首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
运用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-AES)分别对普安-晴隆矿区晚二叠世C17、C19、C22和C26号煤层中8个煤样和7个煤灰样进行微量元素含量的测试分析。结果表明,煤及煤灰中明显富集Li、Sc、V、Cr、Co、Ge、As、Nb、Mo、W、U等元素,且各元素在煤灰中更加富集,Nb、Zr、V、Ga和U等伴生金属元素的含量基本达到或超过了对应元素的边界品位或最低工业品位。煤中伴生元素的富集成因研究表明,V、Cr、Co、Nb和Zr等元素的富集主要受物源区峨眉山玄武岩风化碎屑物质供给的控制;U、S、Mo等元素的有限富集与海水作用有关;而受成煤期同沉积火山灰沉降的影响,煤中Li、Nb、Zr、Mo和U等微量元素表现出一致富集的特点;成煤期后的低温热液作用,使得各煤层,尤其是底部煤层(C19、C26)明显富集As、Mo、U和W等元素。综合分析认为,成煤期同沉积的火山灰沉降和成煤期后的低温热液作用是普安-晴隆矿区晚二叠世煤中伴生元素异常富集的主控地质因素。   相似文献   

2.
The mineral and inorganic chemical composition of five types of samples from the Pernik subbituminous coals and their products generated from the Pernik preparation plant were studied. They include feed coal, low-grade coal, high-grade coal, coal slime, and host rock. The mineral matter of the coals contains 44 species that belong mainly to silicates, carbonates, sulphates, sulphides, and oxides/hydroxides, and to a lesser extent, chlorides, biogenic minerals, and organic minerals. The detrital minerals are quartz, kaolinite, micas, feldspars, magnetite, cristobalite, spessartine, and amphibole. The authigenic minerals include various sulphides, silicates, oxihydroxides, sulphates, and carbonates. Several stages and substages of formation were identified during the syngenetic and epigenetic mineral precipitations of these coals. The authigenic minerals show the greatest diversity of mineral species as the epigenetic mineralization (mostly sulphides, carbonates, and sulphates) dominates qualitatively and quantitatively. The epigenetic mineralization was a result of complex processes occurring mostly during the late development of the Pernik basin. These processes indicate intensive tectonic, hydrothermal and volcanic activities accompanied by a change from fresh to marine sedimentation environment. Thermally altered organic matter due to some of the above processes was also identified in the basin. Most of the trace elements in the Pernik coals (Mo, Be, S, Zr, Y, Cl, Ba, Sc, Ga, Ag, V, P, Br, Ni, Co, Pb, Ca, and Ti) show an affinity to OM and phases intimately associated with OM. Some of the trace elements (Sr, Ti, Mn, Ba, Pb, Cu, Zn, Co, Cr, Ni, As, Ag, Yb, Sn, Ga, Ge, etc.) are impurities in authigenic and accessory minerals, while other trace elements (La, Ba, Cu, Ce, Sb, Bi, Zn, Pb, Cd, Nd, etc.) occur as discrete phases. Elements such as Sc, Be, Y, Ba, V, Zr, S, Mo, Ti, and Ga exceed Clarke concentrations in all of the coal types studied. It was also found that a number of elements in the Pernik coals (F, V, As, Pb, Mo, Li, Sr, Ti, Ga, Ni, Ge, Cr, Mn, etc.) reveal mobility in water and could have some environmental concerns.  相似文献   

3.
基于贵州水城小牛井田晚二叠世煤样的全硫分、微量元素、常量元素等测试数据,探讨了煤中元素富集特征及其与陆源碎屑的关系,重点是全硫分、微量元素对古海平面变化的反演。结果表明,小牛井田煤中常量元素Si、Ca、Mg、Ti、K含量高于中国煤均值,Al、Fe、Na含量低于中国煤均值;与地壳克拉克值相比,煤中微量元素只有B和Mo相对富集;煤中微量元素的富集在一定程度上受控于陆源碎屑,常量元素对陆源碎屑也有一定的继承性。煤中全硫分及微量元素B、Co、Cr、Cu、Ga、Ge、Mo、Ni、Pb、Sr、V、Zn的纵向变化规律可以用来反演古海平面变化,海退时形成的煤层全硫分及微量元素含量较低,海侵时形成的煤层全硫分及微量元素含量较高。   相似文献   

