首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inherent heterogeneity of geological media often results in anomalous dispersion for solute transport through them, and how to model it has been an interest over the past few decades. One promising approach that has been increasingly used to simulate the anomalous transport in surface and subsurface water is the fractional advection–dispersion equation (FADE), derived as a special case of the more general continuous time random walk or the stochastic continuum model. In FADE, the dispersion is not local and the solutes have appreciable probability to move long distances, and thus reach the boundary faster than predicted by the classical advection–dispersion equation (ADE). How to deal with different boundaries associated with FADE and their consequent impact is an issue that has not been thoroughly explored. In this paper we address this by taking one-dimensional solute movement in soil columns as an example. We show that the commonly used FADE with its fractional derivatives defined by the Riemann–Liouville definition is problematic and could result in unphysical results for solute transport in bounded domains; a modified method with the fractional dispersive flux defined by the Caputo derivatives is presented to overcome this problem. A finite volume approach is given to numerically solve the modified FADE and its associated boundaries. With the numerical model, we analyse the inlet-boundary treatment in displacement experiments in soil columns, and find that, as in ADE, treating the inlet as a prescribed concentration boundary gives rise to mass-balance errors and such errors could be more significant in FADE because of its non-local dispersion. We also discuss a less-documented but important issue in hydrology: how to treat the upstream boundary in analysing the lateral movement of tracer in an aquifer when the tracer is injected as a pulse. It is shown that the use of an infinite domain, as commonly assumed in literature, leads to unphysical backward dispersion, which has a significant impact on data interpretation. To avoid this, the upstream boundary should be flux-prescribed and located at the upstream edge of the injecting point. We apply the model to simulate the movement of Cl in a tracer experiment conducted in a saturated hillslope, and analyse in details the significance of upstream-boundary treatments in parameter estimation.  相似文献   

2.
The fractional advection–dispersion equation (FADE) known as its non-local dispersion, has been proven to be a promising tool to simulate anomalous solute transport in groundwater. We present an unconditionally stable finite element (FEM) approach to solve the one-dimensional FADE based on the Caputo definition of the fractional derivative with considering its singularity at the boundaries. The stability and accuracy of the FEM solution is verified against the analytical solution, and the sensitivity of the FEM solution to the fractional order α and the skewness parameter β is analyzed. We find that the proposed numerical approach converge to the numerical solution of the advection–dispersion equation (ADE) as the fractional order α equals 2. The problem caused by using the first- or third-kind boundary with an integral-order derivative at the inlet is remedied by using the third-kind boundary with a fractional-order derivative there. The problems for concentration estimation at boundaries caused by the singularity of the fractional derivative can be solved by using the concept of transition probability conservation. The FEM solution of this study has smaller numerical dispersion than that of the FD solution by Meerschaert and Tadjeran (J Comput Appl Math 2004). For a given α, the spatial distribution of concentration exhibits a symmetric non-Fickian behavior when β = 0. The spatial distribution of concentration shows a Fickian behavior on the left-hand side of the spatial domain and a notable non-Fickian behavior on the right-hand side of the spatial domain when β = 1, whereas when β = −1 the spatial distribution of concentration is the opposite of that of β = 1. Finally, the numerical approach is applied to simulate the atrazine transport in a saturated soil column and the results indicat that the FEM solution of the FADE could better simulate the atrazine transport process than that of the ADE, especially at the tail of the breakthrough curves.  相似文献   

3.
Many studies indicate that small‐scale heterogeneity and/or mobile–immobile mass exchange produce transient non‐Fickian plume behavior that is not well captured by the use of the standard, deterministic advection‐dispersion equation (ADE). An extended ADE modeling framework is presented here that is based on continuous time random walk theory. It can be used to characterize non‐Fickian transport coupled with simultaneous sequential first‐order reactions (e.g., biodegradation or radioactive decay) for multiple degrading contaminants such as chlorinated solvents, royal demolition explosive, pesticides, and radionuclides. To demonstrate this modeling framework, new transient analytical solutions are derived and are inverted in Laplace space. Closed‐form, steady‐state, multi‐species analytical solutions are also derived for non‐Fickian transport in highly heterogeneous aquifers with linear sorption–desorption and matrix diffusion for use in spreadsheets. The solutions are general enough to allow different degradation rates for the mobile and immobile zones. The transient solutions for multi‐species transport are applied to examine the effects of source remediation on the natural attenuation of downgradient plumes of both parent and degradation products in highly heterogeneous aquifers. Results for representative settings show that the use of the standard, deterministic ADE can over‐estimate cleanup rates and under‐predict the cleanup timeframe in comparison to the extended ADE analytical model. The modeling framework and calculations introduced here are also applied for a 30 year groundwater cleanup program at a site in Palm Bay, Florida. The simulated plume concentrations using the extended ADE exhibited agreement with observed long concentration tails of trichloroethene, cis 1,2 DCE, and VC that remained above cleanup goals.  相似文献   

