首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Characteristics of present-day tectonic movement in the northeastern margin of Qinghai-Xizang plateau (Tibetan) are studied based on earthquake data. Evidence of earthquake activity shows that junctures between blocks in this area consist of complicated deformation zones. Between the Gansu-Qinghai block and Alxa block there is a broad compressive deformation zone, which turns essentially to be a network-like deformation region to the southeast. The Liupanshan region, where the Gansu-Qinghai block contacts the Ordos block, is suffering from NE-SW compressive deformation. Junction zone between the Ordos and Alxa block is a shear zone with sections of variable trend. The northwestern and southeastern marginal region of the Ordos is under NNW-SSE extension. The above characteristics of present-day tectonic deformation of the northeastern Qinghai-Xizang plateau may be attributed to the northeastward squeezing of the plateau and the resistance of the Ordos block, as well as the southeastward extrusion of the plateau materials. Foundation item: State Natural Science Foundation of China (49732090) and the Development Program on National Key Basic Researches under the Project Mechanism and Prediction of Continental Strong Earthquakes (95-13-02-05). Contribution No. 00FE2003, Institute of Geophysics, China Seismological Bureau.  相似文献   

2.
We simulate accumulative Coulomb failure stress change in a layered Maxwell viscoelastic media in the north-eastern Qinghai-Xizang(Tibetan)Plateau since 1920.Lithospheric stress/strain evolution is assumed to be drivenby dislocations of large earthquakes(M≥7.0)and secular tectonic loading.The earthquake rupture parameters suchas the fault rupture length,width,and slip are either adopted from field investigations or estimated from their sta-tistic relationships with the earthquake magnitudes and seismic moments.Our study shows that among 20 largeearthquakes(M≥7.0)investigated,17 occurred in areas where the Coulomb failure stress change is positive,with atriggering rate of 85%.This study provides essential data for the intermediate to long-term likelihood estimation oflarge earthquakes in the northeastern Tibetan Plateau.  相似文献   

3.
IntroductionThenortheasternregionofQinghai-Xizangplateauisthejunctionregionofthethreeblocks,ie.,Qinghai-Xizang,AIxaandordosblock.TianandDing(l998)studiedtheclockwisetypequasi-trijunctionaroundHaiyuan-YinchuaninnortheasternregionofQinghai-Xizangplateau.Thethreet6ctonicbranchesofthequasi4rjunctionareQiIianshanfaultzone,Yinchuan-Jedai-Linhe(YJL)fractureddepressionbasinandLiupanshanfaultzone.TheQilianshanfaultzoneshowssin-istraIandcompressionalmovement,themovementofYJLbasinisofdextraland…  相似文献   

4.
In this study, we collected 1 156 broadband vertical components records at 22 digital seismic stations in Xinjiang region, ürümqi station, and 7 stations in the adjacent regions during the period of 1999–2003. The records were firstly processed by the stacked spectral ratio method to obtain Q 0 (Q at 1 Hz) and the frequency correlation factor η corresponding to each path. Based on the results, the distribution images of Q 0 and η in 1°×1° grids for Xinjiang region were gained by the back-projection technique. The results indicate that Q 0 is high (300–450) in the Tarim platform and marginal Siberian platform, while Q 0 is low (150–250) in the southern regions as west Kunlun fold system and Songpan-Ganzi fold system. In the northern regions as Junggar fold system and Tianshan fold system, Q 0 is also low (250–300) and η varies between 0.5 and 0.9. Foundation item: National Natural Science Foundation of China (49974012) and Joint Seismological Science Foundation of China (604004).  相似文献   

5.
Introduction According to the negative dislocation model (Matsu′ura et al, 1986), the relative motion be-tween active blocks under contemporary crustal movement is likely to be partially blocked on the boundaries. Suppose the lower ductile zone of boundary could slip freely, while due to the fric-tional resistance, etc., the upper brittle zone would restrict such kind of relative motion, so as to give rise to stress and strain accumulation. Namely, the surface displacement in the block bound-…  相似文献   

6.
Four earthquakes with M > 6.0 occurred in Qinghai Province, China froth 1988 to 1990. Using broadband data from GDSN, the source ruptures of these earthquakes and tectonic surroundings were studied using waveform modelling combined with background data of geological tectonics. Through the analysis of apparent source time function (aSTF) and apparent time difference (aTD), the complexity of sources was discussed, and in view of source analysis, the result further supports the conclusion that the compressive stress axis of tectonic stress field in northeastern Qinghai-Xizang (Tibetan) plateau is at the NE direction, is nearly horizontal, turns counter-clockwise to the NEE or N to S direction, and is nearly horizontal close to the northern Qinghai-Xizang plateau.  相似文献   