4.
以新疆库拜煤田塔里奇克组煤层为研究对象,对其煤化学及地球化学特征进行分析。认为研究区煤层属低水分、低灰分、特低硫分、高挥发分的长焰煤-气肥煤;煤中的常量元素Al、Ca、Fe、Mg和K平均含量低于中国煤常量元素的平均含量,并有较大的变化范围,仅Na平均含量高于中国煤的平均含量;煤中的微量元素Cu和Co含量高于中国煤的平均含量,Ni和Zn含量接近中国煤的平均含量.其它微量元素含量均明显低于中国煤的平均含量。阐明了Al、Li、Cr、Ti、Zr、Ga、Nb以及轻稀土元素(La、Ce和Nd)具有较强的亲无机性,在煤中主要以无机态存在;Li、Sc、Ti、V、Cr、Ga、Rb、Zr、Nb及重稀土元素中的La、Ce、Pr、Nd、Sm、Gd元素主要与硅铝酸盐矿物及微量的重矿物组合有较好的亲和性:As、Sr元素主要以碳酸盐矿物的形式存在。  相似文献   

5.
To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals.  相似文献   

6.
The elemental composition of high temperature ash (750°C) and forms of S were studied in 25 coal seams from the Escucha Formation (Middle Albian) in the Teruel Mining District, northeast Spain. The principal analytical method was ICP-MS, but ICP-ES was also used in the determination of some trace elements. The analytical data show wide ranges of trace element cotnents among the coal seams studied, even in the vertical profile of a single coal seam. These wide ranges of the trace element concentrations are attributed to both syngenetic and epigenetic processes.When a comparison was made between the average trace element contents of the Teruel Mining District coals, and those of the average content in worldwide coals, the Teruel coals show slightly higher concentrations of Be and U, and lower concentrations of Ba, Cd, Mn, Pb, Sr and Zr. Further, three main groups of trace elements were differentiated on the basis of the inorganic/organic association: (1) trace elements with inorganic affinity; Ba, Ce, Co, Cr, La, Mn, Ni, Rb and Zr. Between these, Ba, Ce, Cr and Rb show a well defined correlation with the clay mineral content, and Co and Ni with pyritic-S content; (2) trace elements with an intermediate (mixed) affinity; As, Cd, Cu, Dy, Er, Eu, Gd, Ge, Ho, Lu, Mo, Nd, Pb, Pr, Sb, Sm, Sr, Tb, Th, Tm, U, Yb and Zn. In this group, As, Cd, Cu, Ge, Mo, Th, U and Zn show a weak trend associated with the mineral matter and Sr with the organic matter; and (3) Be shows an organic affinity. The high mineral matter content (21.3% HTA) of the Teruel coals may account for the great number of elements with inorganic affinity. This classification represents a general trend, but the results show that the affinities of some trace elements (e.g. As, Sb and Zn) may vary from one coal seam to another in the Teruel Mining District.  相似文献   

