首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Magmatic systems of large continental igneous provinces   总被引:1,自引:1,他引:0  
Large igneous provinces (LIPs) formed by mantle superplume events have irreversibly changed their composition in the geological evolution of the Earth from high-Mg melts (during Archean and early Paleoproterozoic) to Phanerozoic-type geochemically enriched Fe-Ti basalts and picrites at 2.3 Ga. We propose that this upheaval could be related to the change in the source and nature of the mantle superplumes of different generations. The first generation plumes were derived from the depleted mantle, whereas the second generation (thermochemical) originated from the core-mantle boundary (CMB). This study mainly focuses on the second (Phanerozoic) type of LIPs, as exemplified by the mid-Paleoproterozoic Jatulian–Ludicovian LIP in the Fennoscandian Shield, the Permian–Triassic Siberian LIP, and the late Cenozoic flood basalts of Syria. The latter LIP contains mantle xenoliths represented by green and black series. These xenoliths are fragments of cooled upper margins of the mantle plume heads, above zones of adiabatic melting, and provide information about composition of the plume material and processes in the plume head. Based on the previous studies on the composition of the mantle xenoliths in within-plate basalts around the world, it is inferred that the heads of the mantle (thermochemical) plumes are made up of moderately depleted spinel peridotites (mainly lherzolites) and geochemically-enriched intergranular fluid/melt. Further, it is presumed that the plume heads intrude the mafic lower crust and reach up to the bottom of the upper crust at depths ~20 km. The generation of two major types of mantle-derived magmas (alkali and tholeiitic basalts) was previously attributed to the processes related to different PT-parameters in the adiabatic melting zone whereas this study relates to the fluid regime in the plume heads. It is also suggested that a newly-formed melt can occur on different sides of a critical plane of silica undersaturation and can acquire either alkalic or tholeiitic composition depending on the concentration and composition of the fluids. The presence of melt-pockets in the peridotite matrix indicates fluid migration to the rocks of cooled upper margin of the plume head from the lower portion. This process causes secondary melting in this zone and the generation of melts of the black series and differentiated trachytic magmas.  相似文献   

2.
Ultramafic xenoliths were found in recent alkali basalts from São Tomé Island. These include spinel peridotites (lherzolites, harzburgites and dunites) and pyroxenites (orthopyroxenites and clinopyroxenites). Textures and mineral compositions indicate that pyroxenites originated from crystal/liquid separation processes operating on magmas similar to those giving rise to their present host rocks whereas spinel peridotite xenoliths had an accidental origin; Fo (>89) and Ni (>0.36 wt.%) contents in olivines, Mg# (91–95) of orthopyroxenes and low Ti in clinopyroxene (primary crystals: TiO2<0.06 wt.%) and in spinel (TiO2<0.1 wt.%) are within the range reported for abyssal peridotites, indicating São Tomé spinel peridotites represent refractory residues of melting. Nevertheless, the lack of correlation between mineral chemistry and modal composition suggests that spinel peridotite xenoliths are not simple residues and were affected by infiltration of fluid/melts within the mantle. The wide temperature range obtained for spinel peridotites (700 to >1150 °C) is compatible with a long period of pre-entrainment cooling supporting Fitton's [Tectonophysics 94 (1983) 473] hypothesis that proposes oceanic lithosphere uprising in the Cameroon Volcanic Line prior to the initiation of the current thermal regime, related to São Tomé magmatism. The association of upper mantle (peridotite) xenoliths with igneous cumulates (pyroxenites) suggests that the spinel peridotite suite originated in the uppermost mantle above the São Tomé magma storage zone(s), probably in a region of high strain rate, near the boundary between the mantle and the overlying oceanic crust.  相似文献   

