首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mangroves are highly productive ecosystems that exhibit a diverse range of habitats, including tidal creeks and flats, forest gaps and interior forest with varying understory light intensity, tidal dynamics, geomorphological settings, and overall biological production. Within mangrove ecosystems, invertebrates and fish feed on heterogeneous food sources, the occurrence of which is unevenly distributed across the system. This provides a basis for testing models of carbon transfer across mangrove ecosystems. We hypothesized that the carbon transfer and assimilation by fish and invertebrates will vary across the different mangrove habitats and that such variations can be predicted by their stable isotope compositions. We analysed δ13C and δ15N signatures of consumers and their potential organic carbon sources across a tropical mangrove ecosystem in Vietnam. The δ13C values of crabs and snails significantly decreased from the tidal flat to interior forest, indicating that variations in carbon transfer and assimilation occurred at small scales <30 m. Reduced variation in δ13C of suspension‐feeding bivalves suggested that tidal water was a vector for large‐scale transport of carbon across the mangrove ecosystem. An analysis of co‐variance using habitat as a fixed factor and feeding habit and movement capacity of consumers as co‐variates indicated that habitat and feeding types were major features that affected the δ13C values of invertebrates and fish. The findings demonstrate that carbon transfer and assimilation across mangrove ecosystems occur as a diverse combination of small (<30 m) and large (>30 m) scale processes.  相似文献   

2.
The ecological aspect of meiofaunal communities in Can Gio mangrove forest, Ho Chi Minh city, Vietnam has not been investigated before. The composition, distribution, density and biodiversity of meiofaunal communities were studied along an intertidal transect at the Khe Nhan mudflat. Each time, three replicate samples were collected in four stations along a transect following the water line from low tide level up to the mangrove forest edge. In total, 18 meiofaunal taxa were found with the dominant taxa belonging to Nematoda, Copepoda, Sarcomastigophora and Polychaeta. The densities of meiofauna ranged from 1156 inds/10 cm2 to 2082 inds/10 cm2. The increase in densities from the mangrove forest edge towards the low water line was significant. Along the mudflat transect, the biodiversity (expressed by different indices) was relatively high at different taxonomic levels but did not vary significantly along the mudflat except for taxa richness. Eighty nematode genera belonging to 24 families with Comesomatidae having the highest abundance 33.8 % were found.Theristus andNeochromadora decreased in densities from the lower water line towards the mangrove forest edge, whileParacomesoma andHopperia are typical and more abundant at the middle of the mudflat.Halalaimus increased from high on the mudflat to the low water line.  相似文献   

3.
Using an integrated approach including satellite imagery analysis, field measurements, and numerical modeling, we investigated the damage to mangroves caused by the 2004 Indian Ocean tsunami at Pakarang Cape in Pang Nga Province, Thailand. Comparing pre- and post-tsunami satellite imagery of the study area, we found that approximately 70% of the mangrove forest was destroyed by the tsunami. Based on field observations, we found that the survival rate of mangroves increased with increasing stem diameter. Specifically, we found that 72% of Rhizophora trees with a 25–30 cm stem diameter survived the tsunami impact, whereas only 19% with a 15–20 cm stem diameter survived. We simulated the 2004 Indian Ocean tsunami using the nonlinear shallow-water wave theory to reproduce the tsunami inundation flow and investigated the bending moment acting on the mangrove trees. Results of the numerical model showed that the tsunami inundated areas along the mangrove creeks, and its current velocity reached 5.0 m s−1. Based on the field measurements and numerical results, we proposed a fragility function for mangroves, which is the relationship between the probability of damage and the bending stress caused by the maximum bending moment. We refined the numerical model to include the damage probability of mangrove forests using the obtained fragility function to investigate the tsunami reduction effect of mangrove forest. Under simple numerical conditions related to the mangrove forest, ground level, and incident wave, the model showed that a mangrove forest of Rhizophora sp. with a density of 0.2 trees m−2 and a stem diameter of 15 cm in a 400 m wide area can reduce the tsunami inundation depth by 30% when the incident wave is assumed to have a 3.0 m inundation depth and a wave period of 30 min at the shoreline. However, 50% of the mangrove forest is destroyed by a 4.5 m tsunami inundation depth, and most of the mangrove forest is destroyed by a tsunami inundation depth greater than 6 m. The reduction effect of tsunami inundation depth decreased when the tsunami inundation depth exceeded 3 m, and was mostly lost when the tsunami inundation depth exceeded 6 m.  相似文献   