7.
With the aim of better understanding geochemistry of coal, 71 Late Permian whole-seam coal channel samples from western Guizhou Province, Southwest China were studied and 57 elements in them were determined. The contents of Al, Ca, Co, Cr, Cu, Fe, Ga, Hf, K, Li, Mn, Mo, Nb, Ni, Sn, Ta, Ti, Th, U, V, Zr, and REEs in the Late Permian coals from western Guizhou Province are higher than the arithmetic means for the corresponding elements in the US coals, whereas As, Ba, Br, F, Hg, P, Se, and Tl are lower. Compared to common Chinese coals, the contents of Co, Cr, Cu, Ga, Hf, Li, Mn, Mo, Ni, Sc, Sn, Ti, U, V, Zn, and Zr in western Guizhou coals are higher, and As, F, Hg, Rb, Sb, Tl, and W are lower. Five groups of elements may be classified according to their mode of occurrence in coal: The first two, Group A, Tm–Yb–Lu–Y–Er–Ho–Dy–Tb–Ce–La–Nd–Pr–Gd–Sm, and Group B, As–Sr–K–Rb–Ba–F–Ash–Si–Sn–Ga–Hf–Al–Ta–Zr–Be–Th–Na, have high positive correlation coefficients with ash yield and they show mainly inorganic affinity. Some elements from Group B, such as Ba, Be, Ga, Hf, and Th, are also characterized by significant aluminosilicate affinity. In addition, arsenic also exhibits high sulfide affinity (rS–Fe>0.5). The elements, which have negative or lower positive correlation coefficients with ash yield (with exceptions of Bi, Cs, Nb, Mn, Se, and Ti), are grouped in other four associations: Group C, Cr–V–Mo–U–Cd–Tl; Group D, Hg–Li–Sc–Ti–Eu–Nb–Cs–W; Group E, Bi–Sb; and Group F, Co–Ni–Cu–Pb–Zn–Mg–Se–Ca–Mn–S–Fe. The correlation coefficients of some elements, including Co, Cr, Cu, Fe, Hg, Li, Mo, Ni, P, S, Sc, U, V, and Zn, with ash yield are below the statistically significant value. Only Cr and Cu are negatively correlated to ash yield (−0.07 and −0.01, respectively), showing intermediate (organic and inorganic) affinity. Manganese and Fe are characterized by carbonate affinity probably due to high content of epigenetic veined ankerite in some coals. Phosphorus has low correlation coefficients with any other elements and is not included in these six associations. There are five possible genetic types of enrichment of elements in coal from western Guizhou Province: source rock, volcanic ash, low-temperature hydrothermal fluid, groundwater, and magmatic hydrothermal inputs.  相似文献   

8.
山西平朔安太堡露天矿9号煤层中的微量元素   总被引:12,自引:0,他引:12       下载免费PDF全文
庄新国  曾荣树 《地球科学》1998,23(6):583-588
使用ICP-AES方法对安太堡露天矿9号煤层中的微量元素进行了系统测定,检测出53种微量元素,将研究煤样的平均微量元素质量分数与世界范围微量元素平均质量分数相比较,煤样中Li,Ga,Sr,Zr,Nb,Sn和Ta具有较高的富集,而Cr,Co,Ni,Ge,Rb,Y,Cs和Ba具有较低的富集,研究资料表明不同微量元素在垂向剖面上其质量分数具有不同的分布特征。经相关分析表明:(1)与镜质组含量相关的元素有  相似文献   

9.
Composition and quality of coals in the Huaibei Coalfield, Anhui, China   总被引:3,自引:0,他引:3  
The Huaibei Coalfield, Anhui Province, China, is one of the largest coalfields in China. The coals of Permian age are used mainly for power generation. Coal compositions and 47 trace elements of the No. 10 Coal of the Shanxi Formation, the No. 7, 5, and 4 Coals of the Lower Shihezi Formation, and the No. 3 Coal of the Upper Shihezi Formation from the Huaibei Coalfield were studied. The results indicate that the Huaibei coals have low ash, moisture, and sulfur contents, but high volatile matter and calorific value. The ash yield increases stratigraphically upwards, but the volatile matter and total sulfur contents show a slight decrease from the lower to upper seams. Magmatic intrusion into the No. 5 Coal resulted in high ash, volatile matter, and calorific value, but low moisture value in the coal. Among the studied 47 trace elements, Ba, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Th, U, V, and Zn are of environmental concerns. Four elements Hg, Mo, Zn, and Sb are clearly enriched in the coals as compared with the upper continental crust.  相似文献   