3.
Compositionally, high-Nb basalts are similar to HIMU (high U/Pb) ocean island basalts, continental alkaline basalts and alkaline lavas formed above slab windows. Tertiary alkaline basaltic lavas from eastern Jamaica, West Indies, known as the Halberstadt Volcanic Formation have compositions similar to high-Nb basalts (Nb > 20 ppm). The Halberstadt high-Nb basalts are divided into two compositional sub-groups where Group 1 lavas have more enriched incompatible element concentrations relative to Group 2. Both groups are derived from isotopically different spinel peridotite mantle source regions, which both require garnet and amphibole as metasomatic residual phases. The Halberstadt geochemistry demonstrates that the lavas cannot be derived by partial melting of lower crustal ultramafic complexes, metasomatised mantle lithosphere, subducting slabs, continental crust, mantle plume source regions or an upper mantle source region composed of enriched and depleted components. Instead, their composition, particularly the negative Ce anomalies, the high Th/Nb ratios and the similar isotopic ratios to nearby adakite lavas, suggests that the Halberstadt magmas are derived from a compositionally variable spinel peridotite source region(s) metasomatised by slab melts that precipitated garnet, amphibole, apatite and zircon. It is suggested that high-Nb basalts may be classified as a distinct rock type with Nb > 20 ppm, intraplate alkaline basalt compositions, but that are generated in subduction zones by magmatic processes distinct from those that generate other intraplate lavas.  相似文献   

4.
We present new regional petrologic, geochemical, Sr–Nd isotopic, and U–Pb geochronological data on the Turonian–Campanian mafic igneous rocks of Central Hispaniola that provide important clues on the development of the Caribbean island-arc. Central Hispaniola is made up of three main tectonic blocks—Jicomé, Jarabacoa and Bonao—that include four broad geochemical groups of Late Cretaceous mafic igneous rocks: group I, tholeiitic to calc-alkaline basalts and andesites; group II, low-Ti high-Mg andesites and basalts; group III, tholeiitic basalts and gabbros/dolerites; and group IV, tholeiitic to transitional and alkalic basalts. These igneous rocks show significant differences in time and space, from arc-like to non-arc-like characteristics, suggesting that they were derived from different mantle sources. We interpret these groups as the record of Caribbean arc-rifting and back-arc basin development in the Late Cretaceous. The> 90 Ma group I volcanic rocks and associated cumulate complexes preserved in the Jicomé and Jarabacoa blocks represent the Albian to Cenomanian Caribbean island-arc material. The arc rift stage magmatism in these blocks took place during the deposition of the Restauración Formation from the Turonian–Coniacian transition (~ 90 Ma) to Santonian/Lower Campanian, particularly in its lower part with extrusion at 90–88 Ma of group II low-Ti, high-Mg andesites/basalts. During this time or slightly afterwards adakitic rhyolites erupted in the Jarabacoa block. Group III tholeiitic lavas represent the initiation of Coniacian–Lower Campanian back-arc spreading. In the Bonao block, this stage is represented by back-arc basin-like basalts, gabbros and dolerite/diorite dykes intruded into the Loma Caribe peridotite, as well as the Peralvillo Sur Formation basalts, capped by tuffs, shales and Campanian cherts. This dismembered ophiolitic stratigraphy indicates that the Bonao block is a fragment of an ensimatic back-arc basin. In the Jicomé and Jarabacoa blocks, the mainly Campanian group IV basalts of the Peña Blanca, Siete Cabezas and Pelona–Pico Duarte Formation, represent the subsequent stage of back-arc spreading and off-axis non-arc-like magmatism, caused by migration of the arc toward the northeast. These basalts have geochemical affinities with the mantle domain influenced by the Caribbean plume, suggesting that mantle was flowing toward the NE, beneath the extended Caribbean island-arc, in response to rollback of the subducting proto-Caribbean slab.  相似文献   

