首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
葫芦岛市白杨村石英岩矿赋存于辽西笔架山向斜北翼,青白口系景儿峪组中.矿层呈单斜状东西向展布,为一连续的、厚度稳定的单一矿层.矿石类型以巨厚层、厚层灰白-白色石英岩为主,矿石质量特点是硅高碱低,是与辽西地区高碱水泥用灰岩相匹配的硅质原料矿.通过对白杨村石英岩矿床产出层位、矿床特征及高硅低碱的矿石质量特点进行分析,并针对辽西水泥用石灰岩碱高的实际情况,探讨了该矿床开发利用前景.  相似文献   

2.
西准噶尔北部谢米斯台山西缘发育的下石炭统黑山头组主要为一套火山碎屑岩-中酸性火山熔岩组合。通过对黑山头组英安岩和安山岩进行岩石地球化学研究,不仅可以提高博什库尔—成吉斯火山弧的研究程度,更有助于对西准噶尔北部岩浆活动及构造演化提供新认识。研究发现二者均具有较高的SiO2(60.52%~71.58%)、全碱Na2O+K2O(6.88%~10.31%)、Al2O3(13.37%~16.31%),较低的P2O5(0.03%~0.27%)和TiO2(0.07%~1.89%)。英安岩属于碱性-亚碱性系列,安山岩属于钙碱性系列。岩石稀土元素总量较高(62.7×10-6~274×10-6),富集轻稀土元素((La/Yb)N=2.75~12.7),具有明显的负铕异常(δEu=0.247~0.501),富集大离子亲石元素(Rb,Ba,Th),相对弱亏损高场强元素(Nb,Ta,Ti),显示岛弧火山岩的地球化学特征。通过对其源区和构造环境分析发现,博什库尔—成吉斯火山弧形成于岛弧俯冲环境下,且在此过程中伴随有消减沉积物熔体的加入。  相似文献   

3.
豫北焦作地区本溪组富铝含铁的黏土-铝土岩(矿)广泛分布,其中普遍伴生锂元素,为典型的沉积型锂矿床。为探讨锂元素分布和富集特征以及与主量元素的关系,对本溪组地层层序及沉积特征、岩(矿)石类型及组合进行了系统划分和Li与主量元素相关性分析。结果显示,焦作地区本溪组Li平均含量在平面分布上西部明显高于中、东部,富集程度具有"西高东低"特征;本溪组中各岩(矿)石Li含量差异较大,Li主要富集于本溪组中上部致密块状高铝黏土矿和硬质黏土矿中,部分软质黏土矿、铁质黏土岩和碳质黏土岩中Li有异常富集现象;富锂岩(矿)石Li与Al2O3、SiO2均先呈正相关,后呈负相关,且A/S值为0.8~1.5,Al2O3含量为30%~55%、SiO2含量为25%~45%时,Li最富集。综合分析认为,窑头、常平、盆窑北-张老湾南、焦谷堆-寨豁、栗井-大洼和上刘庄-王窑等矿区,可以连片大面积圈定锂矿体,是该区最佳锂资源潜力区。  相似文献   

4.
河北省邢台县谈话石墨矿地质特征   总被引:1,自引:0,他引:1  
河北邢台谈话石墨矿含矿岩组大和庄组分为四个岩性段。石墨含矿(矿化)层位为大和庄组二段及四段下部和中部。石墨含矿(矿化)层(段)有7条,分属上述三个矿化层位。石墨矿体有两个,分属两个含矿层,均属大和庄组四段下部的含矿层位。1号矿体长约400m±,斜伸约55m±,均厚2.40m;2号矿体长约560m±,斜伸约55m±,均厚2.50m。矿石类型有两种:斜长石型块状矿石,属1号矿体,品位2.02%~2.93%;蓝晶石型片状矿石,属2号矿体,品位2.40%~5.46%。两个矿体中可综合利用成分均为金红石和蓝晶石。窑子沟村周边大和庄组三段中石榴石含量较高,推测有一定资源量。  相似文献   