4.
Exact analytical solutions for two-dimensional advection-dispersion equation (ADE) in cylindrical coordinates subject to the third-type inlet boundary condition are presented in this study. The finite Hankel transform technique in combination with the Laplace transform method is adopted to solve the two-dimensional ADE in cylindrical coordinates. Solutions are derived for both continuous input and instantaneous slug input. The developed analytical solutions are compared with the solutions for first-type inlet boundary condition to illustrate the influence of the inlet condition on the two-dimensional solute transport in a porous medium system with a radial geometry. Results show significant discrepancies between the breakthrough curves obtained from analytical solutions for the first-type and third-type inlet boundary conditions for large longitudinal dispersion coefficients. The developed solutions conserve the solute mass and are efficient tools for simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment or an in situ infiltration test with a tracer.  相似文献   

5.
The longitudinal dispersion coefficient (D) is an important parameter needed to describe the transport of solutes in rivers and streams. The dispersion coefficient is generally estimated from tracer studies but the method can be expensive and time consuming, especially for large rivers. A number of empirical relations are available to estimate the dispersion coefficient; however, these relations are known to produce estimates within an order of magnitude of the tracer value. The focus of this paper is on using the shear-flow dispersion theory to directly estimate the dispersion coefficient from velocity measurements obtained using an Acoustic Doppler Current Profiler (ADCP). Using tracer and hydrodynamic data collected within the same river reaches, we examined conditions under which the ADCP and tracer methods produced similar results. Since dead zones / transient storage (TS) are known to influence the dispersion coefficient, we assessed the relative importance of dead zones in different stream reaches using two tracer-based approaches: (1) TS modeling which explicitly accounts for dead zones and (2) the advection–dispersion equation (ADE) which does not have separate terms for dead zones. Dispersion coefficients based on the ADE tend to be relatively high as they describe some of the effects of dead zones as well. Results based on the ADCP method were found to be in good agreement with the ADE estimates indicating that storage zones play an important role in the estimated dispersion coefficients, especially at high flows. For the river sites examined in this paper, the tracer estimates of dispersion were close to the median values of the ADCP estimates obtained from multiple datasets within a reach. The ADCP method appears to be an excellent alternative to the traditional tracer-based method if care is taken to avoid spurious data and multiple datasets are used to compute a distance-weighted average or other appropriate measure that represents reach-averaged conditions.  相似文献   

6.
The transport of bromide (Br) under matric heads of 0, ?2, ?5, and ?10 cm using undisturbed soil columns was investigated for understanding the solute transport in arid soils. Undisturbed soil cores were collected at ground surface, directly below where tension infiltrometer measurements were made in the Amargosa Desert, Nevada, United States. Laboratory experiments were conducted by introducing water containing Br tracer into a soil column maintained at steady‐state conditions. The observed data of breakthrough curves (BTC) were well fitted to an one‐region model, except for the cores at saturation, and a core at the matric head of ?5 cm, from which the observed data were better fitted to a two‐region model. Fitted pore water velocities with the one‐region model ranged from 1.2 to 56.6 cm/h, and fitted dispersion coefficients (D) ranged from 2.2 to 100 cm2/h. Results for the core analyzed with the two‐region model indicated that D ranged from 27.6 to 70.9 cm2/h at saturation, and 25.7 cm2/h at the matric head of ?5 cm; fraction of mobile water (β) ranged from 0.18 to 0.65, and mass transfer coefficient (ω) ranged from 0.006 to 0.03. In summary, the water fluxes and Br dispersion coefficients at investigated matric heads were very high due to the coarseness of the soils and possibly due to preferential flow pathways. These high water fluxes and Br dispersion coefficients would lead to a higher risk of deeper leaching accumulating nitrate nitrogen to the groundwater, and have significant effects on the desert ecosystem.  相似文献   