5.
The island of Curaçao in the southern Caribbean Sea is composed mainly of a thick sequence (>5?km) of pillow lavas, grading upwards from picrites at the base of the exposed section, to basalts nearer the top. Modelling suggests that picrites are related to the basalts by fractional crystallisation. Initial radiogenic isotope ratios of the picrites have a restricted compositional range: ?Nd=+6.1 to +6.6, 87Sr/86Sr=0.70296–0.70319; whereas the basalts display a wider range of compositions: ?Nd=+6.6 to +7.6, 87Sr/86Sr=0.70321–0.70671. This variation in isotope ratios between basalts and picrites may be due to the assimilation of altered oceanic crust (or possibly partial melts of such crust) by a picritic magma along with fractional crystallisation. The relatively narrow range of Nd and Pb isotopic compositions in the Curaçao lavas suggests either that the source region was homogeneous, or that melts from a heterogeneous mantle source were well mixed before eruption. Chondritic to slightly light rare earth element enriched patterns, combined with long-term light rare earth element depletion (positive ?Nd), suggest that the lavas were formed by polybaric melting of spinel lherzolite, with small a contribution from garnet lherzolite melts. High-MgO lavas, the absence of a subduction related chemistry, and the chemical similarity to other oceanic plateaux, suggest a mantle plume origin for the Curaçao lava succession. The Curaçao volcanic sequence is part of an oceanic plateau formed at about 88–90?Ma, fragments of which are dispersed around the Caribbean as well as being obducted onto the western margin of Colombia and Ecuador. The occurrence of high-Mg lavas throughout this Cretaceous Caribbean–Colombian igneous province requires anomalously hot mantle (>200°?C hotter than ambient upper mantle) over a large part of a putative plume head, which is inconsistent with some mantle plume models.  相似文献   

6.
Understanding the geochemical behavior of chalcophile elements in magmatic processes is hindered by the limited partition coefficients between sulfide phases and silicate melt, in particular at conditions relevant to partial melting of the hydrated, metasomatized upper mantle. In this study, the partitioning of elements Co, Ni, Cu, Zn, As, Mo, Ag, and Pb between sulfide liquid, monosulfide solid solution (MSS), and hydrous mantle melt has been investigated at 1200 °C/1.5 GPa and oxygen fugacity ranging from FMQ−2 to FMQ+1 in a piston-cylinder apparatus. The determined partition coefficients between sulfide liquid and hydrous mantle melt are: 750–1500 for Cu; 600–1200 for Ni; 35–42 for Co; 35–53 for Pb; and 1–2 for Zn, As, and Mo. The partition coefficients between MSS and hydrous mantle melt are: 380–500 for Cu; 520–750 for Ni; ∼50 for Co; <0.5 for Zn; 0.3–6 for Pb; 0.1–2 for As; 1–2 for Mo; and >34 for Ag. The variation of the data is primarily due to differences in oxygen fugacity. These partitioning data in conjunction with previous data are applied to partial melting of the upper mantle and the formation of magmatic-hydrothermal Cu–Au deposits and magmatic sulfide deposits.I show that the metasomatized arc mantle may no longer contain sulfide after >10–14% melt extraction but is still capable of producing the Cu concentrations in the primitive arc basalts, and that the comparable Cu concentrations in primitive arc basalts and in MORB do not necessarily imply similar oxidation states in their source regions.Previous models proposed for producing Cu- and/or Au-rich magmas have been reassessed, with the conclusions summarized as follows. (1) Partial melting of the oxidized (fO2 > FMQ), metasomatized arc mantle with sulfide exhaustion at degrees >10–14% may not generate Cu-rich, primitive arc basalts. (2) Partial melting of sulfide-bearing cumulates in the root of thickened lower continental crust or lithospheric mantle does not typically generate Cu- and/or Au-rich magmas, but they do have equivalent potential as normal arc magmas in forming magmatic-hydrothermal Cu–Au deposits in terms of their Cu–Au contents. (3) It is not clear whether partial melting of subducting metabasalts generates Cu-rich adakitic magmas, however adakitic magmas may extract Cu and Au via interaction with mantle peridotite. Furthermore, partial melting of sulfide-bearing cumulates in the deep oceanic crust may be able to generate Cu- and Au-rich magmas. (4) The stabilization of MSS during partial melting may explain the genetic link between Au-Cu mineralization and the metasomatized lithospheric mantle.The chalcophile element tonnage, ratio, and distribution in magmatic sulfide deposits depend on a series of factors. This study reveals that oxygen fugacity also plays an important role in controlling Cu and Ni tonnage and Cu/Ni ratio in magmatic sulfide deposits. Cobalt, Zn, As, Sn, Sb, Mo, Ag, Pb, and Bi concentrations and their ratios in sulfide, due to their different partitioning behavior between sulfide liquid and MSS, can be useful indices for the distribution of platinum-group elements and Au in magmatic sulfide deposits.  相似文献   