5.
李永军  沈锐  王冉  郭少婷  佟丽莉  杨高学 《岩石学报》2014,30(12):3501-3511
黑山头组玄武岩-玄武安山岩组合是西准噶尔早石炭世海相火山-沉积建造的重要组成部分,其与高Mg安山岩及O型adakite共生。此次分析的所有样品均为玄武质岩石,Si O2含量为49.62%~55.68%,平均为52.70%;明显高Ti O2(1.16%~1.99%),平均为1.56%;显著富Na2O而贫K2O,Na2O为3.17%~6.35%,平均为4.90%,Na2O/K2O为1.19~26.08,绝大多数样品该比值4(平均8.93)。样品明显富集Nb、Sr、Zr等,Nb含量均7×10-6(7.29×10-6~12.32×10-6,平均为9.48×10-6);全部样品Sr均400×10-6(618×10-6~1107×10-6,平均为825×10-6);Zr158×10-6(159×10-6~217×10-6,平均为182.6×10-6);Zr/Y比值4(6.63~11.09,平均为8.62)。显著高于一般岛弧玄武质岩类。轻稀土明显富集而重稀土亏损显著,且有基本一致的弱正Eu异常。(La/Nb)PM比值0.7(1.23~2.26,平均1.94),(87Sr/86Sr)i=0.7035~0.7039;143Nd/144Nd=0.5128~0.5129;εNd(t)=5.49~7.13。这些地球化学特征与Sajona et al.(1993,1994,1996)确立的富Nb岛弧玄武岩基本一致,而与一般岛弧玄武岩有显著区别。这一发现,为确认西准噶尔早石炭世存在富Nb岛弧玄武岩提供了地球化学佐证,丰富了新疆乃至我国富Nb岛弧玄武岩的产地与层位,也为确认本区早石炭世岛弧构造环境提供了重要依据。  相似文献   

6.
南秦岭花桥钛磁铁矿床赋矿岩石为富碱辉长岩,含矿岩相主要为黑云母辉石岩,岩石由含钛普通辉石和黑云母组成。含矿辉长岩体属典型钠质型碱性岩类,Na2O〉K2O,Na2O/K2O值在2.55~5.23之间,碱度率在1.24~1.29之间,MgO含量为5.32%~6.74%,TiO2含量为3.82%~5.84%,Al2O3含量为13.27%~15.06%;属富铁质系列,m/f值为0.37~0.56。在FeO-MgO-Al2O3图解上判别为大陆板内环境。稀土元素总量相对较高,轻稀土元素富集显著,有弱的正Eu异常。花桥钛磁铁矿矿石具有富Fe、Ti、MgO和SiO2不饱和的特点;矿石矿物钛磁铁矿TiO2含量0.415%~23.69%,FeO含量为69.7%~96.18%,Cr2O3含量为0.062%~0.761%。研究表明,南秦岭花桥钛磁铁矿是扬子陆块北缘早古生代幔源低程度部分熔融产物上侵分凝成矿作用的产物。  相似文献   

7.
胶南岚山头地区花岗质片麻岩的化学成分表现为SiO2含量普遍高,为68.4%~78.26%,Al2O3含量为11.34%~15.84%,而TiO2、Fe2O3、FeO、MnO和MgO的含量明显偏低,其中Fe2O3为0.69%~2.12%,FeO为0.18%~1.56%,MgO为0.05%~1.53%;岩石明显富含Na2O、K2O强烈贫CaO,其中Na2O K2O的含量为8.32%~10.33%,K2O的含量为3.87%~5.24%,CaO的含量为0.19%~1.27%。稀土元素配分模式显示轻稀土明显富集、重稀土相对平坦,具较强的轻、重稀土元素分馏和强烈-中等的负Eu异常。具强烈富集大离子亲石元素(K、Rb、Ba、Th)的特点,高场强元素Ti、Nb和Ta显示明显负异常,且所有样品均具明显负P异常。花岗片麻岩的原岩为A型花岗岩,指示其形成于拉张作用下的陆缘火山弧构造环境,原岩可能为新元古代下地壳富钾的变质玄武岩部分熔融而成,形成压力为0.8~1.0GPa,部分熔融程度小于10%。胶南A型花岗质片麻岩的原岩形成于新元古代,与扬子板块北缘新元古代陆缘火山活动有关,可能是Rodinia超大陆裂解事件在苏鲁地区的强烈反响。  相似文献   