7.
This article outlines analytical solutions to quantify the length scale associated with “upstream dispersion,” the artificial movement of solutes in the opposite direction to groundwater flow, in solute transport models. Upstream dispersion is an unwanted artifact in common applications of the advection-dispersion equation (ADE) in problems involving groundwater flow in the direction of increasing solute concentrations. Simple formulae for estimating the one-dimensional distance of upstream dispersion are provided. These show that under idealized conditions (i.e., steady-state flow and transport, and a homogeneous aquifer), upstream dispersion may be a function of only longitudinal dispersivity. The scale of upstream dispersion in a selection of previously presented situations is approximated to highlight the utility of the presented formulae and the relevance of this ADE anomaly in common transport problems. Additionally, the analytical solution is applied in a hypothetical scenario to guide the modification of dispersion parameters to minimize upstream dispersion.  相似文献   

8.
In this article, the quadrupole method is implemented in order to simulate the effects of heterogeneities on one dimensional advective and diffusive transport of a passive solute in porous media. Theoretical studies of dispersion in heterogeneous stratified media can bring insight into transport artefacts linked to scale effects and apparent dispersion coefficients. The quadrupole method is an efficient method for the calculation of transient response of linear systems. It is based here on the Laplace transform technique. The analytical solutions that can be derived by this method assists understanding of upscaled parameters relevant to heterogeneous porous media.First, the method is developed for an infinite homogeneous porous medium. Then, it is adapted to a stratified medium where the fluid flow is perpendicular to the interfaces. The first heterogeneous medium studied is composed of two semi-infinite layers perpendicular to the flow direction each having different transport properties. The concentration response of the medium to a Dirac injection is evaluated. The case studied emphasises the importance in the choice of the boundary conditions.In the case of a periodic heterogeneous porous medium, the concentration response of the medium is evaluated for different numbers of unit-cells. When the number of unit cells is great enough, depending on the transport properties of each layer in the unit cell, an equivalent homogeneous behaviour is reached. An exact determination of the transport properties (equivalent dispersion coefficient) of the equivalent homogeneous porous medium is given.  相似文献   

9.
To serve as a tool in the long term evaluation of the risk of accumulation of microbial contaminants (bacteria and viruses) entering soil and groundwater, a mathematical model is developed to predict the spatial and temporal distribution of pollutant concentration. The governing equation for bacterial transport is coupled with a transport equation for the bacterial nutrient present in the seeping wastewater. The deposition and declogging mechanisms are incorporated into the model as a rate process for bacteria and as an equilibrium partitioning for viruses. While the decay is assumed to be a first order reaction and the growth of bacteria is assumed to follow the Monod equation, the model equations exhibit nonlinearity and coupling. A simplified set of equations is solved analytically to test the numerical results. Coupled numerical solutions in one and two dimensions are obtained by the Galerkin method at spatial and temporal locations of interest. Cases studied included a soil column and a horizontal two-dimensional field coupled with the one dimensional solution. For these examples, the bacteria are removed almost totally within the top 7 cm of soil with minimal risk of clogging.  相似文献   

10.
Modeling dispersion in homogeneous porous media with the convection–dispersion equation commonly requires computing effective transport coefficients. In this work, we investigate longitudinal and transverse dispersion coefficients arising from the method of volume averaging, for a variety of periodic, homogeneous porous media over a range of particle Péclet (Pep) numbers. Our objective is to validate the upscaled transverse dispersion coefficients and concentration profiles by comparison to experimental data reported in the literature, and to compare the upscaling approach to the more common approach of inverse modeling, which relies on fitting the dispersion coefficients to measured data. This work is unique in that the exact microscale geometry is available; thus, no simplifying assumptions regarding the geometry are required to predict the effective dispersion coefficients directly from theory. Transport of both an inert tracer and non-chemotactic bacteria is investigated for an experimental system that was designed to promote transverse dispersion. We highlight the occurrence of transverse dispersion coefficients that (1) depart from power-law behavior at relatively low Pep values and (2) are greater than their longitudinal counterparts for a specific range of Pep values. The upscaling theory provides values for the transverse dispersion coefficient that are within the 98% confidence interval of the values obtained from inverse modeling. The mean absolute error between experimental and upscaled concentration profiles was very similar to that between the experiments and inverse modeling. In all cases the mean absolute error did not exceed 12%. Overall, this work suggests that volume averaging can potentially be used as an alternative to inverse modeling for dispersion in homogeneous porous media.  相似文献   