7.
Early–Middle Jurassic igneous rocks (190–170 Ma) are distributed in an E–W-trending band within the Nanling Tectonic Belt, and have a wide range of compositions but are only present in limited volumes. This scenario contrasts with the uniform but voluminous Middle–Late Jurassic igneous rocks (165–150 Ma) in this area. The Early–Middle Jurassic rocks include oceanic-island basalt (OIB)-type alkali basalts, tholeiitic basalts and gabbros, bimodal volcanic rocks, syenites, A-type granites, and high-K calc–alkaline granodiorites. Geochemical and isotopic data indicate that alkaline and tholeiitic basalts and syenites were derived from melting of the asthenospheric mantle, with asthenosphere-derived magmas mixing with variable amounts of magmas derived from melting of metasomatized lithospheric mantle. In comparison, A-type granites in the study area were probably generated by shallow dehydration-related melting of hornblende-bearing continental crustal rocks that were heated by contemporaneous intrusion of mantle-derived basaltic magmas, and high-K calc-alkaline granodiorites resulted from the interaction between melts from upwelling asthenospheric mantle and the lower crust. The Early–Middle Jurassic magmatic event is spatially variable in terms of lithology, geochemistry, and isotopic systematics. This indicates that the deep mantle sources of the magmas that formed these igneous rocks were significantly heterogeneous, and magmatism had a gradual decrease in the involvement of the asthenospheric mantle from west to east. These variations in composition and sourcing of magmas, in addition to the spatial distribution and the thermal structure of the crust–mantle boundary during this magmatic event, indicates that these igneous rocks formed during a period of rifting after the Indosinian Orogeny rather than during subduction of the paleo-Pacific oceanic crust.  相似文献   

8.
The Neoarchaean Jonnagiri greenstone terrane (JGT) is located at the centre of the arcuate Hutti–Jonnagiri–Kadiri–Kolar composite greenstone belt in the eastern Dharwar Craton. High MgO (MgO = ~14 wt.%; Nb = 0.2 ppm), low Nb (LNB) (MgO = 7.8–12 wt.%; Nb = 0.1–5.1 ppm) and high Nb basalts (HNB) (MgO = 5.6–10.1 wt.%; Nb = 9.0–10.6 ppm) metamorphosed to lower amphibolite facies are identified based on their geochemical compositions. These metabasalts exhibit depleted HFSE (Nb–Ta, Zr–Hf), pronounced LREE and LILE enrichments suggesting contribution from subduction‐related components during their genesis. Th and U enrichment over Nb–Ta indicates influx of fluids dehydrated from subducted oceanic lithosphere. The high MgO basalts with higher Mg# (51) than that of the associated LNB and HNB (Mg# = 34–47) represent early fractionated melts of subduction‐modified mantle peridotite. The LNB were produced by partial melting of mantle wedge metasomatized by slab‐dehydrated fluids, whereas the HNB represents melts of subducted oceanic crust and hybridized mantle wedge. Lower Dy/Yb and variable La/Yb ratios suggest their generation at shallower depth within spinel peridotite stability field. The low Ce–Yb trend of these metabasalts reflects intraoceanic type subduction which straddles the fields of arc and back‐arc basin basalts, resembling the Mariana‐type arc basalts. The Jonnagiri metabasalts were derived in a paired arc‐back‐arc setting marked by nascent back‐arc rift system that developed in the proximity of an intraoceanic arc. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
I. Kushiro 《Tectonophysics》1973,17(3):211-222
Partial melting experiments on spinel-lherzolite, a rock which probably occurs in relatively shallow parts of the oceanic upper mantle, demonstrate that alkali basaltic melt is formed at depths of at least 20 kbar whereas tholeiitic melt is formed at lower pressures (< 15 kbar) under anhydrous conditions. The specimen studied was a relatively iron-rich natural spinel-lherzolite (Fe/Mg+Fe=0.15) and the melts produced have ratios comparable to those obtained in basalts. Slight increase of degree of partial melting produces picritic melt over a wide pressure range. Under hydrous (water-excess) conditions, andesitic melt is produced by partial melting of the same natural spinel-lherzolite and a synthetic lherzolite. The melting experiments on two different abyssal tholeiites from the Mid-Atlantic Ridge suggest that the derivation of olivine tholeiite from a more mafic magma or a mantle peridotite (lherzolite) is possible, but is limited to depths shallower than 25 km under essentially anhydrous conditions, whereas plagioclase tholeiite may have been formed by fractional crystallization at depths of about 20 km in the presence of a small amount (~ 2 wt.%) of water.It is suggested that under mid-ocean ridges, partial melting of spinel-lherzolite at depths shallower than 60 km would produce olivine-tholeiitic magma, which differentiates at shallower levels (20–25 km) under either essentially anhydrous or hydrous (but vapor-absent) conditions to produce abyssal tholeiites of olivine-tholeiite type or plagioclase-tholeiite type. It may be also possible that the former olivine-tholeiite is generated by direct partial melting of plagioclase-lherzolite. Alkali basalts in the oceanic region may be generated at depths greater than 50 km by relatively small degree of partial melting. Along island arcs and continental margins, where the subduction zones probably exist, partial melting of lherzolite would take place in the presence of water that may be supplied by breakdown of hydrous minerals in the subducted oceanic crust, thereby producing andesitic magmas. High-alumina basalt magma could be produced by partial melting of the dehydrated oceanic crust in the subduction zone at depths between 40 and 60 km, where garnet is unstable above the solidus.  相似文献   

