似文献   

2.
西藏普兰地幔橄榄岩中尖晶石内的钙长石包裹体及其成因   总被引:1,自引:5,他引:1  
郭国林  徐向珍  李金阳 《岩石学报》2011,27(11):3197-3206
西藏普兰超镁铁岩体之东南缘与玄武岩接触界线附近的地幔橄榄岩中除有粒状半自形的钙长石产出外,还在尖晶石中发现有呈蠕虫状、浑圆状的钙长石包裹体存在.研究发现两种产状的钙长石An值都大于95且均无环带构造,说明钙长石从高Ca/Al比值的熔体中结晶时具有结晶时间短、结晶速度快的特点,可能形成于地壳较浅部位.从化学成分来看,包裹体形态的钙长石具有较高的Cr2O3含量,其寄主矿物尖晶石的Cr#值低且TiO2含量比深海橄榄岩中的尖晶石低得多,推断钙长石包裹体与寄主矿物尖晶石是在液相条件下几乎同时结晶的产物.综合研究表明钙长石包裹体的成因可能是玄武岩熔体在地壳较浅部位侵入方辉橄榄岩时,高温的玄武质熔体提供热源,使得方辉橄榄岩中尖晶石内的Cpx+ Opx细粒矿物包裹体在高温环境下发生熔融,发生Opx+ Cpx+ Sp→Ol+ Pl的反应,由于这种情况下尖晶石有剩余,故新生成的橄榄石和钙长石矿物仍然包裹于尖晶石内,从而形成尖晶石内部呈蠕虫状的钙长石包裹体.  相似文献   

3.
Structural analysis in the well-exposed and well-preserved Neyriz ophiolite suggests that it is a relatively undisturbed piece of oceanic lithosphere. Detailed structural mapping of high-T deformation mantle flow revealed the presence of three elliptical shaped diapirs trending NW–SE. These diapirs are characterized by vertical mantle foliations associated with vertical plunging stretching lineations, which progressively incline toward parallelism with the gently NE-dipping Moho. The NW–SE direction of asthenospheric upwelling of diapirs is parallel with the orientations of the vertical sheeted dike complex. This suggests that the Neyriz ophiolite was created by two NW–SE palaeo-ridge axes. These palaeo-ridges are classified as fast-spreading ridges. These ridges are segmented by a dextral palaeo-transform fracture zone. This is consistent with fast-spreading ridges. Comparison between the Neyriz and Oman ophiolites reveals that they show similar characteristics. Most of the Oman palaeo-ridge systems are oriented NW–SE and NNW–SE. They also display similar sheeted dike complex orientations and crustal thickness variations. These two ophiolites originally were part of the Neo-Tethyan oceanic lithosphere and afterwards were separated by the Oman line during continental collision of the Iranian micro-continent and Afro-Arabian continent.  相似文献   

4.
ABSTRACT

The Bir Umq ophiolite is one of the most important ophiolitic successions in the Arabian Shield, and represents an excellent case for the study of the tectonomagmatic evolution of the earliest Precambrian events in the juvenile part of the Arabian-Nubian Shield (ANS). It is a dismembered ophiolite, which includes a serpentinized peridotite with small amounts of gabbro and mélange, and is overlain by the Sumayir formation. The mantle section of the Bir Umq ophiolite has been pervasively sheared and folded during its emplacement and is extensively serpentinized, carbonated and silicified, resulting in the common development of magnesite and listwaenite along the shear zones. Listwaenite occurs in the form of upstanding ridges due to its resistance to erosion. Antigorite is the main serpentine mineral, which, however, has low amounts of lizardite and chrysotile, indicating that the present serpentinites formed by prograde metamorphism. The ophiolitic rocks of Bir Umq have undergone regional metamorphism up to the greenschist to amphibolite facies. The presence of mesh and bastite textures indicates harzburgite and dunite protoliths. The serpentinized peridotite preserves rare relicts of primary minerals such as olivine, pyroxene and Cr-spinel. The serpentinized ultramafics of Bir Umq have high Mg# [molar Mg/(Mg+Fe2+); 0.90–0.93), low CaO, and Al2O3 contents similar to that of the environment of the suprasubduction zone. Additionally, they are characterized by the depletion of some compatible trace elements (e.g., Nb, Sr, Ta, Zr, Hf and REE), but show a wide variation in the Rb and Ba. Moreover, they are enriched in some elements that have affinities for Mg-rich minerals such as Ni, Cr, V, and Co. Fresh relics of olivine have high Fo (av. 0.91) and NiO (av. 0.42) contents, similar to those in the mantle olivine. The fresh Cr-spinel has high Cr# (0.68) and low TiO2 content (av. 0.11), similar to those in modern fore-arc peridotites. The composition of both orth- and clinopyroxenes confirms the fore-arc affinity of the studied ultramafics. The present study indicates that the protoliths of the serpentinized ultramafics of Bir Umq have high partial melt degrees, which is consistent with the characteristics of ultramafic rocks formed in a subarc environment (fore-arc) within a suprasubduction zone system.  相似文献   