10.
The concentration, distribution and modes of occurrence of trace elements in thirty coals, four floors and two roofs from Northern China were studied. The samples were collected from the major coalfields of Shanxi Province, Shaanxi Province, Inner Mongolian Autonomous Region, and Ningxia Hui Autonomous Region. The concentrations of seventeen potential hazardous trace elements, including Hg, As, Se, Pb, Cd, Br, Ni, Cr, Co, Mo, Mn, Be, Sb, Th, V, U, Zn, and five major elements P, Na, Fe, Al, and Ca in coals were determined.Compared with average concentration of trace elements in Chinese coal, the coals from Northern China contain a higher concentration of Hg, Se, Cd, Mn, and Zn. They may be harmful to the environment in the process of combustion and utilization. Vertical variations of trace elements in three coal seams indicated the distributions of most elements in coal seam are heterogeneous. Based on statistical analyses, trace elements including Mo, Cr, Se, Th, Pb, Sb, V, Be and major elements including Al, P shows an affinity to ash content. In contrast, Br is generally associated with organic matter. Elements As, Ni, Be, Mo, and Fe appear to be associated with pyrite. The concentrations of trace elements weakly correlate either to coal rank or to maceral compositions.  相似文献   

11.
The occurrence and distribution of major and trace elements have been investigated in two coal-bearing units in the Chonqing mining district (South China): the Late Permian and Late Triassic coals.The Late Permian coals have higher S contents than the Late Triassic coals due to the fixation of pyrite in marine-influenced coal-forming environments. The occurrence of pyrite accounts for the association of a large number of elements (Fe, S, As, Cd, Co, Cu, Mn, Mo, Ni, Pb, Sb, Se, and Zn) with sulphides, as deduced from the analysis of the density fractions. The marine influence is probably also responsible for the organic association of B. The REEs, Zr, Nb, and Hf, are enriched by a factor of 2–3 with respect to the highest levels fixed for the usual worldwide concentration ranges in coal for these elements. The content of these elements in the Late Permian coal is higher by a factor of 5–10 with respect to the Late Triassic coal. Furthermore, other elements, such as Cu, P, Th, U, V, and Y, are relatively enriched with respect to the common range values, with maximum values higher than the usual range or close to the maximum levels in coal. The content of these elements in the Late Permian coal is higher than the Late Triassic coal. These geochemical enrichments are the consequence of the occurrence, in relatively high levels, of phosphate minerals, such as apatite, xenotime, and monazite, as deduced from the study of the density fractions obtained from the bulk coal.The Late Triassic coal has a low sulphur content with a major organic affinity. The trace element contents are low when compared with worldwide ranges for coal. In this coal, the trace element distribution is governed by clay minerals, carbonate minerals, and to a lesser extent, by organic matter and sulphide minerals.Major differences found between late Permian and Triassic coals are probably related to the source rocks, given that the main source rock of the late Permian epicontinental marine basin is the Emeishan basalt formation, characterised by a high phosphate content.  相似文献   

12.
Fourteen trace elements (La, Cr, Sc, Y, Yb, Ga, Ni, V, Be, Zr, Ge, Pb, Sn, Ce) have been determined by emission spectroscopy in the ash from 7–17 levels within four early Tertiary lignite seams from Wyoming, Texas and Alabama, and two elements (Cu, Zn) in the acid-soluble and acid-insoluble fractions of the samples by inductively coupled plasma arc emission spectrometry. These elements were also determined in the roof and floor strata enclosing the seams. The concentrations of a number of elements (e.g. Be, V, Cu, Y, Yb) were considerably higher in the coal ash than in the adjacent inorganic layers, and these elements are most probably associated with organic matter as coordination complexes. Several elements (Be, Y, Yb, Ga, Sc) were frequently found to be concentrated near the margins of the seam relative to the main body. One of the seams has a 6 cm “rider” separated from the top of the main seam by 9 cm of clayey sand. Analysis of fractions separated by specific gravity and solubility in acid showed this to be rich in trace elements, of which V, Be, Cu, Ni, Ge, Cr, Y, Yb, Ga and Sc appeared to be partly complexed with organic matter, and Sn and Pb were present only in minerals. The rider evidently acted as an efficient trap for unusually large amounts of many trace elements. Cluster analysis showed that the distributions of elements with depth in three of the seams represent three very distinctly separate populations of data; each seam constitutes a different geochemical problem.In a general discussion of the results of the whole series of three papers, a model describing the incorporation of inorganic components in peats is presented, based on the erosion of rocks by chelating organic acids and other agents, followed by transport in water and trapping of mineral grains and dissolved ions by the organic matter of peat. Inorganic materials in peat thus constitute the principal input of mineral matter into coals. The elements that tend to be enriched near the margins of lignite seams are mostly those that have complexed with organic matter. However, the data on this enrichment from our own and previously published work are quite variable, no doubt depending on the nature and efficiency of transport of the incoming cations.  相似文献   