4.
Deforestation of mangrove forests is common occurrence worldwide. We examined fish assemblage composition in three mangrove creek systems in Tanzania (East Africa), including two creeks where the upper parts were partly clear-cut of mangrove forest due to the construction of solar salt farms, and one creek with undisturbed mangrove forest. Fish were caught monthly for one year using a seine net (each haul covering 170 m2) within three locations in each creek, i.e. at the upper, intermediate and lower reaches. Density, biomass and species number of fish were lower in the upper deforested sites compared to the mangrove-fringed sites at the intermediate and lower parts in the two creeks affected by deforestation, whereas there were no differences among the three sites in the undisturbed mangrove creek system. In addition, multivariate analyses showed that the structure of fish assemblages varied between forested and clear-cut sites within the two disturbed creeks, but not within the undisturbed creek. Across the season, we found no significant differences except for a tendency of a minor increase in fish densities during the rainy season. At least 75% of the fishes were juveniles and of commercial interest for coastal fisheries and/or aquaculture. Mugil cephalus, Gerres oyena and Chanos chanos were the most abundant species in the forested sites. The dominant species in the clear-cut areas were M. cephalus and Elops machnata, which were both found in relatively low abundances compared to the undisturbed areas. The conversion of mangrove forests into solar salt farms not only altered fish assemblage composition, but also water and sediment conditions. In comparison with undisturbed areas, the clear-cut sites showed higher salinity, water temperature as well as organic matter and chlorophyll a in the sediments. Our results suggest that mangrove habitat loss and changes in environmental conditions caused by salt farm developments will decrease fish densities, biomass and species numbers as well as alter the overall fish assemblage composition in the salt farm area but not downstream in the creek.  相似文献   

5.
The mangrove, Avicennia marina var. resinifera in a tidally-flooded explosion crater, Tuff Crater, near the southern latitudinal limit of mangroves in New Zealand adopts two distinct growth forms, taller tree-like mangroves up to 4 m tall along the banks of the tidal creek, and low stunted shrub mangroves less than 1 m tall on the mudflats. Twelve trees were felled and on the basis of a biomass/height relationship for the taller trees and a biomass/canopy width relationship for the lower, above-ground biomass (excluding pneumatophores) was estimated. Average above-ground biomass for the taller mangrove was estimated to be 104·1 t ha?1 and for the lower 6·8 t ha?1. While the value for the taller mangroves is similar to figures reported for more complex tropical mangroves, the fact that 94% of the basin is covered by low generally sparse mangroves means that total biomass for the basin is estimated to be 153 t, an average of only 7·6 t ha?1. Litter-fall beneath the taller mangroves is estimated as 7·6±2·5 t ha?1 a?1 and beneath the lower mangroves 3·3±0·5 t ha?1 a?1. The value for the taller mangroves is similar to that reported from mangroves in many other parts of the world, but because of the extensive low sparse mangroves the total for the basin is estimated as 53·7 t a?1, an average rate of 2·7 t ha?1 a?1, a very low rate of litter-fall when compared with elsewhere. Decomposition of mangrove leaves occurs relatively rapidly with leaves losing half their dry weight in 10 weeks and then continuing to degrade but at a slower rate. Substrate sediment samples contain high organic matter content, and although some organic matter appears to be exported via the tidal creek, a proportion of the detrital production is evidently recycled in situ.  相似文献   

6.
Carbon and nitrogen stable isotope composition of a range of organisms collected from two intermittently connected floodplain pools in the Ross River estuary were analysed to assess the extent to which carbon fixed by terrestrial wetland producers is incorporated into adjacent aquatic food webs. The two pools differed in surrounding vegetation with one surrounded by mangroves and the other by the salt couch Sporobolus virginicus. At both pools, animals showed differences in δ13C, indicating differences in sources of carbon. Since δ13C values of C3 mangroves (−29.7 to −26.3‰) were very different from those of the C4 salt couch (−16.3 to −15.4‰), it was possible to determine the importance of terrestrial wetland producers by comparing isotope values of consumers between sites, in a species by species approach. Most animal species collected showed lower δ13C at the mangrove pool than at the Sporobolus pool, which indicates a greater incorporation of mangrove carbon at the mangrove pool. However, the animals’ isotopic shifts were also similar to that shown by epiphytes, and hence the differences in animal δ13C could also be a result of a dependence on these producers. The IsoSource model was useful to clarify this question, indicating that mangrove and salt marsh material was a crucial contributor to the diet of several fish and invertebrate species at both sites, indicating that carbon of terrestrial origin is incorporated in the estuarine food web.  相似文献   