5.
ABSTRACT

The dismembered ophiolites in Wadi Arais area of the south Eastern Desert of Egypt are one of a series of Neoproterozoic ophiolites found within the Arabian–Nubian Shield (ANS). We present new major, trace, and rare earth element analyses and mineral composition data from samples of the Wadi Arais ophiolitic rocks with the goal of constraining their geotectonic setting. The suite includes serpentinized ultramafics (mantle section) and greenschist facies metagabbros (crustal section). The major and trace element characteristics of the metagabbro unit show a tholeiitic to calc-alkaline affinity. The serpentinized ultramafics display a bastite, or less commonly mesh, texture of serpentine minerals reflecting harzburgite and dunite protoliths, and unaltered relics of olivine, orthopyroxene, clinopyroxene, and chrome spinel can be found. Bulk-rock chemistry confirms harzburgite as the main protolith. The high Mg# (91.93–93.15) and low Al2O3/SiO2 ratios (0.01–0.02) of the serpentinized peridotite, together with the high Cr# (>0.6) of their Cr-spinels and the high NiO contents (0.39–0.49 wt.%) of their olivines, are consistent with residual mantle rocks that experienced high degrees of partial melt extraction. The high Cr# and low TiO2 contents (0.02–0.34 wt.%) of the Cr-spinels are most consistent with modern highly refractory fore-arc peridtotites and suggest that these rocks probably developed in a supra-subduction zone environment.  相似文献   

6.
The layered cumulus rocks of the Marum ophiolite complex in northern Papua New Guinea range from highly magnesian dunite, wehrlite, and lherzolite through pyroxenite to norite-gabbro with minor anorthosite and ferronorite-gabbro near the top of the sequence. Most of the cumulates, particularly the gabbroic rocks, are characterised by recrystallised adcumulus textures and all intercumulus melt (mesostasis) has been expelled. Trends in the cumulate sequence from Mg-rich to more Fe-, Ca- and Al-rich compositions are consistent with the formation of the layered sequence by magmatic accumulation from mafic tholeiitic magmas with varying degrees of differentiation. The cumulates are characterised by extremely low levels of ‘incompatible’ elements (K, Ba, Rb, P, Zr, Nb, Hf, Y and REE) at all levels of differentiation. REE patterns are strongly depleted in LREE; HREE abundances range from ≦0.3 chondrites in peridotite to 3 x chondrites in the norite-gabbros. The Marum cumulates resemble low-Ti peridotites and gabbros found in other orthopyroxene-bearing ophiolite sequences. The parent magmas of the Marum cumulates are inferred to have been strongly depleted in ‘incompatible’ trace elements (~ 2,000 ppm Ti, ~20 ppm Zr, 6–9 x chondrites HREE with LaN/SmN~0.5). These abundances are lower than found in typical MORB and back-arc basin basalts or their picritic parents. The dissimilarity of trace element abundances of the inferred Marum parent magmas with MORB-type high-alumina olivine tholeiites supports the conclusion drawn previously from the petrology of the cumulates that the parent magmas to the Marum ophiolite were not of MORB composition but resembled the strongly depleted, Ni-rich magnesian olivine-poor tholeiites and quartz tholeiites of the Upper Pillow Lavas of the Troodos ophiolite. The Marum parent magmas are believed to have been formed by shallow melting of refractory peridotite, and are chemically and genetically distinct from the LREE-enriched high-Ti lavas (Tumu River basalts) which occur in faulted contact. The geochemical data do not permit unequivocal assignment of a tectonic environment for the formation of either the Tumu River basalts or the plutonic suite; their juxtaposition results from thrust emplacement.  相似文献   