13.
湘中安化黑色页岩土壤玉米的元素地球化学分析   总被引:1,自引:0,他引:1  
利用等离子质谱(ICP-MS)等分析技术,对产于安化东坪、烟溪黑色页岩土壤上的玉米进行元素地球化学分析.结果.表明:尽管东坪、烟溪黑色页岩土壤重金属元素富集的程度及其元素组合特征明显不同,但生长在其上的玉米有相似的主量元素和重金属元素的富集特征.玉米中Cd、Cr、Sc、Tl、Zn等重金属相对富集,以Cd的富集尤为明显;而Ba、Co、Cu、Fe、Mo、Ni、Pb、Sb、U、V等重金属相对亏损.黑色页岩土壤重金属污染的环境地球化学效应表现为Sc、Cr、Cd、Tl等生物毒性重金属元素在玉米中富集,而Ba、V、Co、Ni、Mo、Rb、Sr等生物必需微量金属在玉米中亏损.  相似文献   

14.
Trace-element determinations of 15 coal samples have been made in order to know their distribution, behaviour and associations with the organic and inorganic fractions in the coal. The coal samples have been systematically collected in stratigraphic sequences so that the vertical variation of the trace-elements can be studied. The elements determined by spectographic analysis are W, V, Cr, Sc, Y, Cu, Co, Pb, Be, Ni and Ba. The results indicate that the concentration of trace elements in these coals varies greatly from bottom to top sections. The elements V and Co are extremely poor in the top and middle sections, whereas in the bottom section they are fairly distributed. Be is extremely poor in the bottom section, and fairly distributed in the middle and top sections. W, Sc, Y have poor concentration in the bottom section as compared to the middle and top sections. Ni is fairly distributed in the bottom section whereas its concentration is poor in the middle and top sections. Cr and Cu are fairly distributed in the bottom, middle and top sections. Ba has unusually high concentration in all the sections.It appears from the present study that W, Cr, Sc, Y and Be are concentrated more in silicate minerals (clay, quartz, etc.) associated with coal, and the elements like , Co, and Ni have intimate relation with organic matters in coal and are present as organometallic compounds as well as absorbed cations. Cu and Pb which are present in the coals are derived from the inorganic matter, mainly from the pyrites, whereas W has affinity with carbonate minerals in the coals. The Ba is mainly associated with the inoraanic matter of coal; its unusually high concentration indicates association with carbonates, clays and other silicate minerals.  相似文献   