7.
With the theory of subcritical crack growth, we can deduce the fundamental equation of regional seismicity acceleration model. Applying this model to intraplate earthquake regions, we select three earthquake subplates: North China Subplate, Chuan-Dian Block and Xinjiang Subplate, and divide the three subplates into seven researched regions by the difference of seismicity and tectonic conditions. With the modified equation given by Sornette and Sammis (1995), we analysis the seismicity of each region. To those strong earthquakes already occurred in these region, the model can give close fitting of magnitude and occurrence time, and the result in this article indicates that the seismicity acceleration model can also be used for describing the seismicity of intraplate. In the article, we give the magnitude and occurrence time of possible strong earthquakes in Shanxi, Ordos, Bole-Tuokexun, Ayinke-Wuqia earthquake regions. In the same subplate or block, the earthquake periods for each earthquake region are similar in time interval. The constant αin model can be used to describe the intensity of regional seismicity, and for the Chinese Mainland, α is 0.4 generally. To the seismicity in Taiwan and other regions with complex tectonic conditions, the model does not fit well at present.  相似文献   

8.
Basic characteristics of active tectonics of China   总被引:84,自引:8,他引:76  
Active tectonics is inferred to all the structures which have been active since the late Pleisto-cene, 100—120 ka B.P., are still active recently, and will be active in a certain time period in the future, such as active faults, active folds, active basi…  相似文献   

9.
A large area of high-pressure garnet-kyanite granulite is exhumed in the Namjagbarwa area, which provides a window for observing the deep crust rocks and structures of the Tibetan Plateau. Three mineral assemblages can have been distinguished in the garnet-kyanite HP granulites by petrography, i.e. M1. Mus+Bi+P1+Q, M2. Gt+Ky +perphite/antiperphite+Rt+Q, M3. Gt+Sill+Cord+Sp+Ilm ± Opx. Metamorphic conditions of the peak granulite assemblages (M2) formatted by thickening of crusts, with available isotopic ages of 45–69 Ma, are at 1.4—1.8 Gpa and 750—850°. Their retrograde assemblages overprinted by decompressure during the uplift, with available isotopic ages of 18—23 Ma, were formed at 0.60—0.70 Gpa, 621—726°. The thermobarometric evaluation, petrogenetic grid and corresponding isotopic ages indicate a clockwise isothermal decompression metamorphic path. The HP granulite metamorphic history indicates that the collision of the Indian Plate with the Eurasian Plate had begun at 70 Ma, far earlier than the widely accepted 45 Ma. Project supported by the National Natural Science Foundation of China (Grant No. 49732100), the National Key Project for Basic Research, and the Chinese Academy of Sciences Project for Tibetan Research Project (GrantNos. KZ951-A1-204, KZ95T-06).  相似文献   

10.
中国大陆地震活动分期及其与构造运动的关系   总被引:2,自引:1,他引:2  
黄忠贤  陈虹 《中国地震》1996,12(4):403-410
利用应变积累释放曲线的方法,讨论中国各主要地震区带的平静-活跃期现象及其与构造运动之间的联系。中国西南地区的地震活动反映了由印度-欧亚板块碰撞引起的动力作用由西向东,由南向北的推过程。  相似文献   

11.
Based on the results from seismogeological study,aeromagnetic inversion and deepseismic sounding(DSS),it is found that the M≥8.0 earthquakes in North China have three common deep structural characteristics,i.e,they all took place above the ultra-crustal deep faults or on the edges of the tectonic blocks with higher intensity,and there are low-velocity,low-density and high-conductive layers deep in the epicentral regions.The origins of the earth-quakes are also discussed and the two possibilities of seismogenesis are proposed,i.e,tectonic movement and intracrustal explosion.  相似文献   

12.
On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressive strain axis of each subplate is basically consistent with the P-axis of focal mechanism solution and the principal compressive stress axis acquired by geological method.It indicates that the crustal tectonic stress field is relatively stable in regions in a long time.The principal compressive stress axes of Qinghai-Tibet and Xinjiang subplates in the western part of Chinese mainland direct to NS and NNE-SSW,which are controlled by the force from the col-lision of the Eurasia Plate and India Plate.The principal compressive strain axes of Heilongjiang and North China subplates in the eastern part direct to ENE-WSW,which shows that they are subject to the force from the collision and underthrust of the Eurasia Plate to the North America and Pacific plates.At the same time,they are also af-fected by the lateral force from Qinghai-Tibet and Xinjiang subplates.The principal compressive strain axis of South China plate is WNW-ESE,which reflects that it is affected by the force from the collision of Philippine Sea Plate and Eurasia Plate and it is also subject to the lateral force from Qinghai-Tibet subplate.It is apparent from the comparison between the principal compressive strain axes in the periods of 2004~2007 and 2001~2004 that the acting directions of principal compressive stress of subplates in both periods are basically consistent.However,there is certain difference between their directional concentrations of principal compressive stress axes.The sur-face strain rates of different tectonic units in both periods indicate that the events predominating by compressive variation decrease,while the events predominating by tensile change increase.  相似文献   