8.
南秦岭花桥钛磁铁矿床赋矿岩石为富碱辉长岩,含矿岩相主要为黑云母辉石岩,岩石由含钛普通辉石和黑云母组成。含矿辉长岩体属典型钠质型碱性岩类,Na2O>K2O,Na2O/K2O值在2.55~5.23之间,碱度率在1.24~1.29之间,MgO含量为5.32%~6.74%,TiO2含量为3.82%~5.84%,Al2O3含量为13.27%~15.06%;属富铁质系列,m/f值为0.37~0.56。在FeO-MgO-Al2O3图解上判别为大陆板内环境。稀土元素总量相对较高,轻稀土元素富集显著,有弱的正Eu异常。花桥钛磁铁矿矿石具有富Fe、Ti、MgO和SiO2不饱和的特点;矿石矿物钛磁铁矿TiO2含量0.415%~23.69%,FeO含量为69.7%~96.18%,Cr2O3含量为0.062%~0.761%。研究表明,南秦岭花桥钛磁铁矿是扬子陆块北缘早古生代幔源低程度部分熔融产物上侵分凝成矿作用的产物。  相似文献   

9.
晋北煅烧高岭土用煤矸石的应用矿物学特征   总被引:1,自引:0,他引:1  
为了给晋北煅烧高岭土用煤矸石的评价和开发利用提供科学依据,采用XRD、XRF、SEM和白度计等现代分析测试技术,研究了晋北煅烧高岭土用煤矸石的应用矿物学特征。结果表明:1)根据造纸和涂料用煅烧高岭土的国家标准,晋北煤矸石主要可分为3种类型:合格原料、基本合格原料和不合格原料。2)与合格和基本合格原料相比,不合格原料煅烧产物的化学成分中SiO2、Al2O3、Fe2O3含量以及碱金属与碱土金属总含量都与前者有较大差异。3)合格和基本合格原料主要由高岭石(85%~94%)组成,不合格煤矸石矿物组合为高岭石(30%~60%)+石英(23%~38%)+伊利石(14%~26%),并含少量黄铁矿和白云石等杂质矿物,石英等杂质矿物和含铁矿物是分别导致煅烧产物化学成分和白度不合格的主要原因。4)合格原料中高岭石结晶度较好,主要为不规则片状、书册状和弯曲片状,片表面光滑,片径大小范围较大,为0.05~51.22μm,平均2.80μm,径厚比41.24。  相似文献   

10.
作为战略性关键金属矿产,锂矿勘查与研究已成为当今矿产勘查和地学研究的热点。项目组2017年以来通过多次野外勘查、系统取样与室内化验分析,确认在新疆和田县白龙山锂多金属矿床东部的雪凤岭一带发现了雪凤岭、雪盆和双牙3处花岗伟晶岩型锂多金属矿床。雪凤岭锂矿床由3个含矿伟晶岩脉群共计47条锂多金属矿体组成,矿体长32~360 m,厚0.9~8 m,走向110°~120°,倾角49°~78°。对雪凤岭矿区伟晶岩脉群研究,发现含矿伟晶岩脉群‒含白云母伟晶岩脉群‒块体石英长石伟晶岩脉群‒含黑色电气石伟晶岩脉群‒块体石英长石伟晶岩脉群‒含白云母伟晶岩脉群‒含矿伟晶岩脉群具对称分带特征,进而在距雪凤岭1550 m南部的双牙山和雪盆沟发现较好的锂矿体,其中双牙锂矿床主矿体长850 m,厚12 m,出露最宽处近100 m;雪盆锂矿床3条锂矿体,长800~1200 m,厚4~8 m,向西合成一个矿体,厚12~20 m。各矿体Li2O品位0.6%~4.02%。伴生BeO品位0.04%~0.15%,Rb2O品位0.10%~0.23%,Nb2O5品位0.007%~0.047%,Ta2O5品位0.003%~0.046%。预测雪凤岭、雪盆、双牙3个矿床334资源量共计Li2O为7.1886×105 t,BeO为2.648×103 t,Rb2O为1.433×103 t,Nb2O5为3.387×103 t,Ta2O5为1.727×103 t,雪凤岭一带有望成为一个超大型锂多金属稀有金属矿产基地。  相似文献   

