首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiation and particle measurements have been performed with an aircraft in deep cirrus cloud fields near the island of Svalbard. The data of 12 March 1993, when measurements at 10 different levels could be obtained, are used in a comparative study with radiative transfer calculations. In a first analysis, the cirrus cloud field was assumed to be horizontally homogeneous and invariable during the time of measurements (frozen properties). Calculations of the up and downward radiative flux densities showed root mean square differences of 9 Wm−2 from the measurements. To estimate the possible effect of changes of the optical properties of cirrus with time, the flux densities in the upper part (6000–8500 m) and the lower part (3000–5500 m) of the cirrus cloud were analyzed separately. In these simulations, the optical thickness in the lower (upper) part was increased (decreased) by 50%. By this treatment, most of all calculated flux densities were within one standard deviation of the natural variability in each leg. Finally, the effect of inhomogeneities in the cloud field on the solar flux density has been simulated using a Monte Carlo method, since the upper part of the cirrus field has indeed been very inhomogeneous. This paper is a result of a collaborative effort between the MRI in Tsukuba, Japan, and the GKSS in Geesthacht, Germany.  相似文献   

2.
刘瑞金  张镭  王宏斌 《大气科学》2011,35(5):863-870
利用兰州大学半干旱气候与环境观测站( SACOL) 2007年4~1 1月微脉冲激光雷达(MPL-4 B)观测资料,统计分析了卷云的高度、厚度及其变化特征.采用透过率方法计算了卷云光学厚度,得到了卷云光学厚度与卷云厚度和云底高度的相关关系.结果表明,SACOL卷云出现的平均海拔高度为10.16±1.32 km;卷云厚度...  相似文献   

3.
A direct comparison of urban and rural surface energy balances, as well as a variety of other variables including incoming shortwave/longwave radiation and aerosol optical depth, is conducted for the Beijing metropolitan area. The results indicate that, overall, the urban area receives a smaller amount of incoming shortwave radiation but a larger amount of incoming longwave radiation. However, comparisons in the aerosol optical depth and cloud fraction at the two locations suggest that neither aerosol optical depth nor cloud fraction alone can explain the difference in the incoming shortwave radiation. The urban–rural differences in the incoming longwave radiation are unlikely to be caused by the presence of more abundant greenhouse gases over the urban area, as suggested by some previous studies, given that water vapor is the most dominant greenhouse gas and precipitable water is found to be less in urban areas. The higher incoming longwave radiation observed over the urban area is mostly likely due to the higher temperatures of the ambient air. The urban area is also found to always produce higher sensible heat fluxes and lower latent heat fluxes in the growing season. Furthermore, the urban area is associated with a larger amount of available energy(the sum of sensible and latent heat fluxes) than the rural area, except in May and October when evapotranspiration in the rural area significantly exceeds that in the urban area. This study provides observational evidence of urban–rural contrasts in relevant energy-balance components that plausibly arise from urban–rural differences in atmospheric and land-surface conditions.  相似文献   

4.
 A comprehensive dataset of direct observations is used to assess the representation of surface and atmospheric radiation budgets in general circulation models (GCMs). Based on combined measurements of surface and collocated top-of-the-atmosphere fluxes at more than 700 sites, a lack of absorption of solar radiation within the atmosphere is identified in the ECHAM3 GCM, indicating that the shortwave atmospheric absorption calculated in the current generation of GCMs, typically between 60 and 70 Wm-2, is too low by 10–20 Wm-2. The surface and atmospheric radiation budgets of a new version of the Max-Planck Institute GCM, the ECHAM4, differ considerably from other GCMs in both short- and longwave ranges. The amount of solar radiation absorbed in the atmosphere (90 Wm-2) is substantially larger than typically found in current GCMs, resulting in a lower absorption at the surface (147 Wm-2). It is shown that this revised disposition of solar energy within the climate system generally reduces the biases compared to the observational estimates of surface and atmospheric absorption. The enhanced shortwave absorption in the ECHAM4 atmosphere is due to an increase in both simulated clear-sky and cloud absorption compared to ECHAM3. The increased absorption in the cloud-free atmosphere is related to an enhanced absorption of water vapor, and is supported in stand-alone comparisons of the radiation scheme with synchronous observations. The increased cloud absorption, on the other hand, is shown to be predominantly spurious due to the coarse spectral resolution of the ECHAM4 radiation code, thus providing no physical explanation for the “anomalous cloud absorption” phenomenon. Quantitatively, however, an additional increase of atmospheric absorption due to clouds as in ECHAM4 is, at least at low latitudes, not in conflict with the observational estimates, though this does not rule out the possibility that other effects, such as highly absorbing aerosols, could equally contribute to close the gap between models and observations. At higher latitudes, however, the increased cloud absorption is not supported by the observational dataset. Overall, this study points out that not only the clouds, but also the cloud-free atmosphere might be responsible for the discrepancies between observational and simulated estimates of shortwave atmospheric absorption. The smaller absorption of solar radiation at the surface in ECHAM4 is compensated by an increased downward longwave flux (344 Wm-2), which is larger than in other GCMs. The enhanced downward longwave flux is supported by surface measurements and by a stand-alone validation of the radiation scheme for clear-sky conditions. The enhanced flux also ensures that a sufficient amount of energy is available at the surface to maintain a realistic intensity of the global hydrological cycle. In contrast, a one-handed revision of only the shortwave radiation budget to account for the increased shortwave absorption in GCM atmospheres may induce a global hydrological cycle that is too weak. Received: 26 February 1998 / Accepted: 18 May 1998  相似文献   