13.
In this paper, we have carefully determined the stress zones in the Sichuan-Yunnan region with reference to the in-situ stress data of hydraulic fracturing and the inverted fault slip data by using the step-by-step convergence method for stress zoning based on focal mechanism solutions. The results indicate that the tectonic stress field in the Sichuan-Yunnan region is divided into 3 stress zones by 2 approximately parallel NNW-trending stress transition belts. The area between the 2 belts is the Sichuan-Yunnan stress zone where the maximum principal stress σ1 is just in the NNW direction. The eastern boundary of Sichuan-Yunnan stress zone (the eastern stress transition belt) is basically consistent with the eastern boundary of Sichuan-Yunnan rhombic block. The western boundary of Sichuan-Yunnan stress zone (the western stress transition belt) is not totally consistent with the western boundary of Sichuan-Yunnan rhombic block. The northern segment of the western stress transition belt extends basically along the Jinshajiang fault and accords with the western boundary of Sichuan-Yunnan rhombic block, while its southern segment does not extend along the southwestern boundary of the rhombic block, i.e., Honghe fault and converge with the eastern stress transition belt, but stretches continuously in the NNW direction and accords with the Yingpanshan fault. We therefore consider that under the combined influence from the northward motion of India Plate, the southeastward shift of east Qinghai-Xizang Plateau and the strong obstruction of South China block, the tectonic stress field in the Sichuan-Yunnan region might not be totally controlled by the previous tectonic frame and new stress transition belt may have possibly formed.  相似文献   

14.
On the basis of a newly-constructed record of magnetic susceptibility (SUS) and the depositional rate change of eolian loess-red clay sequences in the last 7.2 Ma BP from the hea Plateau, together with a cornperison of a record of °18O values from the equatorial East Pacific Ocean and eolian Quartz flux variations fmm the North Pacific Ocean, the evolutiomuy process of the Late Cenozoic Great Glaciation in the Northern Hemisphere can be divided into three stages: the arrival stage around 7.2–3.4 Ma BP, the initial stage at about 3.4—2.6 Ma BP, and the Great Ice Age since 2.6 Ma BP. The evolution of the East Asian monsoon is characterized by paid winter and summer monsoons, and it is basically composed of the initial stage of weak winter and summer monsoons, the transitional stage of simultaneous increase in intensity of winter and summer monsoons, and the prevailing stage of strong winter and week summer monsoons, or weak winter and strong summer monsoons. The Late Cenowic global tectonic uplift, paaicdarly the Qinghai-Xizang Plateau uplift and the associated CO2 concentration variation, controls the dng processes of the onset of Great Glaciation and the long-term changes of East Asian monsoom climate in the Northern Hemisphere to a large extent. The accelerating uplift of the Qinghai-Xizang Plateau between 3.4 and 2.6 Ma BP provided an important driving force to global climiatic change. Project supported by the foundation of Chinese Academy of Sciences (Grant No. KZ951-A1-402), the State Science and Technology Committee (Grant No. 95-pre-40)and the Chinese Nature Science Foundation (Grant No. 49672140)  相似文献   

15.
地下流体长趋势异常变化与强震预测的初步研究   总被引:2,自引:0,他引:2  
以华北、川滇、青藏东北缘、新疆及邻区等重点地区的地下流体观测点为基础,选择水位、水氡、水温、汞等长期观测资料,进行了历史强震震例的地下流体长趋势资料处理、干扰排除和异常提取的方法和技术的研究,初步建立了分区的强地震地下流体长期预测指标并探讨其异同。  相似文献   

16.
Through the analysis and 2-D inversion for the 5 profiles in Haiyuan arcuate tectonic region (105°~107°E,36°~37.5°N) in the northeastern margin of Qinghai-Xizang Plateau, we have obtained the electric structure within a range of 160 km in width (east-west) and 60 km in depth in the studied area. The results show that the crustal electric structure can be divided into 6 sections, corresponding respectively to Xiji basin (Ⅰ), Xihuashan-Nanhuashan uplift (Ⅱ), Xingrenbu-Haiyuan basin (Ⅲ), Zhongwei-Qingshuihe basin (Ⅳ), Zhongning-Hongsibu basin (Ⅴ) and west-margin zone of Ordos (Ⅵ) from the southwest to the northeast. The crustal electric structure is characterized by a broom-shaped pattern, which scatters to the northwest and shrinks to the southeast. The structures in the top part of Haiyuan arcuate tectonic region are complete and large, however, they diminish from the arc top to the northwest and southeast ends. In the depth from 0 km to 10 km, the resistivity is high in the sections Ⅱ and Ⅵ, but relatively low in the other four sections, showing a similar pattern of basin depression. The electrical basement in the section Ⅲ is the deepest, displaying a "dustpan" shape that is deep in the southwest and shallow in the northeast. A series of discontinuous zones with high conductivity exist in the middle-lower crust in Haiyuan arcuate tectonic region, which is possibly related to the moderate and strong earthquakes in the region. The resistivity distribution in the focal area of the 1920 Haiyuan earthquake is significantly heterogeneous with an obviously high conductivity zone near the hypocenter regime.  相似文献   