7.
拉昂错蛇绿岩位于西藏西南部雅鲁藏布缝合带(YZSZ)的西段,由地幔橄榄岩和侵入其中的基性岩墙组成.拉昂错地幔橄榄岩普遍发育碎斑结构及熔体注入和交代结构,尖晶石的Cr#值具有较广泛的变化(0.32~0.70),大多数样品富集LREE并伴随HFSE的明显增加,少数亏损LREE,前者部分熔融程度为15%~23%,后者为10%左右,这表明它们并不是地幔单阶段部分熔融的残余物,而是MORB型亏损橄榄岩在俯冲过程中再度部分熔融后熔体与残余地幔相互作用的产物,由于熔体不同程度的混合与交代,形成了各种再饱满程度不同的橄榄岩.对拉昂错地幔橄榄岩岩石学和地球化学特征的研究,为探讨YZSZ蛇绿岩带所代表的特提斯洋盆的形成和演化提供了新的证据.  相似文献   

8.
蛇绿岩地幔岩中自由SiO2的发现及其地质意义   总被引:1,自引:0,他引:1  
自由SiO_2系指石英及其同质多型物(polymorphs)柯石英、斯石英等。石英广泛分布于地壳中的各种岩石中,柯石英和斯石英只存在于超高压岩石和陨石坑中。由于石英和非饱和SiO_2的橄榄石不能共生,因此在地幔橄榄岩和超镁铁岩中不存在原生石英。最近笔者在西藏罗布莎蛇绿岩的地幔岩(方辉橄榄岩)的豆荚状铬铁矿中发现了自由SiO_2和柯石英相。根据高温高压相平衡实验资料,橄榄石、辉石这样的硅酸盐矿物在地幔深部的压力条件下可以分解成简单氧化物,如FeO(方铁矿)、MgO(方镁石)以及SiO_2(斯石英)等。由此推测,西藏蛇绿岩地幔岩中自由SiO_2可能是来自于下地幔的矿物,是地幔柱作用将其搬运到上地幔浅部。  相似文献   

9.
TheMuztagophioliteisdistributeddiscontinu ouslyalongthewest easttrendingMuztag Jingyuhu faultzoneintheEasternKunlunMountainofXin jiangUygurAutonomousRegion(Fig.1).The mountainiscomposedoftwoprincipalunitsofmeta morphicperidotitesandcumulates(Molnaretal.,1…  相似文献   

10.
西秦岭关子镇蛇绿岩地球化学及其大地构造意义   总被引:5,自引:2,他引:3  
董云鹏 《地质学报》2008,82(9):1186-1194
关子镇蛇绿岩是东秦岭商丹缝合带西延的标志,主要由蛇纹岩、变质辉长岩、斜长角闪片岩(变玄武岩)组成。变玄武岩总体均以高SiO2、MgO,低TiO2、Al2O3,Na2O>>K2O,LREE和LILE亏损,以及HFSE不分异为特征。在此基础上,变玄武岩又可以划分为A类(主要分布南部区段)和B类(主要分布北部区段),B类相对于A类而言,具有更低的TiO2、Al2O3、MgO含量和高Σ Fe2O3含量特征。同时,B类岩石LREE亏损程度较A类岩石更为明显。综合主、微量元素地球化学特征分析,认为两类岩石均源于亏损地幔源区,形成于古大洋中脊构造环境,但成生于不同的岩浆演化阶段,是古洋盆扩张演化不同阶段的产物。西秦岭关子镇蛇绿岩性质的确定,为商丹古洋盆西延与演化,以及中国大陆古生代构造格局及其演化过程提供了重要的制约。  相似文献   

11.
Neyriz ophiolite in Abadeh Tashk area appears as four major separated massifs in an area with 125 km2, south of Iran. Peridotites including harzburgite, dunite, and lesser low-Cpx lherzolite are the major constituents of the ophiolite with very minor mafic rocks. Usual gabbros of ophiolite complexes are virtually absent from the study area. Mineral modality associated with bulk rock and mineral chemistry of the peridotites show a progression from fertile to ultra-refractory character, reflected by a progressive decrease in modal pyroxenes and in Al2O3, CaO, SiO2, Sc, Ta, V, and Ga values of the studied rocks by approaching chromite deposits. The Neyriz peridotites vary from low-Cpx lherzolite (MgO, 41.97–43.1 wt.%; Al2O3, 0.8–1.3 wt.%) with low content of Cr# spinel (36.7–37.6) and Fo olivine (90.79–91.5) to harzburgite (MgO, 44.31–45.25 wt.%;Al2O3, 0.29–0.45 wt.%; Cr# spinel, 58.2–73.45; Fo olivine, 91.23–91.56), and then to dunite (MgO, 45.9–49.2 wt.%; Al2O3, 0.18–0.48 wt.%) with higher content of Cr# spinel (74.34–79.36) and Fo olivine (91.75–94.68). Compared to modern oceanic settings, mineral and rock composition of low-Cpx lherzolite plot within the field of mid-ocean-ridge environment, whereas those of harzburgite and dunite fall in the field of fore-arc peridotites. As a result of the studies on minerals and whole rock chemistry along with rock interrelationships, we contend that the peridotites were subsequently affected by percolating hydrous boninitic melt from which the high-Cr–Mg, low-Ti chromitites were formed within mantle wedge above the supra-subduction zone in a fore-arc setting.  相似文献   