5.
Quantifying the radiative forcing due to aerosol–cloud interactions especially through cirrus clouds remains challenging because of our limited understanding of aerosol and cloud processes. In this study, we investigate the anthropogenic aerosol indirect forcing (AIF) through cirrus clouds using the Community Atmosphere Model version 5 (CAM5) with a state-of-the-art treatment of ice nucleation. We adopt a new approach to isolate anthropogenic AIF through cirrus clouds in which ice nucleation parameterization is driven by prescribed pre-industrial (PI) and presentday (PD) aerosols, respectively. Sensitivities of anthropogenic ice AIF (i.e., anthropogenic AIF through cirrus clouds) to different ice nucleation parameterizations, homogeneous freezing occurrence, and uncertainties in the cloud microphysics scheme are investigated. Results of sensitivity experiments show that the change (PD minus PI) in global annual mean longwave cloud forcing (i.e., longwave anthropogenic ice AIF) ranges from 0.14 to 0.35 W m–2, the change in global annual mean shortwave cloud forcing (i.e., shortwave anthropogenic ice AIF) from–0.47 to–0.20 W m–2, and the change in net cloud forcing from–0.12 to 0.05 W m–2. Our results suggest that different ice nucleation parameterizations are an important factor for the large uncertainty of anthropogenic ice AIF. Furthermore, improved understanding of the spatial and temporal occurrence characteristics of homogeneous freezing events and the mean states of cirrus cloud properties are also important for constraining anthropogenic ice AIF.  相似文献   

6.
利用毫米波云雷达、微波辐射计联合反演方法,对2015年11月11日安徽寿县的一次层状云过程的云参数进行了反演,将所得云参数加入到SBDART辐射传输模式中,进行辐射通量计算,并将计算的地面辐射通量与观测的地面辐射通量进行了对比分析。研究表明:1)利用毫米波雷达和微波辐射计数据联合反演的云参数比较可靠;2)利用SBDART模式并结合反演的云参数,可以准确实时地计算地面及其他高度层的长短波辐射通量;3)在反演的云参数中,光学厚度对地面各种辐射通量的影响是最大的,云层的光学厚度越大,到达地面的太阳短波辐射越小,地面反射短波辐射也越小。另外云底温度越高,云体向下发射的红外长波辐射越大。地面向上的长波辐射是地面温度的普朗克函数,随地面温度而变;4)云对地面的短波辐射强迫为负值,对地面有降温的作用。云对地面的长波辐射强迫是一个正值,对地面有一个增温的作用;5)云对地面的净辐射强迫随时间变化很大,它的正负与太阳高度角和云参数有关。  相似文献   

7.
不同形状冰晶权重假定对冰云光学和辐射特性的影响   总被引:1,自引:0,他引:1  
陈琪  张华 《气象学报》2018,76(2):279-288
在BCC_RAD辐射传输模式和包含多形状冰晶粒子的冰云光学性质参数化方案的基础上,详细分析了不同冰晶粒子权重选取对冰云光学和辐射特性的影响。结果显示,不同形状冰晶粒子权重的选取对长波带平均消光系数、单次散射比、不对称因子和短波带平均不对称因子均有较大的影响。冰晶粒子权重选取对长波辐射通量有很大影响:对长波向下辐射通量,权重选择不同可在云底处造成高达10.50 W/m2的差别;对长波向上辐射通量,权重选择不同可在云顶处造成高达15.05 W/m2的差别。冰晶粒子权重选择对短波辐射通量也存在较大影响:对短波向下辐射通量,权重选择不同可在云底处造成高达12.48 W/m2的差别;对短波向上辐射通量,权重选择不同可在云顶处造成高达10.23 W/m2的差别。冰晶粒子权重选择对长波加热率影响较大,在云顶处和云底处分别可达1.31和-2.06 K/d。研究表明,不同形状冰晶粒子权重的选取对冰云光学性质和辐射计算均有较大的影响,在长波区间尤其明显。   相似文献   

