首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
关于夷平面的科学问题——兼论青藏高原夷平面   总被引:42,自引:5,他引:37  
长期地貌演化研究表明,夷平面的形成有4种基本方式:准平原、山麓剥蚀平原、双层水平面和冻融剥夷平原。它们的形成都需要上千万年至数亿年的构造相对稳定时期。青藏高原上的层状地貌面可以划分为两级夷平面和一级剥蚀面。山顶面形成于渐新世至中新世早期;主夷平面是以双层水平面或山麓剥蚀平原形式发育的,大致形成于20-3.6Ma B.P.期间,完成时的高度低于1000m;剥蚀面形成于3.6-1.7MaB.P.期间。  相似文献   

2.
祁连山东段金塔河流域层状地貌时代与成因探讨   总被引:2,自引:0,他引:2  
祁连山东段金塔河流域分布着两级夷平面(山顶面与主夷平面)、一级剥蚀面和多级河流阶地,它们是晚新生代青藏高原阶段性隆升的产物。通过电子自旋共振(Electron spin resonance,简写为ESR)、热释光(Luminescgnce,简写为TL)、红外释光(Infra-red stimulated luminesomce,简写为IRSL)和^14C等绝对测年手段并结合区域对比的研究表明,该区山顶面形成于老第三纪,主夷平面形成于中新世至上新世,剥蚀面解体于1.4MaB.P.左右。其后金塔河流域发育5~6级阶地,形成时代大致为1.24MaB.P.、0.78Ma.B.P.、0.14MaB.P.、0.06MaB.P.、0.03MaB.P.和0.01MaB.P.。结合河流阶地的形成年代、发育特征以及邻区阶地的发育模式研究表明,它们应是构造隆升以及气候变化双重作用下的产物。  相似文献   

3.
以乌蒙山国家级自然保护区为对象,融合野外地质地貌调查和ALOS DEM数字地形分析,定量与定性相结合阐述区内地形分异、地貌格局与发育演化等特征。结果表明:1)保护区基本地貌类型以大起伏中山(57.45%)为主,其次为大起伏亚高山(30.66%)和中起伏中山(11.17%),海拔、起伏度、坡度、面积-高程积分值等定量地形指标的平均值从三江口片区至朝天马、海子坪片区逐渐降低,夷平剥蚀面级数逐渐减少;2)保护区及附近地区共发育7级夷平剥蚀面,其中Ⅰ~Ⅲ级为山顶面和残余夷平面,Ⅶ级为金沙江侵蚀阶地面,Ⅳ~Ⅵ级为剥蚀面,与区域3次构造旋回相对应;3)保护区面积-高程积分值在0.197~0.815之间,平均为0.503,超过80%的区域处于地貌演化的壮年阶段,表明区域地表侵蚀动力较强,在人类活动增强背景下存在较大的生态风险,未来的保护规划应考虑各个基本地貌类型区的地表动力差异。综合而言,独特、丰富的地貌结构使得保护区生物多样性及其所依附的生态环境要素得以保存,加强地貌多样性研究有助于从整体性和系统性的角度实现保护区资源环境管理与可持续利用。  相似文献   

4.
龚婷婷  高冰  吉子晨  曹慧宇  张蕴灵 《地理科学》2022,42(10):1848-1856
基于MODIS温度数据,采用TTOP模型和Stefan公式模拟了青藏高原地区的冻土分布并计算了活动层厚度,并与地面观测结果进行了对比。结果表明:2003—2019年青藏高原多年冻土面积为1.01×106 km2;多年冻土活动层厚度区域平均值为1.79 m, 活动层厚度区域平均的变化率为3.67 cm/10a,且草甸地区的变化率明显大于草原地区,5100~5300 m高程带的活动层厚度变化速率最大。  相似文献   