10.
徐峥  郑永飞 《地球科学》2019,44(12):4135-4143
大陆玄武岩通常具有与洋岛玄武岩相似的地球化学成分,其中含有显著的壳源组分.对于洋岛玄武岩来说,虽然其中的壳源组分归咎于深俯冲大洋板片的再循环,但是对板片俯冲过程中的壳幔相互作用缺乏研究.对于大陆玄武岩来说,由于其形成与特定大洋板片在大陆边缘之下的俯冲有关,可以用来确定古大洋板片俯冲的地壳物质再循环.本文总结了我们对中国东部新生代玄武岩所进行的一系列地球化学研究,结果记录了古太平洋板片俯冲析出流体对地幔楔的化学交代作用.这些大陆玄武岩普遍具有与洋岛玄武岩类似的地球化学成分,在微量元素组成上表现为富集LILE和LREE、亏损HREE,但是不亏损HFSE的分布特点,在放射成因同位素组成上表现为亏损至弱富集的Sr-Nd同位素组成.在排除地壳混染效应之后,这些玄武岩的地球化学特征可以由其地幔源区中壳源组分的性质来解释.俯冲大洋地壳部分熔融产生的熔体提供了地幔源区中的壳源组分,其中包括洋壳镁铁质火成岩、海底沉积物和大陆下地壳三种组分.华北和华南新生代大陆玄武岩在Pb同位素组成上存在显著差异,反映它们地幔源区中的壳源组分有所区别.中国东部新生代玄武岩的地幔源区是古太平洋板片于中生代俯冲至亚欧大陆东部之下时,在>200 km的俯冲带深度发生壳幔相互作用的产物.在新生代期间,随着俯冲太平洋板片的回卷引起的中国东部大陆岩石圈拉张和软流圈地幔上涌,那些交代成因的地幔源区发生部分熔融,形成了现今所见的新生代玄武岩.   相似文献   

11.
New major and trace element data for the Permo–Triassic basalts from the West Siberian Basin (WSB) indicate that they are strikingly similar to the Nadezhdinsky suite of the Siberian Trap basalts. The WSB basalts exhibit low Ti/Zr (50) and low high-field-strength element abundances combined with other elemental characteristics (e.g., low Mg#, and negative Nb and Ti anomalies on mantle-normalised plots) typical of fractionated, crustally contaminated continental flood basalts (CFBs). The major and trace element data are consistent with a process of fractional crystallisation coupled with assimilation of incompatible-element-enriched lower crust. Relatively low rates of assimilation to fractional crystallisation (0.2) are required to generate the elemental distribution observed in the WSB basalts. The magmas parental to the basalts may have been derived from source regions similar to primitive mantle (OIB source) or to the Ontong Java Plateau source. Trace element modelling suggests that the majority of the analysed WSB basalts were derived by large degrees of partial melting at pressures less than 3 GPa, and therefore within the garnet-spinel transition zone or the spinel stability field.