11.
We introduce a method for identifying the transverse dispersion coefficient in laboratory experiments based on the analytical solution of a pulse injection of a nonreactive solute in a soil column (cylindrical geometry) packed with a homogeneous porous medium. This method takes into account the effect of boundary conditions such as no flux on the column perimeter, and it does not need a priori knowledge of the longitudinal dispersion coefficient. Numerical applications of the method show that it is stable and robust and that the results are reasonably in accordance with those found using the classical maximum likelihood method.  相似文献   

12.
To study contaminant transport in groundwater, an essential requirement is robust and accurate estimation of the transport parameters such as dispersion coefficient. The commonly used inverse error function method (IEFM) may cause unacceptable errors in dispersion coefficient estimation using the breakthrough curves (BTCs) data. We prove that the random error in the measured concentrations, which might be described by a normal distribution, would no longer follow the normal distribution after the IEFM transformation. In this study, we proposed a new method using the weighted least squares method (WLSM) to estimate the dispersion coefficient and velocity of groundwater. The weights were calculated based on the slope of the observed BTCs. We tested the new method against other methods such as genetic algorithm and CXTFIT program and found great agreement. This new method acknowledged different characteristics of solute transport at early, intermediate, and late time stages and divided BTCs into three sections for analysis. The developed method was applied to interpret three column tracer experiments by introducing continuous, constant‐concentration of sodium chloride (NaCl) into columns filled with sand, gravel, and sand‐gravel media. This study showed that IEFM performed well only when the observed data points were located in the linear (intermediate time) section of BTCs; it performed poorly when data points were in the early and late time stages. The new WLSM method, however, performed well for data points scattering over the entire BTCs and appeared promising in parameter estimation for solute transport in a column.  相似文献   

13.
Models that simulate loadings of pollutants from agricultural landscapes to surface waters often operate at time scales that are relatively coarse (e.g. daily) compared with how fast water moves in streams, suggesting a commensurate physical scale that is substantially larger than typical agricultural fields. In general, as pollutants enter water and move downstream, longitudinal dispersive effects and travel time de‐synchronization tend to cause flattening and broadening of concentration peaks—an effect with implications for potential impacts on ecological and human health, and for which adequate representation is thus important for risk assessment. In‐stream transport is often approximated in practice using numerical implementation of the one‐dimensional advection–dispersion equation (ADE), with streams discretized into linked homogeneous segments. However, when a daily time step is employed, limitations inherent in the finite difference methodology may constrain simulated dispersion in lotic waters to unrepresentative or unrealistic magnitudes. In this paper, a convolution‐based approach to surface water transport is suggested as an alternative to the ADE, for use in combination with daily input loading models. This approach offers the advantage of greater flexibility in representing longitudinal mixing by using impulse response functions (IRF) to represent inter‐segment transport. Networks of stream segments are represented using nested convolutions, implemented using forward and inverse discrete Fourier transform to simplify calculations. Enhanced representational flexibility arises from the freedom afforded the modeller in selecting each segment's IRF, which may be chosen to represent dispersive regimes ranging from pure advection (plug flow) to compete mixing, and beyond to the sort of long‐tailed mixing characterized by fractal inverse frequency power‐law scaling. The approach is explored in proof‐of‐concept exercises that make use of atrazine monitoring data sets collected over common time periods from upstream and downstream locations within the same watersheds. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