5.
张坤  肖燕  何振芳  高敏 《干旱区地理》2020,43(6):1559-1566
基于研究区的 SRTM DEM 模型,应用 ArcGIS10.5 空间分析模块及 Excel、SPSS 数据统计分 析功能,采用均值变点分析法确定地形起伏度的邻域分析最佳统计单元;提取了研究区高程、地形 起伏度、地形坡度、地表粗糙度和地表切割度 5 个地形因子,以分析研究区的地形特征。结果表明: 研究区地形起伏度最佳统计单元为 11 像元×11 像元(0.98 km2),地形起伏度为 0~1 216 m。研究区 包含 13 种地貌类型,87.28%的区域为中海拔,中海拔平原、台地、丘陵为主要地貌类型。走廊南山、 冷龙岭、乌鞘岭和龙首山地平行分布,台地、丘陵穿插其中,地形复杂。研究结果为进一步探索自 然保护区的生态保护、开发利用等具体问题提供了基础数据支持。  相似文献   

6.
研究以90 m分辨率SRTM DEM(Shuttle Radar Topography Mission Digital Elevation Model)作为数据源,利用ArcGIS 10.2和SPSS软件对滇中地区的高程和地势起伏度进行提取分析,开展滇中地区地貌形态研究,主要结论如下:(1)运用均值变点法,求取出适用于滇中地区地势起伏度计算的最佳统计单元为2.074 km~2;(2)根据已有研究所得出的高程和地势起伏度划分标准,建立滇中地区地貌形态分级指标体系,最终得到13种地貌形态分类结果,并完成了滇中地区地貌形态分布图的绘制。研究结果表明,研究区内各地貌形态分布广泛,整体地貌形态较为破碎,地貌类型分布与主要构造运动分布相一致。  相似文献   

7.
小尺度地形因子对农地土壤质量的影响研究   总被引:3,自引:1,他引:2  
地形差异是土地利用结构和空间分布格局分异的重要影响因子,也是土地质量的重要参评因素.选择泰山东麓多种地貌类型过渡区,利用数字高程模型(DEM)提取研究区坡度、高程等地形因子信息,通过GIS空间分析划分研究区农地土壤质量等级,利用SPSS统计分析高程、坡度等地形因子对土壤质量的影响.结果表明:土壤质量等级随地形变化呈规律性演替,坡度和高程与土壤质量呈极显著相关关系,且坡度对土壤质量的影响大于高程;随着坡度的上升,土壤质量分值呈抛物线趋势,而随着高程的上升,土壤质量呈降低趋势,且各高程段内不同坡度等级土壤质量分值也呈抛物线走势;土壤质量的最高分值位于坡度2°~5°、高程0~150 m的地形部位.  相似文献   

8.
夷平面的三维显示与定量分析方法初探   总被引:10,自引:1,他引:9  
刘勇  王义祥  潘保田 《地理研究》1999,18(4):391-399
夷平面是当代地貌学研究的一个重要课题之一,对于重建一个地区的地貌演化的历史具有重要的意义,中利用遥感与地理信息系统建立了位兰州以南、青藏高原东北部边缘的美武高 程工与陆地卫星影像结合起来集成分析,论述了美武高原三维地貌影像图的信息特点,提取了若干区段的地形剖面,进而在分析了高原夷平面地貌参数体系的基础上运用遥感图像监督分类技术自动提出高原夷平面的具体分布区域,揭示了此项对于夷平面分析的巨大潜力。  相似文献   