It seems unlikely that large-scale melting in the WSB was induced through lithospheric extension alone, and additional heating, probably from a mantle plume, would have been required. We argue that the WSB basalts are chemically and therefore genetically related to the Siberian Traps basalts, especially the Nadezhdinsky suite found at Noril'sk. This suite immediately preceded the main pulse of volcanism that extruded lava over large areas of the Siberian Craton. Magma volume and timing constraints strongly suggest that a mantle plume was involved in the formation of the Earth's largest continental flood basalt province.  相似文献   


12.
《Comptes Rendus Geoscience》2018,350(3):100-109
We investigated mafic and felsic volcanic rocks from the Bamoun plateau, a magmatic province located north of Mount Cameroon, in the continental part of the Cameroon Volcanic Line (CVL). Basalts and dacites were probably emplaced more than 40 Ma ago, while basanites represent very young volcanic eruptions. Among the basalts, some of them have suffered crustal contamination during their uprise through the continental crust, and their primary trace element and isotopic compositions have been slightly modified. The formation of the dacites was also accompanied by some crustal contamination. Non-contaminated rocks show that the oldest magmas are transitional basalts formed by relatively high degrees of partial melting of a moderately enriched mantle source, probably containing pyroxenites. Recent basanites were produced by very low partial melting degrees of an enriched mantle source with HIMU composition, but different from the source of the nearby Mount Cameroon lavas. The mantle beneath the CVL is thus very heterogeneous, and the tendency towards more alkaline mafic-ultramafic compositions in the youngest volcanic manifestations along the CVL seems to be a general feature of all CVL.  相似文献   

13.
Ophiolitic sequences obducted onto continental margins allow field based observations coupled with petrochemical interrogations of upper mantle lithologies thereby aiding evaluation of compositional heterogeneity of oceanic mantle, depletion-enrichment events and geodynamic conditions governing oceanic lithosphere formation. The Naga Hills Ophiolite (NHO) suite preserves a segment of the Neotethyan oceanic lithosphere encompassing a package of mantle and crustal lithologies. This paper for the first time reports the occurrence of melt flow channels traversing the mantle section near Molen of the NHO and presents a comprehensive study involving chromite-spinel chemistry, bulk rock major, trace and PGE geochemistry to understand the petrogenesis and evolution in a geodynamic transition from mid oceanic ridge (MOR) to suprasubduction zone (SSZ). The spinel chemistry of peridotitic melt channels depicts both MOR-type and SSZ signatures underlining a transitional tectonic frame. Chromite chemistry and high Al2O3/TiO2 ranging from 15.98–35.70 in concurrence with low CaO/Al2O3 ranging from 0.03–0.53; and chondrite normalised LREE > MREE < HREE patterns confirm the influx of boninitic melts into the refractory mantle. The boninitic signature shared by melt channels and host rock invokes a geochemical and geodynamic transition from anhydrous melting of depleted mantle to hydrated fluid flux melting resulting in boninitic melts, that subsequently impregnate and refertilise the fore arc mantle wedge in a SSZ regime at the nascent stage of subduction. The high Ba/Nb, Ba/Th, and Ba/La for the studied peridotites highlight the influx of subduction derived fluids in the supra subduction mantle. Further higher Zr/Hf and Nd/Hf with respect to primitive mantle values in concurrence with lower Nb/Ta suggest progressive refertilisation due to fluid- and melt-driven metasomatism of the refractory fore arc mantle wedge. The chondrite normalised PGE patterns suggest positive Ir and Ru anomalies stipulating the source to be refractory while enriched Pt and Pd underpins the mobilisation of these elements by subduction derived fluids and melts. The elevated abundances of PPGEs than IPGEs as cited by PPGE/IPGE > 1; and Pd/Pt avg. 0.85 for melt channels and 0.84 for host peridotites indicate fluid-fluxed metasomatism of fore arc mantle wedge with a S-undersaturated trend coupled with boninitic affinity. The mineral, trace, REE and PGE chemistry collectively emphasizes that the mantle peridotites of the NHO formed in a transitional geodynamic tectonic setting caused by fore arc extension during subduction initiation followed by rejuvenation by subduction derived fluids and boninitic melts, which typically are of the SSZ tectonic regime. The harzburgitic melt channels and host rock are refractory in nature, reflecting multiple episodes of melt extraction of about 5–15% and ~10–20% respectively from a spinel peridotite mantle source. The occurrences of these melt channels indicate segregation and percolation of melt through porous and channelized network in upper mantle peridotites.  相似文献   