12.
The Princhester Serpentinite of the Marlborough terrane of the northern New England Orogen is a remnant of upper mantle peridotite that was partially melted at an oceanic spreading centre at 562 Ma, and subsequently interacted with Late Devonian island arc basalts in an intra-oceanic supra-subduction zone (SSZ) setting. The full range of rare-earth element (REE) contents, including U-shaped patterns, can be explained by a single process of reaction of partially melted, depleted peridotite with Late Devonian calc-alkaline and island arc tholeiite magmas by equilibrium porous flow, fractionating the REE by a chromatographic column effect. The Northumberland Serpentinite on South Island of the Percy Group has similar REE and high field strength element (HFSE) contents to the most depleted samples of the Princhester Serpentinite, supporting a common origin. However, spinel compositions suggest that the Northumberland Serpentinite interacted with boninitic magmas. The REE and mineral geochemistry indicates that the Princhester and Northumberland Serpentinites both represent part of the mantle component of a disrupted SSZ ophiolite. The ophiolite is considered to have formed above an east-dipping subduction zone, based on the geochemistry of Devonian island arc basalts between Mt Morgan and Monto, which include compositions identical to dykes and gabbroic blocks within the Princhester Serpentinite. Blockage of the subduction zone by collision with the Australian continent during the Late Devonian led to slab breakoff and the reversal of subduction direction, trapping the Late Devonian ophiolite in a forearc position. Its location, in a forearc setting above a growing accretionary wedge, conforms to the definition of a Cordilleran-type ophiolite. This interpretation is consistent with current views that most ophiolites are formed from young, hot and thin oceanic lithosphere at forearc, intra-arc and backarc spreading centres in a SSZ setting, and that emplacement follows genesis by 10 million years or less. Late Devonian crustal growth may have been widespread in the New England Orogen, because the disrupted ophiolite assemblage of the Yarras complex in the southern New England Orogen is probably of this age. Extensional tectonism at the end of the Carboniferous dismembered the Princhester – Northumberland ophiolite, removed the crustal section, and produced windows of accretionary wedge rocks within the fragmented ophiolite. The Princhester Serpentinite, together with fault slices of metasedimentary rocks, was thrust westward as a flat sheet over folded strata of the Yarrol Forearc Basin by a Late Permian out-of-sequence thrust during the Hunter – Bowen Orogeny, completing the emplacement of the Marlborough terrane. The Princhester and Northumberland Serpentinites could have been displaced by strike-slip movement along the Stanage Fault Zone or an equivalent structure. There is no record in the northern New England Orogen of SSZ ophiolites and volcanic arc deposits of Cambrian age, as exposed along the Peel Fault. Partial melting of the Princhester Serpentinite at an oceanic spreading centre at 562 Ma, recorded by mafic intrusives displaying N-MORB chemistry, was an earlier event that was outboard of any Early Paleozoic subduction zone along the margin of the Australian continent, and cannot be regarded as representing the early history of the New England Orogen. It is possible that the formation of intra-oceanic arcs in latest Silurian and Devonian time was the first tectonic event common to both the southern and northern New England Orogen.  相似文献   