8.
RegCM4对中国东部区域气候模拟的辐射收支分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用卫星和再分析数据,评估了区域气候模式Reg CM4对中国东部地区辐射收支的基本模拟能力,重点关注地表净短波(SNS)、地表净长波(SNL)、大气顶净短波(TNS)、大气顶净长波(TNL)4个辐射分量。结果表明:1)短波辐射的误差值在夏季较大,而长波辐射的误差值在冬季较大。但各辐射分量模拟误差的空间分布在冬、夏季都有较好的一致性。2)对于地表辐射通量,SNS表现为正偏差(向下净短波偏多),在各分量中误差最大,区域平均误差值近50 W/m2;SNL表现为负偏差(向上净长波偏多);对于大气顶辐射通量,TNS和TNL分别表现为"北负南正"的误差分布和整体正偏差。3)利用空间相关和散点线性回归方法对4个辐射分量的模拟误差进行归因分析,发现在云量、地表反照率、地表温度三个直接影响因子中,云量模拟误差的贡献最大,中国东部地区云量模拟显著偏少。  相似文献   

9.
Summary Crystal size and optical depth of optically thin cirrus clouds and contrails over the North Sea and Adriatic Sea on the 18th of October 1989 are retrieved by comparison of NOAA AVHRR/2 brightness temperatures of channel 4 (9.97 µm–11.56 µm) and channel 5 (11.075 µm–12.76 µm) with one dimensional radiative transfer calculations. Measured brightness temperatures in all three infrared channels and their differences show higher values for contrails than for cirrus. The radiative properties of young contrails are consistent only, if smaller crystal size than those given for natural cirrus are adopted for the calculations. However, there is a continuous transition in radiative parameters between clouds classified as natural cirrus or contrails. For the test areas ice clouds are classified with respect to optical depth and mean crystal size. Finally infrared fluxes and heating rates in the spectral range 4 µm–40 µm are calculated for an atmosphere with a 500 m thick contrail or cirrus uncinus. At given ice content a far stronger atmospheric warming is found for a contrail with relatively small ice crystals: up to 80 K/day at cloud base for an ice content of 0.05 gm–3 compared to 10 K/day for a cirrus uncinus with large crystals.With 11 Figures  相似文献   

10.
Summary Vertical profile of surface radiative fluxes in an area of heterogeneous terrain in south-west Germany is presented. Main data sets utilized for the study were recorded during the REgio KLIma Projekt (REKLIP). Supporting observational data were provided by the German weather service and German geophysical consultant service. Elevation of the study sites ranged from 212 m a.s.l. to 1489 m a.s.l. From May to September, monthly mean albedo was generally low at the study sites, ranging from 19% to 24%. For the other months, monthly mean albedo lie between 22% and 25% at the lowland site but extended between 27% and 71% at the highly elevated mountain site. Following the altitudinal increase in surface albedo, net radiative flux and radiation efficiency declined with elevation at an annual mean of 1.15 Wm−2/100 m and 0.008/100 m respectively. Absorbed shortwave radiation and effective terrestrial radiation showed mean decline of 1.54 Wm−2/100 m and 0.34 Wm−2/100 m, respectively, with the mean sky-to-earth radiation deficit amounting to about 52 Wm−2 for the lowland site and 73 Wm−2 for the highest elevated site. Some empirical models which express shortwave and longwave radiative fluxes in terms of meteorological variables have been validated for the lowland and mountain sites. Monthly mean daily total estimates of solar radiation obtained from ?ngst?m-Prescott relation were quite consistent with observed values. Parameterisation of downward atmospheric radiation under all sky condition was achieved by extending Brutsaert clear sky atmospheric model. Relationship between outgoing longwave radiation and screen temperature at the study sites was best described by an exponential function unlike the linear relationship proposed by Monteith and Unsworth. Net radiative flux for the lowland and mountain sites has been expressed in terms of absorbed shortwave radiation, cloud amount and screen temperature. Received March 5, 2001 Revised October 29, 2001  相似文献   