9.
云南东川地区层状地貌面的成因   总被引:1,自引:1,他引:1  
在东川地区的山地及小江河谷的两侧山麓上部,分布着不同高度和不同规模的层状地貌面,对其成因仍有不同的认识。分歧主要表现在两个方面:一是高原隆升之前的初始地貌面是否是准平原型夷平面;二是山顶面之下的梯级层状地貌面的成因。本文从以下几个方面对上述问题进行讨论:(1)层状地貌面的地貌特征及其与侵蚀河谷体系的关系;(2)层状地貌面上堆积物的性质;(3)层状地貌面与断裂构造水平展布的关系;(4)相邻层状地貌面的空间过渡关系;(5)区域构造演化背景。作者认为在云贵高原抬升过程中,东川地区以挤压穹起隆升变形为主。不同海拔高度的层状地貌面具有多成因特性。山顶面及局部高原面是高原隆升之前古夷平面的残留。并遭到后期强烈的侵蚀改造。目前,尚缺乏足够证据证明高原隆升之前的古夷平面为准平原型夷平面。小江河谷两侧的梯级层状地貌面是侵蚀或剥蚀面,它们形成于高原隆升及初始地貌面解体之后,其梯级空间分布特征与区域性的阶段隆升有关。  相似文献   

10.
夷平面研究评述   总被引:7,自引:1,他引:6  
全球构造与地球大尺度地形特征之间的关系研究重新成为一个地学研究热点。在国内,夷平面研究的“回春”是其一个主要的表现形式。但在研究中,一些基本的理论与问题有待明确、探讨和解决。在夷平面理论的研究中,地貌演化的历史研究和演化的机制研究仍是最基本的问题。“夷平面”定义的混乱严重阻碍了相关研究的发展。不同气候和构造环境下,夷平面的形成和演化过程仍需科学地概括和抽象。在研究实践中,时间和空间尺度的精确解释成为关键的问题。一方面,不同类型夷平面的地貌特征(海拔高度、地面坡度、相对高度和面积)仍待明确或半定量、定量表示;而另一方面,夷平面的定年仍是一个棘手的问题。在夷平面的确认过程中,一些地貌学原则和规律应当遵循,如齐一山顶面地貌学成因的不确定性;以及同一地貌单元内,准平原型夷平面的出露具有唯一性等。夷平面的相关堆积是夷平面定年和古地貌重建的基础,但是我们必须明确相关堆积与夷平面的关系,如夷平面的原地相关堆积——风化壳的年龄只能够对夷平面的形成时代给予约束,而不能指示其确切的形成时间。更为困难的是,在古地貌的重建过程中,起始时刻某一区域的地貌特征参数仍然无法精确的确定。  相似文献   

11.
Residual upland planation surfaces serve as strong evidence of peneplains during long intervals of base-level stability in the peneplanation process. Multi-stage planation surfaces could aid the calculation of uplift rates and the reconstruction of upland plateau evolution. However, most planation surfaces have been damaged by crustal uplift, tectonic deformation, and surface erosion, thus increasing the difficulty in automatically identifying residual planation surfaces. This study proposes a peak-cluster assessment method for the automatic identification of potential upland planation surfaces. It consists of two steps: peak extraction and peak-cluster characterization. Three critical parameters, namely, landform planation index (LPI), peak elevation standard deviation, and peak density, are employed to assess peak clusters. The proposed method is applied and validated in five case areas in the Tibetan Plateau using a Shuttle Radar Topography Mission digital elevation model (SRTM DEM) with 3 arc-second resolution. Results show that the proposed method can effectively extract potential planation surfaces, which are found to be stable with different resolutions of DEM data. A significant planation characteristic can be obtained in the relatively flat areas of the Gangdise–Nyainqentanglha Mountains and Qaidam Basin. Several vestiges of potential former planation areas are also extracted in the hilly-gully areas of the western part of the Himalaya Mountains, the northern part of the Tangula–Hengduan Mountains, and the northeastern part of the Kunlun–Qinling Mountains despite the absence of significant topographical features characterized by low slope angles or low terrain reliefs. Vestiges of planation surfaces are also identified in these hilly-gully upland areas. Hence, the proposed method can be effectively used to extract potential upland planation surfaces not only in flat areas but also in hilly-gully areas.  相似文献   