13.
泽当蛇绿岩位于雅鲁藏布江缝合带东段,由地幔橄榄岩、辉长辉绿岩、火山岩等组成。地幔橄榄岩主要为方辉橄榄岩和二辉橄榄岩,有少量的铬铁矿化方辉橄榄岩和透镜状纯橄岩。地幔橄榄岩中橄榄石的Fo值为89.6~91.8,属镁橄榄石。斜方辉石为顽火辉石,En端员组分变化于87.8~90.3。单斜辉石En组分变化于44.1~50.0,主要为顽透辉石和透辉石。二辉橄榄岩与方辉橄榄岩铬尖晶石的Cr#为17.0~31.8,为富铝型尖晶石。泽当地幔橄榄岩PGE总量为16.67×10-9~32.59×10-9,与原始地幔相似。矿物化学特征显示泽当二辉橄榄岩属于深海型地幔橄榄岩,方辉橄榄岩属于弧前地幔橄榄岩。尖晶石Cr#、橄榄石Mg#的变化以及高Os含量(3.50×10-9~7.75×10-9)表明泽当地幔橄榄岩经历了部分熔融过程;正斜率的PGE配分模式以及较高的Pd/Ir值(1.09~3.94)表明泽当地幔橄榄岩受到了俯冲带环境下地幔交代作用的改造。泽当地幔橄榄岩矿物学特征与铂族元素地球化学特征显示其形成于MOR环境,后受到SSZ环境的改造。  相似文献   

14.
《地学前缘(英文版)》2020,11(6):2347-2364
The Late Cretaceous Sabzevar ophiolite represents one of the largest and most complete fragments of Tethyan oceanic lithosphere in the NE Iran. It is mainly composed of serpentinized mantle peridotites slices; nonetheless, minor tectonic slices of all crustal sequence constituents are observed in this ophiolite. The crustal sequence contains a well-developed ultramafic and mafic cumulates section, comprising plagioclase-bearing wehrlite, olivine clinopyroxenite, olivine gabbronorite, gabbronorite, amphibole gabbronorite and quartz gabbronorite with adcumulate, mesocumulate, heteradcumulate and orthocumulate textures. The crystallization order for these rocks is olivine ​± ​chromian spinel → clinopyroxene → plagioclase → orthopyroxene → amphibole. The presence of primary magmatic amphiboles in the cumulate rocks shows that the parent magma evolved under hydrous conditions. Geochemically, the studied rock units are characterized by low TiO2 (0.18–0.57 ​wt.%), P2O5 (<0.05 ​wt.%), K2O (0.01–0.51 ​wt.%) and total alkali contents (0.12–3.04 ​wt.%). They indicate fractionated trends in the chondrite-normalized rare earth element (REE) plots and multi-element diagrams (spider diagrams). The general trend of the spider diagrams exhibit slight enrichment in large ion lithophile elements (LILEs) relative to high field strength elements (HFSEs) and positive anomalies in Sr, Pb and Eu and negative anomalies in Zr and Nb relative to the adjacent elements. The REE plots of these rocks display increasing trend from La to Sm, positive Eu anomaly (Eu/Eu1 ​= ​1.06–1.54) and an almost flat pattern from medium REE (MREE) to heavy REE (HREE) region [(Gd/Yb)N ​= ​1–1.17]. Moreover, clinopyroxenes from the cumulate rocks have low REE contents and show marked depletion in light REE (LREE) compared to MREE and HREE [(La/Sm)N ​= ​0.10–0.27 and (La/Yb)N ​= ​0.08–0.22]. The composition of calculated melts in equilibrium with the clinopyroxenes from less evolved cumulate samples are closely similar to island arc tholeiitic (IAT) magmas. Modal mineralogy, geochemical features and REE modeling indicate that Sabzevar cumulate rocks were formed by crystal accumulation from a hydrous depleted basaltic melt with IAT affinity. This melt has been produced by moderate to high degree (~15%) of partial melting a depleted mantle source, which partially underwent metasomatic enrichment from subducted slab components in an intra-oceanic arc setting.  相似文献   