14.
Ammonium transport was simulated in horizontal soil columns from an inland alkaline wetland (Fulaowenpao wetland) of Northeast China. The primary objectives of this work are to investigate the changes in ammonium transport rate with increasing distances along horizontal soil column and to determine the effects of water diffusion rate and volumetric water content on ammonium transport rate. Our results showed that water diffusion coefficient was the lowest at the soil layer of 10–20 cm, followed by the 0–10 cm soil layer, and the highest value occured at the soil layer of 20–60 cm. The highest ammonium transport rate also appeared at the soil layer of 20–60 cm, while the lowest value was observed at the soil layer of 10–20 cm. Ammonium transport rates decreased with increasing distances along horizontal soil columns. The ammonium transport rates showed higher values at the distance from 0 to 6 cm and then decreased rapidly from 6 to 18 cm. However, they nearly kept constant and approached to zero after exceeding the distance of 18 cm. Ammonium transport rates increased exponentially with increasing volumetric water contents and water diffusion rates. The alkaline wetland soils prevented ammonium from horizontal diffusion at all soil layers under drying conditions.  相似文献   

15.
This study deals with a method to solve the transport equations for a kinetically adsorbing solute in a porous medium with spatially varying velocity field and dispersion coefficients. Making use of the stochastic nature of a first-order kinetic process, we show that the advection-dispersion equation and the adsorption isotherm can be decoupled. Once the solution for a non-adsorbing solute is known, the method provides an exact solution for the kinetically adsorbing solute. The method is worked out in four examples. In particular we demonstrate how the method can be applied simultaneously with a numerical transport code: the advective-dispersive transport is computed numerically, whereas kinetic effects are incorporated analytically. The proposed approach may be useful in field scale applications with complex flow patterns.  相似文献   

16.
It has long been known that colloids can facilitate the transport of contaminants in groundwater systems by reducing the effective retardation factor. A significant effort has been devoted to study colloid-facilitated contaminant transport during the past decade. Many of the previous studies were restricted to one-dimensional analyses and comparisons with finite-column experiments. In this work, a two-dimensional numerical model is developed and used to study the different interactions between colloids, contaminants, and porous media under homogeneous conditions. The numerical formulation of the model is based on discretizing mass balance equations and reaction equations using finite differences having a third-order, total variance-diminishing scheme for the advection terms. This scheme significantly reduces numerical dispersion and leads to greater accuracy compared to the standard central-differencing scheme. The model is tested against analytical solutions under simplified conditions as well as against experimental data, and the results are favorable. The model is used to investigate the impact of the various reaction rates and parameter values on the movement of contaminant plumes in two dimensions. The model is also used to investigate the hypothesis that colloids may increase the effective retardation factor of contaminant plumes. The analysis shows that assuming kinetic mass exchange between contaminant and colloids with constant reaction rate coefficients that are not related to the concentrations may lead to inaccurate results. These inaccurate results are exemplified in the finding that under the kinetic assumption the ratio of the initial concentration of colloids to the initial concentration of contaminant does not affect the amount of facilitation or retardation that occurs in the system. It is also found that colloids can increase the effective retardation factor for the contaminant under certain combinations of reaction rates and distribution coefficients. A quantitative empirical expression to identify whether colloids retard or facilitate the contaminant movement is presented.  相似文献   

17.
We present an analytical expression for the shear dispersion during solute transport in a coupled fracture–matrix system. The dispersion coefficient is obtained in a fracture with porous walls by taking into account an accurate boundary condition at the interface between the matrix and fracture, and the results were compared with those in a non-coupled system. The analysis presented identifies three regimes: diffusion-dominated, transition, and advection-dominated. The results showed that it is important to consider the exchange of solute between the fracture and matrix in development of the shear dispersion coefficient for the transition and advection-dominated regimes. The new dispersion coefficient is obtained by imposing the continuity of concentrations and mass fluxes along the porous walls. The resulting equivalent transport equation revealed that the effective velocity in a fracture increases while the dispersion coefficient decreases due to mass transfer between the matrix and fracture. A larger effective advection term leads to greater storage of mass in the matrix as compared with the classical double-porosity model with a non-coupled dispersion coefficient. The findings of this study can be used for modeling of tracer tests as well as fate, transport, and remediation of groundwater contaminants in fractured rocks.  相似文献   