12.
青藏高原和阿尔卑斯山山体效应的对比研究   总被引:1,自引:0,他引:1  
索南东主  姚永慧  张百平 《地理研究》2020,39(11):2568-2580
山体效应不仅对气候产生重大影响,也对区域地理生态格局有深远影响,尤其是它对山地垂直带分布和结构类型等的影响已经为地理学家和地植物学家所认识。目前相关研究主要集中在山体效应定量化方面,缺少不同山地山体效应的对比研究,因此对山体效应的区域差异性了解不足。本文选择欧亚大陆上具有明显山体效应的两个山地青藏高原和阿尔卑斯山为研究对象,利用收集到的气象台站观测数据、林线和DEM数据以及基于MODIS地表温度估算的青藏高原和阿尔卑斯山气温数据等,通过对比分析青藏高原与阿尔卑斯山相同海拔高度上的气温以及林线分布高度等来探讨两个山地的山体效应差异性。分析结果表明青藏高原的山体效应比阿尔卑斯山更为强烈,表现为:① 由于山体效应影响,在相同海拔高度上(4500 m),青藏高原内部气温远高于阿尔卑斯山的气温,尤其是在最热月高原内部气温比阿尔卑斯山内部气温高10~15℃,在最冷月高原内部气温比阿尔卑斯山内部气温高5~10℃。② 由于山体效应影响,青藏高原内部林线也远高于阿尔卑斯山内部林线,约高2000~3000 m。本研究将为山体效应的影响因素分析奠定基础,同时对于揭示欧亚大陆山地生态系统格局具有一定的科学意义。  相似文献   

13.
祁连山北麓地貌信息熵与山体演化阶段分析   总被引:1,自引:0,他引:1  
利用定量化的手段分析地貌演化的阶段和趋势,是地貌学研究领域的一个重大的理论课题。在地理信息系统软件ArcGIS和ArcView的支持下,利用数字高程模型提取祁连山北麓的河网和流域。利用Strahler积分计算了各个流域的地貌信息熵,按照主夷平面的高度将祁连山北麓的各个流域分为不同的部分,它们具有不同的地貌信息熵值。结果显示,祁连山地区正在进入戴维斯侵蚀旋回的幼年期阶段。  相似文献   

14.
Present granite landform characteristics and distribution are the integrated result of climate, tectonics and lithology. Various types of granite landforms in China signify climate zonality and differential vertical movement of earth surface, while published research results on Chinese granite landforms are very rare, especially in international journals. Based on the process analysis of chemical weathering and physical disintegration, four granite landform regions in China are classified according to the present climate regime. On the Tibetan Plateau, the cold and freezing climate induced periglacial landscapes; the northeast region is characterized by physical disintegration and low round mounds are widespread; in the northwest region controlled by arid climate, wind-carved minor landscapes are extremely prominent. The most spectacular granite landscapes in China are presented in southeast as a result of longtime chemical weathering under humid and warm conditions, as well as the differential uplift after Neogene. Correlating the weathering crust in southern China, Tibetan Plateau and India, a possible unified planation surface in Neogene is proposed. With corestones as indicators of original weathering front, the differential uplift extent of dissected planation surfaces can be estimated. At least three landforms implying uplift can be identified in southeastern China, with elevations of 300–400 m, 2000 m and 3600 m above the sea level respectively.  相似文献   

15.
Present granite landform characteristics and distribution are the integrated result of climate, tectonics and lithology. Various types of granite landforms in China signify climate zonality and differential vertical movement of earth surface, while published research results on Chinese granite landforms are very rare, especially in international journals. Based on the process analysis of chemical weathering and physical disintegration, four granite landform regions in China are classified according to the present climate regime. On the Tibetan Plateau, the cold and freezing climate induced periglacial landscapes; the northeast region is characterized by physical disintegration and low round mounds are widespread; in the northwest region controlled by arid climate, wind-carved minor landscapes are extremely prominent. The most spectacular granite landscapes in China are presented in southeast as a result of longtime chemical weathering under humid and warm conditions, as well as the differential uplift after Neogene. Correlating the weathering crust in southern China, Tibetan Plateau and India, a possible unified planation surface in Neogene is proposed. With corestones as indicators of original weathering front, the differential uplift extent of dissected planation surfaces can be estimated. At least three landforms implying uplift can be identified in southeastern China, with elevations of 300–400 m, 2000 m and 3600 m above the sea level respectively.  相似文献   