14.
Remnants of a fossil continent–ocean transition similar to that of the modern non-volcanic continental margins are preserved in the Jurassic External Liguride units. They consist of fertile lherzolites of subcontinental origin, MOR-type basalts and rare gabbroic intrusives, together with continental crust bodies exhumed during the rifting phases preceding the oceanization. The gabbroic rocks include troctolites, (olivine) gabbros, Fe–Ti oxide-bearing gabbros and diorites. Trace element and Nd isotope compositions indicate that these rocks were derived from N-MORB melts variably evolved through fractional crystallisation. In the gabbroic rocks, high-temperature ( 900 °C) shearing along ductile shear zones is locally overprinted by amphibolite-facies recrystallization (T  650 °C), which was most likely assisted by seawater-derived fluids. Basalts crop out as lava flows and as dykes crosscutting mantle lherzolites and gabbroic rocks. They display nearly flat REE patterns and high Y/Nb values (5–14), similar to modern N-MORB. Basalts are also characterised by weak Zr enrichment relative to neighbouring REE (Zr/Zr = 1.1–1.7) and high (Sm/Yb)DM ratios (1.5–1.8). Their Nd isotope compositions are close to typical depleted mantle (initial Nd = +7.6 to + 9.4). The geochemical features of parental melts of basaltic and gabbroic rocks may be attributed to melting of a MORB-type asthenospheric source. Trace element modelling shows that low-degree (≤ 6%) fractional melting of a depleted spinel peridotite cannot account for the elevated Sm/Yb ratios of basalts. Low-degree melting of a mixed source of spinel peridotite with small amounts of garnet pyroxenite has been proposed to explain the trace element signature of basalts.  相似文献   

15.
Jurassic age volcanic rocks of the Stonyford volcanic complex(SFVC) comprise three distinct petrological groups based ontheir whole-rock geochemistry: (1) oceanic tholeiites; (2) transitionalalkali basalts and glasses; (3) high-Al, low-Ti tholeiites.Major and trace element, and Sr–Nd–Pb isotopic dataindicate that the oceanic tholeiites formed as low-degree partialmelts of normal mid-ocean ridge basalt (N-MORB)-source asthenospheresimilar in isotope composition to the East Pacific Rise today;the alkalic lavas were derived from an enriched source similarto that of E-MORB. The high-Al, low-Ti lavas resemble second-stagemelts of a depleted MORB-source asthenosphere that formed bymelting spinel lherzolite at low pressures. Trace element systematicsof the high-Al, low-Ti basalts show the influence of an enrichedcomponent, which overprints generally depleted trace elementcharacteristics. Tectonic discrimination diagrams show thatthe oceanic tholeiite and alkali suites are similar to present-daybasalts generated at mid-oceanic ridges. The high-Al, low-Tisuite resembles primitive arc basalts with an enriched, alkalibasalt-like overprint. Isotopic data show the influence of recycledcomponents in all three suites. The SFVC was constructed ona substrate of normal Coast Range ophiolite in an extensionalforearc setting. The close juxtaposition of the MORB-like olivinetholeiites with alkali and high-Al, low-Ti basalts suggestsderivation from a hybrid mantle source region that includedMORB-source asthenosphere, enriched oceanic asthenosphere, andthe depleted supra-subduction zone mantle wedge. We proposethat the SFVC formed in response to collision of a mid-oceanridge spreading center with the Coast Range ophiolite subductionzone. Formation of a slab window beneath the forearc duringcollision allowed the influx of ridge-derived magmas or themantle source of these magmas. Continued melting of the previouslydepleted mantle wedge above the now defunct subduction zoneproduced strongly depleted high-Al, low-Ti basalts that werepartially fertilized with enriched, alkali basalt-type meltsand slab-derived fluids. KEY WORDS: CRO; oceanic basalts; California  相似文献   