15.
在班公湖怒江蛇绿岩带的西端日土出露两种不同的地幔橄榄岩:①角砾状方辉橄榄岩,由80%橄榄石(Fo=90.76~91.84,平均91.09)、15%斜方辉石(Mg#=90.97~91.41,平均91.16)、2%单斜辉石(Mg#=93.24~94.60,平均93.96)、3%棕色尖晶石(Cr#=0.20~0.25,平均0.23<0.60)和磁铁矿组成,以低MgO(41.41%~42.02%)、高Al2O3(1.63%~1.94%)、CaO(1.34%~1.60%)和Ti(133.04~134.52μg/g)为特征,亏损REE,ΣREE为球粒陨石的17%~22%,估算其为原始地幔岩经过10%~15%部分熔融的残留物;②块状方辉橄榄岩,由85%橄榄石、13%斜方辉石、2%红褐色尖晶石(Cr#=0.69~0.74,平均0.71>0.60)和磁铁矿组成,不含单斜辉石,相对于角砾状方辉橄榄岩,高MgO(42.96%~44.69%),低Al2O3(0.23%~0.61%)、CaO(0.08%~0.11%)和Ti(68.55~68.82μg/g),强烈亏损REE,ΣREE仅为球粒陨石的3%~5%,估算其为原始地幔橄榄岩经过30%~40%部分熔融的残留物。初步研究认为角砾状方辉橄榄岩是古大洋岩石圈在板块汇聚过程中构造侵位于缝合带中的残留物,是MOR型蛇绿岩的地幔橄榄岩;块状方辉橄榄岩是古大洋岩石圈在俯冲消减过程中再度发生熔融的残留物,是SSZ型蛇绿岩的地幔橄榄岩,这与本区发育MOR型蛇绿岩熔岩洋中脊拉斑玄武岩(P-MORB)和SSZ型蛇绿岩熔岩玻安岩(Boninite)是一致的。  相似文献   

16.
The several-hundred-m-thick Miocene Upper Red Formation in northwestern Iran hosts stratiform and fault-controlled copper mineralization. Copper enrichment in the percent range occurs in dm-thick carbonaceous sandstone and shale units within the clastic redbed sequence and consists of fine-grained disseminated copper sulfides (chalcopyrite, bornite, chalcocite) and supergene alteration minerals (covellite, malachite and azurite). The copper mineralization formed after calcite cementation of the primary rock permeability. Copper sulfides occur mainly as replacement of diagenetic pyrite, which, in turn, replaced organic matter. Electron microprobe analysis on bornite, chalcocite and covellite identifies elevated silver contents in these minerals (up to 0.12, 0.72 and 1.21 wt%, respectively), whereas chalcopyrite and pyrite have only trace amounts of silver (<0.26 and 0.06 wt%, respectively). Microthermometric data on fluid inclusions in authigenic quartz and calcite indicate that the Cu mineralization is related to a diagenetic fluid of moderate-to low temperature (Th = 96–160 °C) but high salinity (25–38 wt% CaCl2 equiv.). The range of δ34S in pyrite is −41.9 to −16.4‰ (average −31.4‰), where framboidal pyrite shows the most negative values between −41.9 and −31.8‰, and fine-grained pyrite has relatively heavier δ34S values (−29.2 to −16.4‰), consistent with a bacteriogenic derivation of the sulfur. The Cu-sulfides (chalcopyrite, bornite and chalcocite) show slightly heavier values from −14.6 to −9.0‰, and their sulfur sources may be both the precursor pyrite-S and the bacterial reduction of sulfate-bearing basinal brines. Carbonates related to the ore stage show isotopically light values of δ13CV-PDB from −8.2 to −5.1‰ and δ18OV-PDB from −10.3 to −7.2‰, indicating a mixed source of oxidation of organic carbon (ca. −20‰) and HCO3 from seawater/porewater (ca. 0‰). The copper mineralization is mainly controlled by organic matter content and paleopermeability (intragranular space to large fracture patterns), enhanced by feldspar and calcite dissolution. The Cheshmeh-Konan deposit can be classified as a redbed-type sediment-hosted stratiform copper (SSC) deposit.  相似文献   

17.
董洪凯 《地质与勘探》2022,58(4):767-777
阿民乌素地幔橄榄岩属芨芨台子-小黄山蛇绿岩带一部分,该构造带南北两侧地质体无明显差异,不具分界断裂的构造特征。本文对阿民乌素地幔橄榄岩与月牙山地幔橄榄岩进行岩石化学、地球化学对比分析,为芨芨台子-小黄山蛇绿岩构造属性提供新依据,并对阿民乌素蛇绿岩成矿潜力进行分析研究。笔者所在团队在地幔橄榄岩上部的辉长岩中获得LA-ICP-MS锆石U-Pb同位素年龄值为462.5±3.2 Ma,属中奥陶世。其上发育奥陶纪-志留纪公婆泉组岛弧拉斑玄武岩。该期地幔橄榄岩轻重稀土之比LR/HR=1.63~3.68, (La/Sm)N=1.70~6.92,(Gd/Yb)N=0.36~0.52,表明岩石轻稀土略富集,稀土配分曲线呈不规则“U”型,估算其为原始地幔橄榄岩经过10%~20%部分熔融的残留物。原始地幔标准化蛛网图富集高场强元素U、Zr、Hf、Yb和大离子亲石元素Rb、Sr,亏损高场强元素Nb、Ti和大离子亲石元素Ba。与月牙山地幔橄榄岩标准化蛛网图对比,最大区别在于阿民乌素地幔橄榄岩明显亏损高场强元素Ti。初步研究认为阿民乌素地幔橄榄岩属SSZ型、高压型蛇绿岩,是岛弧裂谷的产物。该橄榄岩具有形成大型铬铁矿的成矿构造背景,是寻找蛇绿岩型铬铁矿的有利部位。  相似文献   