7.
The response of mangrove ecosystems to the Asian monsoon in the future global warming can be understood by reconstructing the development of mangrove forests during the Holocene climatic optimum(HCO), using proxies preserved in coastal sediments. The total organic matter in sediments of a segmented core, with calibrated age ranges between 5.6 and 7.7 cal. ka BP and corresponding to the HCO, from the Qinzhou Bay in Guangxi, China, is quantitatively partitioned into three end-members according to their sources: mangrove-derived, terrigenous,and marine phytoplanktonic, using a three-end-member model depicted by organic carbon isotope(δ13Corg) and the molar ratio of total organic carbon to total nitrogen(C/N). The percentage of mangrove-derived organic matter(MOM) contribution is used as a proxy for mangrove development. Three visible drops in MOM contribution occurred at ca. 7.3, ca. 6.9, and ca. 6.2 cal. ka BP, respectively, are recognized against a relatively stable and higher MOM contribution level, indicating that three distinct mangrove forest degradations occurred in the Qinzhou Bay during the HCO. The three mangrove forest degradations approximately correspond to the time of the strengthened/weakened Asian winter/summer monsoon. This indicates that even during a period favorable for the mangrove development, such as the HCO, climatic extremes, such as cold and dry events driven by the strengthened/weakened Asian winter/summer monsoon, can trigger the degradation of mangrove forests.  相似文献   

8.
Constructed wetlands, especially mangroves, have been studied for their usefulness in sewage treatment but the effects of mangrove vegetation and a sewage load on mangrove macrofauna have been given little attention. Ocypodid crabs are important components of mangrove forests and constitute good bioindicators of the functioning of the ecosystem as a whole. In constructed mangrove mesocosms, three vegetation treatments (bare substratum, and Avicennia marina and Rhizophora mucronata seedlings) were subjected to 0, 20, 60 and 100% sewage loads from a nearby hotel. The physiological condition of introduced Uca annulipes and Uca inversa was evaluated in terms of their RNA/DNA ratio after one, five and twelve months, and used as an indicator of ecological function in the system. Crab condition in 0% sewage load was similar to that of wild crabs throughout, suggesting no significant effects of the mesocosms on their RNA/DNA ratio. Overall, both species coped well with the administered sewage loads, suggesting good ecological function in the system. Both species manifested similar patterns in RNA/DNA ratio, being more affected by seasonal fluctuations than by sewage load and vegetation presence and type. Higher RNA/DNA ratios were recorded in the long compared to the short rainy season. Sewage enhanced crab condition in the bare substratum and R. mucronata treatments, especially after one year, probably as a result of enhanced food availability. Uca inversa may be more sensitive to sewage pollution than U. annulipes. In A. marina, no difference in crab condition was observed between sewage loads, and this mangrove yielded the best reduction in sewage impacts. Our results support the usefulness of constructed mangrove areas in sewage treatment, especially if planted with A. marina and inhabited by physiologically healthy ocypodid crabs to enhance the system's performance.  相似文献   

9.
The stable isotopes of organic carbon (OC) and nitrogen, contents of OC and nitrogen for roots, bark, leaves, flowers and fruits of various mangrove species from Kisakasaka (Zanzibar) and Bagamoyo (mainland Tanzania) are used to assess (1) if some mangrove species are capable of fixing atmospheric nitrogen, (2) if there are differences between species in the same stand and in different stands and (3) if the mangrove signature is preserved in the sediments. Mean OC stable isotope results of various plant components range from −25.9‰ to −29.1‰ suggesting that mangrove trees in the two stands follow the C3 type of photosynthetic pathway. Mean nitrogen isotope values for various plant components range from −1.5‰ to 3.2‰ suggesting atmospheric nitrogen fixation by mangrove plants, but δ15N values approaching −3‰ that are more negative than typical diazotroph biomass exclude this possibility. Mangrove species thriving further inland are enriched in 13C and 15N relative to those thriving near the shoreline owing to complete utilization of available nutrients.Sediments beneath the mangrove forest are characterized by lower C/N ratio values and enrichment in 13C and 15N relative to plant material owing to mixing of nitrogenous rich material from adjacent area. High concentration of OC is found in bark and roots, while high nitrogen concentration is found in fruits and flowers only.  相似文献   