11.
Two years of mid-latitude cirrus cloud macrophysical and optical properties over North China are described from Earth-orbiting Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP) satellite measurements. Global cloud climatological studies based on active remote sensing data sets benefit from more accurate resolution of vertical structure and more reliable detection of optically thin layers.The mean values for cirrus cases over North China are 0.19±0.18 for infrared emittance,0.41±0.68 for visible optical depth, 0.26±0.12 for integrated depolarization ratio,and 0.72±0.22 for integrated color ratio.When studied using reasonable assumptions for the relationship between extinction and ice crystal backscatter coefficients,our results show that most of the cirrus clouds profiled using the 0.532μm channel data stream correspond with an optical depth of less than 1.0.The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometry thickness are generally similar to the results derived from the ground-based lidar, which are mainly impacted by the adiabatic process on the ice cloud content.However,the differences in macrophysical parameter variability indicate the limits of spaceborne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.  相似文献   

12.
陈琪  张华  荆现文  谢冰 《气象学报》2017,75(4):607-617
将包含多形状冰晶粒子的冰云辐射参数化方案应用于全球气候模式中,详细讨论了冰云粒子从球形假定到多形状假定的变化对辐射场和气候场的影响。结果显示,冰晶粒子形状假定的引入对冰云光学厚度、辐射通量和加热率以及温度场均有明显的影响。采用新的冰云方案使得全球平均云光学厚度值降低0.28(23%);热带地区降低最为明显,其差异绝对值可达1.02,而在中高纬度陆地地区,两者的冰云光学厚度差别较小。冰晶粒子形状假定改变将导致全球平均的大气顶出射长波辐射通量增加5.52 W/m2(2.3%)。与观测资料的比较表明,多形状冰晶粒子假定明显减小了球形粒子假定对长波出射辐射的低估。对大气加热率廓线的模拟显示,多形状冰晶粒子假定会减弱短波辐射对大气的加热作用,同时增强长波辐射对大气的冷却作用;在热带对流层中高层,这两种影响尤为显著。冰晶粒子形状假定的改变对温度场有明显的影响,热带地区的对流层高层大气温度降低幅度可超过1.5 K。研究表明,冰晶粒子形状假定的改变对模拟的辐射和温度场均有重要的影响。   相似文献   

13.
The direct and semi-direct radiative effects of anthropogenic aerosols on the radiative transfer and cloud fields in the Western United States (WUS) according to seasonal aerosol optical depth (AOD) and regional climate are examined using a regional climate model (RCM) in conjunction with the aerosol fields from a GEOS-Chem chemical-transport model (CTM) simulation. The two radiative effects cannot be separated within the experimental design in this study, thus the combined direct- and semi-direct effects are called radiative effects hereafter. The CTM shows that the AOD associated with the anthropogenic aerosols is chiefly due to sulfates with minor contributions from black carbon (BC) and that the AOD of the anthropogenic aerosol varies according to local emissions and the seasonal low-level winds. The RCM-simulated anthropogenic aerosol radiative effects vary according to the characteristics of regional climate, in addition to the AOD. The effects on the top of the atmosphere (TOA) outgoing shortwave radiation (OSRT) range from ?0.2?Wm?2 to ?1?Wm?2. In Northwestern US (NWUS), the maximum and minimum impact of anthropogenic aerosols on OSRT occurs in summer and winter, respectively, following the seasonal AOD. In Arizona-New Mexico (AZNM), the effect of anthropogenic sulfates on OSRT shows a bimodal distribution with winter/summer minima and spring/fall maxima, while the effect of anthropogenic BC shows a single peak in summer. The anthropogenic aerosols affect surface insolation range from ?0.6?Wm?2 to ?2.4?Wm?2, with similar variations found for the effects on OSRT except that the radiative effects of anthropogenic BC over AZNM show a bimodal distribution with spring/fall maxima and summer/winter minima. The radiative effects of anthropogenic sulfates on TOA outgoing longwave radiation (OLR) and the surface downward longwave radiation (DLRS) are notable only in summer and are characterized by strong geographical contrasts; the summer OLR in NWUS (AZNM) is reduced (enhanced) by 0.52?Wm?2 (1.14?Wm?2). The anthropogenic sulfates enhance (reduce) summer DLRS by 0.2?Wm?2 (0.65?Wm?2) in NWUS (AZNM). The anthropogenic BC affect DLRS noticeably only in AZNM during summer. The anthropogenic aerosols affect the cloud water path (CWP) and the radiative transfer noticeably only in summer when convective clouds are dominant. Primarily shortwave-reflecting anthropogenic sulfates decrease and increase CWP in AZNM and NWUS, respectively, however, the shortwave-absorbing anthropogenic BC reduces CWP in both regions. Due to strong feedback via convective clouds, the radiative effects of anthropogenic aerosols on the summer radiation field are more closely correlated with the changes in CWP than the AOD. The radiative effect of the total anthropogenic aerosols is dominated by the anthropogenic sulfates that contribute more than 80% of the total AOD associated with the anthropogenic aerosols.  相似文献   