17.
18.
Based on study of Nd isotopic composition for 101 rocks of various types from Tianshan Orogen, the age and character of basement and continental crustal evolution of the Tianshan Orogen were proposed. It is deduced that the continental crustal basement of the Tianshan Orogen was formed 1. 8 Ga ago. The protolith of its metamorphic rocks was derived from long-term depleted mantle source in the ancient are tectonic setting probably. The Tianshan Orogen is obviously different from the North Tarim Block in age of basement and post-evolution history. It was also shown that Paleozoic continental crustal growth happened extensively in the Tianshan Orogen, which is distinguished from Yangtse Block and Cathaysia Block in eastern China. Project supported by the National Natural Science Foundation of China (Grant No. 49633250). It belongs to the National “305” Project in Xinjiang, which is one of the National Key Projects in the Ninth Five-Year Plan (96-915-07-05A).  相似文献   

19.
TheM s =6.9 Gonghe, China, earthquake of April 26, 1990 is the largest earthquake to have been documented historically as well as recorded instrumentally in the northeastern Qinghai-Xizang (Tibetan) plateau. The source process of this earthquake and the tectonic stress field in the northeastern Qinghai-Xizang plateau are investigated using geodetic and seismic data. The leveling data are used to invert the focal mechanism, the shape of the slipped region and the slip distribution on the fault plane. It is obtained through inversion of the leveling data that this earthquake was caused by a mainly reverse dip-slipping buried fault with strike 102°, dip 46° to SSW, rake 86° and a seismic moment of 9,4×1018 Nm. The stress drop, strain and energy released for this earthquake are estimated to be 4.9 MPa, 7.4×10–5 and 7.0×1014 J, respectively. The slip distributes in a region slightly deep from NWW to SEE, with two nuclei, i.e., knots with highly concentrated slip, located in a shallower depth in the NWW and a deeper depth in the SEE, respectively.Broadband body waves data recorded by the China Digital Seismograph Network (CDSN) for the Gonghe earthquake are used to retrieve the source process of the earthquakes. It is found through moment-tensor inversion that theM s =6.9 main shock is a complex rupture process dominated by shear faulting with scalar seismic moment of the best double-couple of 9.4×1018 Nm, which is identical to the seismic moment determined from leveling data. The moment rate tensor functions reveal that this earthquake consists of three consecutive events. The first event, with a scalar seismic moment of 4.7×1018 Nm, occurred between 0–12 s, and has a focal mechanism similar to that inverted from leveling data. The second event, with a smaller seismic moment of 2.1×1018 Nm, occurred between 12–31 s, and has a variable focal mechanism. The third event, with a sealar seismic moment of 2.5×1018 Nm, occurred between 31–41 s, and has a focal mechanism similar to that inverted from leveling data. The strike of the 1990 Gonghe earthquake, and the significantly reverse dip-slip with minor left-lateral strike-slip motion suggest that the pressure axis of the tectonic stress field in the northeastern Qinghai-Xizang plateau is close to horizontal and oriented NNE to SSW, consistent with the relative collision motion between the Indian and Eurasian plates. The predominant thrust mechanism and the complexity in the tempo-spatial rupture process of the Gonghe earthquake, as revealed by the geodetic and seismic data, is generally consistent with the overall distribution of isoseismals, aftershock seismicity and the geometry of intersecting faults structure in the Gonghe basin of the northeastern Qinghai-Xizang plateau.Contribution No. 96 B0006 Institute of Geophysics, State Seismological Bureau, Beijing, China.  相似文献   

20.
The relation between the gravity variation features and Ms=8.1 earthquake in Qinghai-Xizang monitoring area is analyzed preliminarily,by using spatial dynamic variation results of regional gravity field from absolute gravity and relative gravity observation in 1998 and 2000.The results show that:1)Ms\8.1 earthquake in Kulun mountain pass westem occurred in the gravity variation high gradient near gravity‘s high negative variation;2)The Main tectonic deformation and emnergy accumulation before MS=8.1 earthquake are distributed at south side of the epicenter;3)The range of gravity‘s high negative variation at east of the MS=8.1 earthquake epicenter relatively coincides with that rupture region according to field geology investigation;4)Gravity variation distribution in high negative value region is just consistent with the second shear strain‘s high value region of strain field obtained from GPS observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号