16.
青藏高原地形起伏度及其地理意义   总被引:4,自引:1,他引:3  
封志明  李文君  李鹏  肖池伟 《地理学报》2020,75(7):1359-1372
地形起伏度是区域人居环境适宜性与资源环境承载力的关键评价指标之一。当前有关其最佳评价窗口、及其与海拔—相对高差的相互关系仍缺乏深入研究,进而影响该指标对区域地形起伏的有效表征。客观认识青藏高原地形起伏度有助于促进其国家生态安全屏障建设与区域绿色发展。以先进星载热发射和反射辐射仪全球数字高程模型(ASTER GDEM, 30 m)地形数据(V2)为基础,本文利用均值变点分析法确定了青藏高原地形起伏度评价的最佳分析窗口,基于地形起伏度模型(RDLS)研制了青藏高原首套30 m地形起伏度专题图,据此分析了地形起伏度与海拔、相对高差的相互关系,并界定了地形起伏度对区域地形起伏状况的有效表征。主要结果/结论包括:① 基于GDEM的青藏高原地形起伏度评价最佳窗口为41×41个像元的矩形邻域,对应面积约为1.51 km2,均值变点分析表明区域地形起伏度评价最佳窗口有其唯一性。② 青藏高原地形起伏度均值约为5.06,超3/5区域地形起伏度介于4.5~5.7之间;整体上,青藏高原地形起伏程度由其东北部向西南部、西部递增,仅在柴达木盆地、藏南谷地以及河湟谷地出现低起伏地貌特征。且地表起伏在不同纬度剖面变化较为一致(沿山脉走向),但不同经度剖面起伏层次错落(横切山脉走向)。③ 相关性分析表明不同地形起伏度分别对应不同平均海拔、不同相对高差的地貌单元。青藏高原地形起伏度经纬向剖面分析表明,该区由东部的低山稳步爬升,山体经历骤然爬升(即地表起伏特征剧烈)后形成以极高山为主的有序错落起伏(喜马拉雅山脉)。  相似文献   

17.
再论青藏高原范围   总被引:5,自引:0,他引:5  
张镱锂  李炳元  刘林山  郑度 《地理研究》2021,40(6):1543-1553
伴随青藏高原研究的深入,高原内外多学科研究程度和认识的提高,及地理大数据、地球观测科学和技术的进步,对青藏高原范围提出了新的要求。本研究系统论述了确定青藏高原范围的原则、依据和方法,分析探讨了高原地貌宏观结构(高原面、高原内低盆地与高原边缘河谷低地等)和周围边界各自然地段构成的基本特征。采用ArcMap软件,通过遥感影像和DEM数据及新资料对高原地貌比较研究,实现了1:100万比例尺地图精度的青藏高原范围的界定。研究表明,青藏高原北起西昆仑山-祁连山山脉北麓,南抵喜马拉雅山等山脉南麓,南北最宽达1560 km;西自兴都库什山脉和帕米尔高原西缘,东抵横断山等山脉东缘,东西最长约3360 km;范围为25°59′30″N~40°1′0″N、67°40′37″E~104°40′57″E,总面积为308.34万km2,平均海拔约4320 m。在行政区域上,青藏高原分布于中国、印度、巴基斯坦、塔吉克斯坦、阿富汗、尼泊尔、不丹、缅甸、吉尔吉斯斯坦等9个国家。其中中国境内的青藏高原面积约258.09万km2(占高原总面积的83.7%),平均海拔约4400 m,分布在西藏、青海、甘肃、四川、云南和新疆等6省区,西藏和青海两省区主体分布在高原范围内(约占高原总面积的60.6%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号