11.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

12.
最新的流行病学研究表明,空气中较高浓度的悬浮细颗粒可能对人类的健康有不利的影响。根据该项研究显示,由于心脏病、慢性呼吸问题和肺功能指标恶化而导致死亡率的升高与细尘粒子有关。这些研究结果已经促使欧盟于1999年4月出台了限制空气中二氧化硫、二氧化氮、氧化氮、铅和颗粒物含量的法案(1999/30/EC),对各项指标包括对可吸入PM10颗粒的浓度提出了新的限制性指标。PM10颗粒是指可以通过预分级器分离采集的气体动力学直径小于10μm的细颗粒。目前研究的兴趣重点逐步偏向PM2.5这些更细微颗粒物,PM2.5这种颗粒物对健康有明显的不利影响。在欧盟指令2008/50/EC中,对PM10和PM2.5都提  相似文献   

13.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

14.
The Kuskokwim River at Bethel, Alaska, drains a major mercury-antimony metallogenic province in its upper reaches and tributaries. Bethel (population 4000) is situated on the Kuskokwim floodplain and also draws its water supply from wells located in river-deposited sediment. A boring through overbank and floodplain sediment has provided material to establish a baseline datum for sediment-hosted heavy metals. Mercury (total), arsenic, antimony, and selenium contents were determined; aluminum was also determined and used as normalizing factor. The contents of the heavy metals were relatively constant with depth and do not reflect any potential enrichment from upstream contaminant sources.  相似文献   

15.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

16.
《Applied Geochemistry》2001,16(2):137-159
Five hundred and ninety-eight samples of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) collected from a 188,000 km2 area of the central Barents region (NE Norway, N Finland, NW Russia) were analysed by ICP-AES and ICP-MS. Analytical results for Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y concentrations are reported here. Graphical methods of data analysis, such as geochemical maps, cumulative frequency diagrams, boxplots and scatterplots, are used to interpret the origin of the patterns for these elements. None of the elements reported here are emitted in significant amounts from the smelting industry on the Kola Peninsula. Despite the conventional view that moss chemistry reflects atmospheric element input, the nature of the underlying mineral substrate (regolith or bedrock) is found to have a considerable influence on moss composition for several elements. This influence of the chemistry of the mineral substrate can take place in a variety of ways. (1) It can be completely natural, reflecting the ability of higher plants to take up elements from deep soil horizons and shed them with litterfall onto the surface. (2) It can result from naturally increased soil dust input where vegetation is scarce due to harsh climatic conditions for instance. Alternatively, substrate influence can be enhanced by human activity, such as open-cast mining, creation of ‘technogenic deserts’, or handling, transport and storage of ore and ore products, all of which magnify the natural elemental flux from bedrock to ground vegetation. Seaspray is another natural process affecting moss composition in the area (Mg, Na), and this is most visible in the Norwegian part of the study area. Presence or absence of some plant species, e.g., lichens, seems to influence moss chemistry. This is shown by the low concentrations of B or K in moss on the Finnish and Norwegian side of the (fenced) border with Russia, contrasting with high concentrations on the other side (intensive reindeer husbandry west of the border has selectively depleted the lichen population).  相似文献   

17.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

18.
19.
20.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号