10.
Mangroves sediments contain large reservoirs of organic material (OM) as mangrove ecosystems produce large quantities and rapidly burial OM. Sediment accumulation rates of approximately 2.0 mm year−1, based on 210Pbex dating, were estimated at the margin of two well-developed mangrove forest in southern Brazil. Regional data point to a relative sea level (RSL) rise of up to ∼4.0 mm year−1. This RSL rise in turn, may directly influence the origin and quantity of organic matter (OM) deposited along mangrove sediments. Lithostratigraphic changes show that sand deposition is replacing the mud (<63 μm) fraction and OM content is decreasing in successively younger sediments. Sediment accumulation in coastal areas that are not keeping pace with sea level rise is potentially conducive to the observed shifts in particle size and OM content.  相似文献   

11.
The diurnal variation of nitric oxide (NO) emission fluxes from a Kandelia obovata and Avicennia marina mangrove wetland were studied in the Zhangjiang River Estuary Mangrove National Nature Reserve using a dynamic chamber-based technique and a chemiluminescent analyzer. Results from field experiments show that NO emission from K. obovata and A. marina sampling sites reached maximal values of 1.07 ng N m−2 s−1 and 1.23 ng N m−2 s−1, respectively after the night tide. Meanwhile NO emission maintained at a steady lower level in daytime for both wetland sites. In laboratory experiments, NO emission from the mangrove wetland soil samples treated with simulated tides in the darkness exhibited higher values than those in the light, therefore it seems that tides and darkness could increase NO emission from mangrove wetlands, while intensive light, high temperature, and dryness in the daytime decreased NO emission. Compared with K. obovata soil samples, the diurnal average NO emission rate of the A. marina site was significantly higher, which was closely related to relatively higher diurnal average CO2 emission rate, soil available nitrogen content and soil net nitrification rate of the A. marina site. Moreover, soil samples of the A. marina site were more responsive to simulated tides and the addition of nitrogen than those of the K. obovata site.  相似文献   

12.
We tested and refined the Neutral Red staining method for separating live and dead copepods in natural samples. Live copepods were stained red whereas dead copepods remained unstained. The staining results were not affected by method of killing, time of death or staining time. Tow duration had no significant effect on the percent dead copepods collected. The Neutral Red staining method was applied to study the occurrence of dead copepods along the York River and the Hampton River in the lower Chesapeake Bay during June–July, 2005. The zooplankton community was dominated by copepods; on average 29% of the copepod population appeared dead. Recovery of percent dead copepods did not differ between horizontal tows and vertical tows, suggesting that dead copepods were homogenously distributed in the water column. No significant relationship was found between the percent dead copepods and surface water temperature, salinity, Secchi depth or chlorophyll concentration. In laboratory experiments, dead copepods were decomposed by ambient bacteria and the rate of decomposition was temperature-dependent. Combining field and laboratory results we estimated that the non-consumptive mortality (mortality not due to predation) of copepods in the lower Chesapeake Bay was 0.12 d−1 under steady-state condition, which is within the global average of copepod mortality rate.  相似文献   

13.
Distribution, dynamics and mass budget of phosphorus and nitrogen in a red mangrove forest were studied in the Potengi mangrove forest in northern Brazil (lat. 5 degrees 42' and 5 degrees 53'S, long. 35 degrees 5' and 35 degrees 25'W). Tidal hydrology, net primary productivity, leaf litter decomposition rate and standing stock of leaf litter in a red mangrove forest were measured. The results showed that the main reservoir for total P and total N was the sediment with 309 kg ha(-1) and 4619 kg ha(-1) (77% and 95% of the total P and N content in the mangrove forest), respectively, for the two elements. Total P and total N in Rhizophora mangle trees accounted for 145+/-14 kg ha(-1) and 216+/-23 kg ha(-1) (23% and 5% of the total P and N in the mangrove forest). The estimated average export rates for P and N through leaf litter are 0.5 kg ha(-1)yr(-1) and 1.6 kg ha(-1)yr(-1) respectively. Our measurements support previous results in concluding that mangrove forests efficiently retain P and N.  相似文献   