18.
蛇绿岩中的地幔橄榄岩是蛇绿岩的重要组成部分,不仅记录了其所经历的板块构造事件,还可以探讨地幔的物质组成和深部地幔作用。位于雅江缝合带西段的普兰蛇绿岩以出露面积约600 km2的特大型地幔橄榄岩体而引人注目。为了探讨普兰蛇绿岩地幔橄榄岩的成因,本文在普兰地幔橄榄岩体的东段完成了一条穿过岩体的长约10km的地质剖面,对地幔橄榄岩进行了系统采样,开展了详细矿物学、地球化学研究,取得以下主要进展和认识:(1)普兰地幔橄榄岩中的二辉橄榄岩经历了9%~15%的部分熔融作用,方辉橄榄岩最终经历了15%~25%的部分熔融作用;(2)基于橄榄石-尖晶石矿物化学平衡计算的普兰地幔橄榄岩氧逸度?log(fo2)FMQ值从-1.11到+0.45,略高于用VY含量估算出的氧逸度(在FMQ到FMQ-1趋势),指示其形成于还原环境;(3)普兰地幔橄榄岩不是简单的地幔残余,还经历了后期熔体交代作用。对普兰地幔橄榄岩交代产生类似"U"型稀土配分模式的熔体可能是洋中脊(MOR)环境产生的低融岩浆;(4)地幔橄榄岩地球化学特征及氧逸度计算结果表明,普兰地幔橄榄岩可能形成于洋中脊(MOR)环境,并没有俯冲带(SSZ)环境的印记。对于普兰地幔橄榄岩以及雅鲁藏布江缝合带其他岩体的成因,前人主要根据地幔橄榄岩一些元素的富集特征提出的MOR→SSZ两阶段演化模式需要重新审视。  相似文献   

19.
The Raka ophiolite is located in the middle section of the plate suture zone in the Yarlung Zangbo region, Tibet. It is suggested that the genesis of the ophiolite is similar to that of non-typic MORB in a marginal ocean basin through field geological investigation, lithogeochemical analysis and synthetical comparison. It is concluded that the ophiolite in this region may be relics of the subducted oceanic lithosphere in the Neo-Tethys period. This project was financially supported by the National Natural Science Foundation of China (No. 49772109, No. 49472100) and the Key Projects for the “Eighth-Five Year Plan” period in the Tibet Autonomous Region.  相似文献   

20.
The Main Recent Fault of the Zagros Orogen is an active major dextral strike-slip fault along the Zagros collision zone, generated by oblique continent–continent collision of the Arabian plate with Iranian micro-continent. Two different fault styles are observed along the Piranshahr fault segment of the Main Recent Fault in NW Iran. The first style is a SW-dipping oblique reverse fault with dextral strike-slip displacement and the second style consists of cross-cutting NE-dipping, oblique normal fault dipping to the NE with the same dextral strike-slip displacement. A fault propagation anticline is generated SW of the oblique reverse fault. An active pull-apart basin has been produced to the NE of the Piranshahr oblique normal fault and is associated with other sub-parallel NE-dipping normal faults cutting the reverse oblique fault. Another cross-cutting set of NE–SW trending normal faults are also exist in the pull-apart area. We conclude that the NE verging major dextral oblique reverse fault initiated as a SW verging thrust system due to dextral transpression tectonic of the Zagros collision zone and later it has been overprinted by the NE-dipping oblique normal fault producing dextral strike-slip displacement reflecting progressive change of transpression into transtension in the collision zone. The active Piranshahr pull-apart basin has been generated due to a releasing damage zone along the NW segment of the Main Recent Fault in this area at an overlap of Piranshahr oblique normal fault segment of the Main Recent Fault and the Serow fault, the continuation of the Main Recent Fault to the N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号