18.
Time nonlocal transport models such as the time fractional advection‐dispersion equation (t‐fADE) were proposed to capture well‐documented non‐Fickian dynamics for conservative solutes transport in heterogeneous media, with the underlying assumption that the time nonlocality (which means that the current concentration change is affected by previous concentration load) embedded in the physical models can release the effective dispersion coefficient from scale dependency. This assumption, however, has never been systematically examined using real data. This study fills this historical knowledge gap by capturing non‐Fickian transport (likely due to solute retention) documented in the literature (Huang et al. 1995) and observed in our laboratory from small to intermediate spatial scale using the promising, tempered t‐fADE model. Fitting exercises show that the effective dispersion coefficient in the t‐fADE, although differing subtly from the dispersion coefficient in the standard advection‐dispersion equation, increases nonlinearly with the travel distance (varying from 0.5 to 12 m) for both heterogeneous and macroscopically homogeneous sand columns. Further analysis reveals that, while solute retention in relatively immobile zones can be efficiently captured by the time nonlocal parameters in the t‐fADE, the motion‐independent solute movement in the mobile zone is affected by the spatial evolution of local velocities in the host medium, resulting in a scale‐dependent dispersion coefficient. The same result may be found for the other standard time nonlocal transport models that separate solute retention and jumps (i.e., displacement). Therefore, the t‐fADE with a constant dispersion coefficient cannot capture scale‐dependent dispersion in saturated porous media, challenging the application for stochastic hydrogeology methods in quantifying real‐world, preasymptotic transport. Hence improvements on time nonlocal models using, for example, the novel subordination approach are necessary to incorporate the spatial evolution of local velocities without adding cumbersome parameters.  相似文献   

19.
The loss of P in overland flow from most cultivated soils is controlled by erosion, and in‐turn soil moisture. We evaluated the effect of soil moisture on erosion and P transport in overland flow by applying rainfall (7 cm h?1) to packed soil boxes (1 m long and 0·15 m wide) and field plots (1 and 10 m long by 1 m wide) of silt loams in a central Pennsylvania (USA) catchment. Flow from packed soil boxes took longer to initiate as antecedent soil moisture decreased from field capacity (2 min) to air dried (8 to 9 min). Even in the more complex field plots (i.e. soil heterogeneity and topography), the wetter site (1 by 10 m plot; 70% field capacity) produced flow more quickly (3 min) and in greater volume (439 L) than the drier site (1 by 10 m plot; 40% field capacity, 15 min, and 214 L, respectively). However, less suspended sediment was transported from wetter soil boxes (1·6 to 2·5 g L?1) and field plots (0·9 g L?1) than drier boxes (2·9 to 4·2 g L?1) and plots (1·2 g L?1). Differences are attributed to their potential for soil aggregate breakdown, slaking and dispersion, which contribute to surface soil sealing and crusting, as dry soils are subject to rapid wetting (by rainfall). During flow, selective erosion and antecedent moisture conditions affected P transport. At field capacity, DRP and PP transport varied little during overland flow. Whereas P transport from previously dry soil decreased rapidly after the initiation of flow (6 to 1·5 mg TP L?1), owing to the greater slaking and dispersion of P‐rich particles into flow at the beginning than end of the flow event. These results indicate that soil moisture fluctuations greatly effect erosion and P transport potential and that management to decrease the potential for loss should consider practices such as conservation tillage and cover crops, particularly on areas where high soil P and erosion coincide. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
A macroscopic transport model is developed, following the Taylor shear dispersion analysis procedure, for a 2D laminar shear flow between parallel plates possessing a constant specified concentration. This idealized geometry models flow with contaminant dissolution at pore-scale in a contaminant source zone and flow in a rock fracture with dissolving walls. We upscale a macroscopic transient transport model with effective transport coefficients of mean velocity, macroscopic dispersion, and first-order mass transfer rate. To validate the macroscopic model the mean concentration, covariance, and wall concentration gradient are compared to the results of numerical simulations of the advection–diffusion equation and the Graetz solution. Results indicate that in the presence of local-scale variations and constant concentration boundaries, the upscaled mean velocity and macrodispersion coefficient differ from those of the Taylor–Aris dispersion, and the mass transfer flux described by the first-order mass transfer model is larger than the diffusive mass flux from the constant wall. In addition, the upscaled first-order mass transfer coefficient in the macroscopic model depends only on the plate gap and diffusion coefficient. Therefore, the upscaled first-order mass transfer coefficient is independent of the mean velocity and travel distance, leading to a constant pore-scale Sherwood number of 12. By contrast, the effective Sherwood number determined by the diffusive mass flux is a function of the Peclet number for small Peclet number, and approaches a constant of 10.3 for large Peclet number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号