14.
卢敬华  杨羽  段旭 《气象》1987,13(12):22-27
本文叙述了一种求解卷云射出长波辐射的方法。通过建立卷云示迹模式,用累加法进行分析,并通过分析卷云的一些微物理特征,假设卷云含水量垂直分布模式,由三层近似化筒求得射出长波辐射通量密度。根据模式计算得到:1.与卫星观测青藏高原高云地区对应射出长波辐射通量密度基本一致的结果。2.卷云底高度及卷云厚度与射出长波辐射通量密度相关的一些有意义的结果,并讨论了青藏高原上卷云影响的特殊情况。  相似文献   

15.
 This study compares radiative fluxes and cloudiness fields from three general circulation models (the HadAM4 version of the Hadley Centre Unified model, cycle 16r2 of the ECMWF model and version LMDZ 2.0 of the LMD GCM), using a combination of satellite observations from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Project (ISCCP). To facilitate a meaningful comparison with the ISCCP C1 data, values of column cloud optical thickness and cloud top pressure are diagnosed from the models in a manner consistent with the satellite view from space. Decomposing the cloud radiative effect into contributions from low-medium- and high-level clouds reveals a tendency for the models' low-level clouds to compensate for underestimates in the shortwave cloud radiative effect caused by a lack of high-level or mid-level clouds. The low clouds fail to compensate for the associated errors in the longwave. Consequently, disproportionate errors in the longwave and shortwave cloud radiative effect in models may be taken as an indication that compensating errors are likely to be present. Mid-level cloud errors in the mid-latitudes appear to depend as much on the choice of the convection scheme as on the cloud scheme. Convective and boundary layer mixing schemes require as much consideration as cloud and precipitation schemes when it comes to assessing the simulation of clouds by models. Two distinct types of cloud feedback are discussed. While there is reason to doubt that current models are able to simulate potential `cloud regime' type feedbacks with skill, there is hope that a model capable of simulating potential `cloud amount' type feedbacks will be achievable once the reasons for the remaining differences between the models are understood. Received: 23 January 2000 / Accepted: 24 January 2001  相似文献   

16.
On the basis of forward IR radiation transfer analyses for an atmosphere containing semi-transparent, non-black cirrus, parameterization equations are derived for the retrieval of the cloud optical depth and cloud temperature utilizing AVHRR 3.7 and 10.8 μum channels. The retrieval techniques developed involve the use of either dual-frequency or dual-scanning angle radiance observations. We show that the cloud optical depth and cloud temperature may be inferred successively from the observed brightness temperature differences using these two techniques. Numerical experiments anderror analyses demonstrate that the dual-frequency method is specifically appropriate for optically thin cirrus cases (τ <1). In case the optical depth of cirrus is close to 3, combination of dual-frequency and dual-scanning angle methods is shown to give reasonable accuracy for the cloud optical depth and temperature retrieval.  相似文献   

17.
The cloud fraction(CF) and cloud-base heights(CBHs), and cirrus properties, over a site in southeastern China from June 2008 to May 2009, are examined by a ground-based lidar. Results show that clouds occupied the sky 41% of the time.Significant seasonal variations in CF were found with a maximum/minimum during winter/summer and similar magnitudes of CF in spring and autumn. A distinct diurnal cycle in the overall mean CF was seen. Total, daytime, and nighttime annual mean CBHs were 3.05 ± 2.73 km, 2.46 ± 2.08 km, and 3.51 ± 3.07 km, respectively. The lowest/highest CBH occurred around noon/midnight. Cirrus clouds were present ~36.2% of the time at night with the percentage increased in summer and decreased in spring. Annual mean values for cirrus geometrical properties were 8.89 ± 1.65 km, 9.80 ± 1.70 km, 10.73 ± 1.86 km and 1.83 ± 0.91 km for the base, mid-cloud, top height, and the thickness, respectively. Seasonal variations in cirrus geometrical properties show a maximum/minimum in summer/winter for all cirrus geometrical parameters. The mean cirrus lidar ratio for all cirrus cases in our study was ~ 25 ± 17 sr, with a smooth seasonal trend. The cirrus optical depth ranged from 0.001 to 2.475, with a mean of 0.34 ± 0.33. Sub-visual, thin, and dense cirrus were observed in ~12%, 43%, and 45%of the cases, respectively. More frequent, thicker cirrus clouds occurred in summer than in any other season. The properties of cirrus cloud over the site are compared with other lidar-based retrievals of midlatitude cirrus cloud properties.  相似文献   