15.
Inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectroscopy, hydride generation-atomic fluorescence spectrometry, emission spectrometry, X fluorescence spectrometry, and X-ray diffraction were employed to study the geochemistry and mineralogy of coal gangues from Nos. 2, 3, and 8 coal seams of the Du’erping coal mine, Xishan coalfield, Taiyuan, Shanxi Province. The study revealed that compared with the sedimentary cover, upper continent crust, Carboniferous-Permian coal from North China, as well as most coal in China, coal gangues from Nos. 2 and 3 coal seams are rich in Li, Be, Sc, Cr, Cu, Ga, Ba, Th, Nb, Cd, Pb, Ta and rare-earth elements, and coal gangues from No. 8 coal seam are rich in Li, Sc, V, Cr, Ga, U, and rare-earth elements. Compared with the Carboniferous-Permian coal from North China and most coal in China, coal gangues from Nos. 2, 3 and 8 seams are rich in Rb, V, Cs and Sr. Therefore, The Du’erping coal gangues in the Xishan coalfield are rich in most hazardous trace elements and rare-earth elements, wherein the contents of Ga and Li reach the industrial grade and have significance for industrial utilization. On the whole, coal gangues of the Shanxi Formation from the Permian are rich in more trace elements than those of the Carboniferous Taiyuan Formation. The distributions of REE show obviously dipping rightwards with negative Eu anomalies. The contents of rare-earth elements in the three seams are quite different. All of the above indicate that the source of the rare-earth elements is terrigenous debris. Minerals in No. 2 seam identified by X-ray diffraction mainly include quartz, kaolinite, in addition to calcite, pyrite, apatite, epidote, and epsomite. No. 3 seam mainly contains quartz, kaolinite, in addition to a small amount of sodium feldspar, calcium nitrate, iron ore, gypsum, and vivianite. No. 8 seam mainly contains kaolinite, dickite, quartz, illite, and a small amount of hematite and U. The correlations between major elements and trace elements in coal gangues of the Du’erping coal mine analyzed by using SPSS (Statistical Product and Service Solutions) indicate that the trace alkali elements and rare-earth elements occur mainly in such clay minerals as kaolinite.  相似文献   

16.
Trace-element analyses of seventy six coal samples representing all the major Lower Gondwana coal basins of India were carried out. Eighteen trace elements, viz., B, Ba, Co, Cr, Cu, Ga, Ge, La, Mn, Mo, Nb, Ni, Pb, Sn, Sr, V, Y and Zr were determined quantitatively in coal ash. An attempt was made to correlate the coals of different coalfields on the basis of multivariate analysis. In addition, the organic/inorganic affinities between the trace elements were established by the coefficients of correlation between the trace elements and ash present. A synthesis of the data reveals that there is similarity in the concentration ranges of trace elements among the coal seams of different coalfields, but the possibility of environmental differences exists due to the statistically different multivariate means of the trace-element concentrations.It is inferred that Ge, Cr, Y and La occur in these coals as organo-metallic complexes and chelates. The elements Ni, Co, Ga, V and Cu show both organic and inorganic association, whereas Mn and Ba are exclusively incorporated in the inorganic fractions.  相似文献   

17.
涡阳花沟西10号煤中微量元素的有机亲和性   总被引:1,自引:0,他引:1  
为研究淮北矿区涡阳花沟西勘查区10号煤中微量元素的有机亲和性,共采集10个勘探钻孔煤样品,采用电感耦合等离子质谱仪ICP-MS分析了12种微量元素的含量;应用LECO碳硫分析仪测定了煤的总有机碳TOC,并通过两者的相关关系分析了元素的有机亲和性,结合元素的地球化学特征和煤样XRD物相鉴定结果,通过聚类分析进一步推断元素的赋存状态。结果表明:V、Cr、Co、Ni、Mo、Cd、Sb、Pb和Zn元素含量低于全国均值,没有异常富集,Be、Cu和Tl略高于全国均值;Cd具有较强的有机亲和性,Co、Zn、Be和Cr的有机亲和性较弱,V、Ni、Cu、Mo、Sb、Pb和Tl不具有机亲和性;V、Sb、Cu、Cr、Pb、Co和Ni主要以铝硅酸盐吸附态赋存,Cd主要以有机结合态赋存。   相似文献   