14.
Mangrove forests are known to be inhabited by diverse symbiotic cyanobacterial communities that are capable of N2 fixation. To investigate its biodiversity, root sediments were collected from a mangrove forest in Chuuk State, Federated States of Micronesia (FSM), and an entangled yellow-brown coccoid cyanobacterium was isolated. The isolated cyanobacterium was reproduced by multiple fission and eventually produced baeocytes. Phylogenetic analysis revealed that the isolate was most similar to the genera Myxosarcina and Chroococcidiopsis in the order Pleurocapsales. Compositions of protein, lipid and carbohydrate in the cyanobacterial cells were estimated to be 19.4 ± 0.1%, 18.8 ± 0.4% and 31.5 ± 0.1%, respectively. Interestingly, total fatty acids in the isolate were mainly composed of saturated fatty acids and monounsaturated fatty acids, whereas polyunsaturated fatty acids were not detected. Based on the molecular and biochemical characteristics, the isolate was finally classified in the genus Myxosarcina, and designated as Myxosarcina sp. KIOST-1. These results will contribute to better understanding of cyanobacterial biodiversity in the mangrove forest in FSM as well as the genus Myxosarcina, and also will allow further exploitation of its biotechnological potential on the basis of its cellular characteristics.  相似文献   

15.
Spatial and seasonal variations in litter production and C, N, and P concentrations were compared between the 24 and 48 year old Kandelia obovata mangrove forests in the Jiulongjiang estuary, China. The 24 yr forest had significantly higher production of total, leaf and branch litter, but lower flower and fruit litter than the 48 yr forest. Total, leaf and branch litter production were significantly positively correlated to monthly temperature and rainfall. Spatial patterns of litter production among the inner, mid and outer zones in the same forest were similar to those of tree heights. C, N and P concentrations of leaf litter showed significant seasonality but varied little among these three forest zones. C/N and N/P ratios of leaf litter were significantly lower for the 24 yr forest than those for the 48 yr forest. During the entire sampling year, total litter of the 24 and 48 yr forests contained 590.31 and 437.31 g C m−2 yr−1, 8.46 and 5.47 g N m−2 yr−1, 1.92 and 1.16 g P m−2 yr−1, respectively.  相似文献   

16.
A year-round survey of the tropical shallow-water mysid Mesopodopsis orientalis (Tattersall, 1908) (Crustacea, Mysidacea) was conducted in the Merbok mangrove estuary, northwestern Peninsular Malaysia. The mysid formed dense aggregations at the river's edge close to the mangrove forest during the daytime, but very few were captured elsewhere in the estuary system. The sampled population was found in a wide range of salinities from 16 to 32, demonstrating broad euryhalinity, and the number of the catch at the littoral zone ranged from 11.8 to 2273 ind m−2. The overall annual mean was 709.2 ind m−2. Females predominated over males in the entire population, and brooding females were present at every monthly sample, indicating that reproduction is continuous year round. The clutch size positively correlated with female body length. The diameter of eggs (Stage I embryos) was unaffected by the seasonality and independent of the maternal size within an observed size range. The life history pattern of the estuarine population of M. orientalis showed close similarity to that of the coastal counterpart. However, the former was found to produce fewer but larger eggs, and the specimens in this population were larger than those in the coastal population at the embryo, juvenile, and adult stages. This evidence indicates that the life history features of the estuarine population would differ to some degree from those of the coastal counterpart.  相似文献   

17.
The magnitude and seasonality of organic carbon exchange was estimated for two basin mangrove forests in Rookery Bay, Florida. Runoff and tidal inundation in the forests were seasonal with half the annual total of each occurring from August to October. In each forest there were 152 tides yr?1 with a cumulative depth of about 12 m. Total organic carbon increased in bay waters exporting from the mangroves following a flood tide and peak concentrations were associated with export due to rainfall. The amount of net export from each basin forest was similar, although the concentration of organic carbon in each were different. Monthly net organic carbon export was proportional to the cumulative tidal amplitude within the forest. Total organic carbon export was 64 gC m?2 yr?1 and DOC was 75% of the total. A comparison of organic carbon export among riverine, fringe and basin mangroves suggests that tidal hydrology influences the proportion of litter fall that is exported from mangroves; and the magnitude of this organic carbon export from mangroves is related to the cumulative tidal amplitude within the forests.  相似文献   