18.
中国地区夏季平均加热率的时空分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
The latitude-altitude distributions of radiative fluxes and heating rates are investigated by utilizing CloudSat satellite data over China during summer. The Tibetan Plateau causes the downward shortwave fluxes of the lower atmosphere over central China to be smaller than the fluxes over southern and northern China by generating more clouds. The existence of a larger quantity of clouds over central China reflects a greater amount of solar radiation back into space. The vertical gradients of upward shortwave radiative fluxes in the atmosphere below 8 km are greater than those above 8 km. The latitudinal-altitude distributions of downward longwave radiative fluxes show a slantwise decreasing trend from low latitudes to high latitudes that gradually weaken in the downward direction. The upward longwave radiative fluxes also weaken in the upward direction but with larger gradients. The maximum heating rates by solar radiation and cooling rates by longwave infrared radiation are located over 28-40°N at 7-8 km mean sea level (MSL), and they are larger than the rates in the northern and southern regions. The heating and cooling rates match well both vertically and geographically.  相似文献   

19.
The radiative energy exchange between arctic sea-ice and stratiform clouds is studied by means of aircraft measurements and a two-stream radiation transfer model. The data have been obtained by flights of two identically instrumented aircraft during the Radiation and Eddy Flux Experiments REFLEX I in autumn 1991 and REFLEX II in winter 1993 over the arctic marginal ice zone of Fram Strait. The instrumental equipment comprised Eppley pyranometers and pyrgeometers, which measure the solar and terrestrial upwelling and downwelling hemispheric radiation flux densities, and a line-scan-camera on one aircraft to monitor the surface structure of the sea-ice. An empirical parametrization of the albedo of partly ice-covered ocean surfaces is obtained from the data, which describes the albedo increasing linearly with the concentration of the snow-covered sea-ice and with the cosine of the sun zenith angle at sun elevations below 10°. Cloud optical parameters, such as single scattering albedo, asymmetry factor and shortwave and longwave height-dependent extinction coefficient are determined by adjusting modeled radiation flux densities to observations. We found significant influence of the multiple reflection of shortwave radiation between the ice surface and the cloud base on the radiation regime. Consistent with the data, a radiation transfer model shows that stratus clouds of 400 m thickness with common cloud parameters may double the global radiation at the surface of sea-ice compared to open water values. The total cloud-surface-albedo under these circumstances is 30% larger over sea-ice than over water. Parametrizations of the global and reflected radiation above and below stratus clouds are proposed on the basis of the measurements and modeling. The upwelling and downwelling longwave emission of stratus clouds with thicknesses of more than 500 m can be satisfactorily estimated by Stefan's law with an emissivity of nearly 1 and when the maximum air temperature within the cloud is used.  相似文献   

20.
This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth (τ) obtained at Thule Air Base (Greenland) in 2007–2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A (ΔSWA), wv (ΔSWwv), and aerosols (ΔSWτ) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as ?100 Wm?2 (?18%). The seasonal change of A produces an increase of SW by up to +25 Wm?2 (+4.5%). The annual mean radiative effect is estimated to be ?(21–22) Wm?2 for wv, and +(2–3) Wm?2 for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in ΔSWwv by 0.93 Wm?2 (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by ?0.027, with a corresponding decrease in ΔSWA by 0.41 Wm?2 (?14.9%). Atmospheric aerosols produce a reduction of SW as low as ?32 Wm?2 (?6.7%). The instantaneous aerosol radiative forcing (RFτ) reaches values of ?28 Wm?2 and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FEτ) for solar zenith angles between 55° and 70° is estimated to be (?120.6 ± 4.3) for 0.1 < A < 0.2, and (?41.2 ± 1.6) Wm?2 for 0.5 < A < 0.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号