18.
This study presents the concentrations and modes of occurrence of trace elements in 81 coal samples from the Çan basin of northwestern Turkey. The concentration of trace elements in coal were determined by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Additionally, traditional coal parameters were studied by proximate, ultimate, X-ray diffraction, and petrographic analyses. Twenty trace elements, including As, B, Ba, Be, Cd, Cu, Co, F, Hg, Mo, Ni, Pb, Sb, Se Sn, Th, Tl, U, V, and Zn, receive much attention due to their related environmental and human health concerns. The Çan coals investigated in this study are lignite to sub-bituminous coal, with a broad range of ash yields and sulphur contents. The trace element concentrations show variety within the coal seams in the basin, and the affinities vary among locations. The concentrations of B, Ba, Be, Cd, Cu, Co, F, Hg, Mo, Ni, Pb, Sb, Se, Sn, Tl, and Zn in Çan coals are within the Swaine's worldwide concentration range, with the exception of As, Th, U, and V. On the other hand, compared with world coals, the Çan basin coals have higher contents of As, B, Cu, Co, Mo, Pb, Th, U, V, and Zn. Based on statistical analyses, most of the trace elements, except for U, show an affinity to ash yield. Elements including As, Cd, Hg, Se, Cu, Mo, Ni, and Zn, show a possible association with pyrite; however, the elements Se, B, and Mo can be have both organic and inorganic associations.  相似文献   

19.
A sequential extraction procedure, using acid digestion in a CEM MDS-81D® microwave system, is reported for the investigation of trace and minor element associations in coal in (1) mineral phases other than pyrite, (2) pyrite and (3) the organic matrix. The concentrations of sulphate, pyrite and organic sulphur can also be determined by this method. The extract solutions from each stage are rapidly analysed by ICP-AES. The association of major, minor and trace elements with mineral and organic phases is suggested for a suite of certified reference coal samples. In stage 1, a significant percentage of the total Ba, Co, Cr, Cu, Mn, Ni, Pb and Sr was extracted suggesting an association with silicate, carbonate, sulphate and phosphate minerals for these elements. In stage 2, a proportion of the Cu, Mn, Ni, Pb and Zn was dissolved implying the occurrence of these elements in pyrite. An association with the organic matrix is suggested for Cr and also for Ba and Sr in lower rank coals.  相似文献   

20.
The Cr and Ni contents are high in the Eocene lignite of the Shenbei coalfield, which is a small intracontinental basin located in Liaoning Province, China. In this paper, we studied the distribution, origin and occurrence of Cr, Ni and other hazardous trace elements in the Shenbei lignite on the basis of coal petrology, and geochemistry of the lignite and combustion products. The following conclusions on the Shenbei lignite can be drawn: (1) The dominant maceral group in the Shenbei coal is huminite (humodetrinite), accounting for 96%–99% of the total maceral. Inertinite content is less than 1%. Liptinite content (sporinite and cutinite) is 0.2–1.6%. Common minerals in the Shenbei lignite include clay minerals (kaolinite), pyrite and quartz, and calcite and siderite. Chromite is not present in the lignite. (2) Potentially hazardous trace elements such as Co (22 μg/g), Cr (79 μg/g), Cu (63 μg/g), Zn (93 μg/g), V (88 μg/g) and Ni (75 μg/g) are strongly enriched in the Shenbei lignite compared with average concentration of trace elements in the Chinese coal and worldwide lignite. These elements are mainly associated with fulvic acid (FA) and/or coal organic macromolecular compounds in most of the studied lignite samples, indicating an organic association and enrichment of these elements in the Shenbei lignite. (3) Unusually high trace elements contents in the Shenbei lignite are derived mainly from the olivine basalt (country rock of coal basin) that consists of 52.7% plagioclase, 17.8% pyroxene, 14% olivine and 15.5% Ti–Fe oxide minerals. These olivine basalts have higher Cr, Ni, Pb and Zn contents than other types of rock and worldwide basalts do. (4) Fly ash of the Shenbei lignite, with 90% 1–50 μm amorphous particles and 8% 1–10 μm cenosphere, has high contents of Zn (23,707 μg/g), Be (12 μg/g), Sr (1574 μg/g), Pb (486 μg/g) and Cr (349 μg/g). In particular, the ferruginous micro-cenoshperes contain 1–12.79% Zn. Fine bottom ash (<0.031mm) of the Shenbei lignite has higher contents for most of the elements with the exception of Mo, Sn and Zn. Therefore, the potentially environmental and health impact of the fly ash and fine bottom ash should constitute a major concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号