18.
The influence of different primary productivity regimes on live (Rose Bengal stained) and dead benthic foraminiferal distribution, as well as on the stable carbon isotopic composition of foraminiferal tests, was investigated in sediment surface samples (0–1 cm) from the upwelling region off Morocco between Cape Ghir (31°N) and Cape Yubi (27°N). A combination of factor analysis, detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) was applied to the benthic foraminiferal data sets. Five major assemblages for both the live and dead fauna were revealed by factor analysis. In the cape regions organic matter fluxes are enhanced by high chlorophyll-α concentrations in the overlying surface waters. Here, benthic foraminiferal faunas are characterized by identical live and dead assemblages, high standing stocks, and low species δ13C values, indicating constant year-round high productivity. Bulimina marginata dominates the unique fauna at the shallowest station off Cape Ghir indicating highest chlorophyll-a concentrations. Off both capes, the succession of the Bulimina aculeata/Uvigerina mediterranea assemblage, the Sphaeroidina bulloides/Gavelinopsis translucens assemblage, and the Hoeglundina elegans assemblage from the shelf to the deep sea reflects the decrease in chlorophyll-a concentrations, hence the export flux. In contrast, the area between the capes is characterized by differently composed live and dead assemblages, low standing stocks, and less depleted δ13C values, thus reflecting low primary productivity. High foraminiferal numbers of Epistominella exigua, Eponides pusillus, and Globocassidulina subglobosa in the dead fauna indicate a seasonally varying primary productivity signal. Significantly lower mean δ13C values were recorded in Bulimina mexicana, Cibicidoides kullenbergi, H. elegans, U. mediterranea and Uvigerina peregrina. Cibicidoides wuellerstorfi is a faithful recorder of bottom water δ13C in the Canary Islands regions. The mean δ13C signal of this species is not significantly influenced by constant high organic matter fluxes. The species-specific offset between live and dead specimens is the same.  相似文献   

19.
Although such ecosystems are fragile, this study shows that the anthropogenic damages inflicted on the mangrove forests of West Africa can be reversed over a relatively short time period if environmental conditions are favorable. The mangrove ecosystem of the microtidal Somone Estuary, Senegal, has undergone extreme changes during the last century. The area occupied by mangrove forest was estimated with a diachronic study by GIS for the period 1946-2006. Between 1946 and 1978, 85% of the area was progressively replaced by unvegetated mudflats in the intertidal zones and by barren area in the supratidal zones. Until 1990, this was mainly a result of traditional wood harvesting. The impact was exacerbated by the closing off of the estuary to the sea (1967-1969 and 1987) and by an extended drought (1970 onwards), which resulted in a lack of renewal of water, hypersalinization and acidification. The main factors controlling mangrove evolution in the Somone ecosystem, however, are anthropogenic. Until 1990, traditional wood cutting (for wood and oyster harvesting) was practiced by the local population. Between 1978 and 1989, a small area occupied by the mangroves was stabilized. Since 1992, a modification of mangrove logging and a new reforestation policy resulted in an exponential increase of mangrove area progressively replacing intertidal mudflats. Such success in the restoration of the ecosystem reforestation is supported by favorable environmental conditions: tidal flooding, groundwater influence, rainfall during the wet season, low net accretion rate of about 0.2-0.3 cm year−1, and a ban on the cutting of mangrove wood. The rate of mangrove loss from 1946 to 1978 was 44,000 m2 year−1, but this has been offset by restoration efforts resulting in an increase in mangrove area from 1992 to 2006 of 63,000 m2 year−1.  相似文献   

20.
In order to improve the understanding of structural and reactive features of sediment organic matter from mangrove swamp as well as evaluate the relationship between such features and the impact from different sources (marine and terrestrial), humic and fulvic acids were isolated from two mangrove swamp sediments located in the Qinglan harbors on Hainan Island, China. One is a forest surface sediment site (WWM2), and the other is an estuary subaqueous sediment site (BMW). The humic and fulvic acids were characterized and compared using chemical and spectroscopic methods, including elemental analysis, thermogravimetric analysis (TGA), Fourier Transformed Infrared Spectroscopy (FTIR), 13C nuclear magnetic resonance (13C NMR) and potentiometric titrations. The results indicated that there were less aliphatic compounds but more aromatic compounds and oxygen-containing functional groups in fulvic acids. Humic acids contained more long-chain hydrocarbons and nitrogen compounds. Comparison of the C/N ratios and δ13C values for the humic substances at both sites indicated a larger marine and/or microbial contribution to the BMW site. Humic substances at the WWM2 site have more acidic functional groups than those of the BMW site. Compared to the literature, more phenolic groups existed in the samples of both sites, which may be due to the autochthonous contribution of mangrove plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号