16.
Tertiary volcanic rocks from the Westerwald region range frombasanites and alkali basalts to trachytes, whereas lavas fromthe margin of the Vogelsberg volcanic field consist of morealkaline basanites and alkali basalts. Heavy rare earth elementfractionation indicates that the primitive Westerwald magmasprobably represent melts of garnet peridotite. The Vogelsbergmelts formed in the spinel–garnet peridotite transitionregion with residual amphibole for some magmas suggesting meltingof relatively cold mantle. Assimilation of lower-crustal rocksand fractional crystallization altered the composition of lavasfrom the Westerwald and Vogelsberg region significantly. Thecontaminating lower crust beneath the Rhenish Massif has a differentisotopic composition from the lower continental crust beneaththe Hessian Depression and Vogelsberg, implying a compositionalboundary between the two crustal domains. The mantle sourceof the lavas from the Rhenish Massif has higher 206Pb/204Pband 87Sr/86Sr than the mantle source beneath the Vogelsbergand Hessian Depression. The 30–20 Ma volcanism of theWesterwald apparently had the same mantle source as the QuaternaryEifel lavas, suggesting that the magmas probably formed in apulsing mantle plume with a maximum excess temperature of 100°Cbeneath the Rhenish Massif. The relatively shallow melting ofamphibole-bearing peridotite beneath the Vogelsberg and HessianDepression may indicate an origin from a metasomatized portionof the thermal boundary layer. KEY WORDS: continental rift volcanism; basanites; trachytes; assimilation; fractional crystallization; partial melting  相似文献   

17.
The Shiribeshi Seamount off northwestern Hokkaido, the Sea of Japan, is a rear-arc volcano in the Northeast Japan arc. This seamount is composed of calc-alkaline and high-K basaltic to andesitic lavas containing magnesian olivine phenocrysts and mantle peridotite xenoliths. Petrographic and geochemical characteristics of the andesite lavas indicate evidence for the reaction with the mantle peridotite xenoliths and magma mixing between mafic and felsic magmas. Geochemical modelling shows that the felsic end-member was possibly derived from melting of an amphibolitic mafic crust. Chemical compositions of the olivine phenocrysts and their chromian spinel inclusions indicate that the Shiribeshi Seamount basalts in this study was derived from a primary magma in equilibrium with relatively fertile mantle peridotites, which possibly represents the mafic end-member of the magma mixing. Trace-element and REE data indicate that the basalts were produced by low degree of partial melting of garnet-bearing lherzolitic source. Preliminary results from the mantle peridotite xenoliths indicate that they were probably originated from the mantle beneath the Sea of Japan rather than beneath the Northeast Japan arc.  相似文献   

18.
Quaternary lavas from the NE Japan arc show geochemical evidenceof mixing between mantle-derived basalts and crustal melts atthe magmatic front, whereas significant crustal signals arenot detected in the rear-arc lavas. The along-arc chemical variationsin lavas from the magmatic front are attributable almost entirelyto geochemical variations in the crustal melts that were mixedwith a common mantle-derived basalt. The mantle-derived basaltshave slightly enriched Sr–Pb and depleted Nd isotopiccompositions relative to the rear-arc lavas, but the variationis less pronounced if crustal contributions are eliminated.Therefore, the source mantle compositions and slab-derived fluxesare relatively uniform, both across and along the arc. Despitethis, incompatible element concentrations are significantlyhigher in the rear-arc basalts. We examine an open-system, fluid-fluxedmelting model, assuming that depleted mid-ocean ridge basalt(MORB)-source mantle melted by the addition of fluids derivedfrom subducted oceanic crust (MORB) and sediment (SED) hybridsat mixing proportions of 7% and 3% SED in the frontal- and rear-arcsources, respectively. The results reproduce the chemical variationsfound across the NE Japan arc with the conditions: 0·2%fluid flux with degree of melting F = 3% at 2 GPa in the garnetperidotite field for the rear arc, and 0·7% fluid fluxwith F = 20% at 1 GPa in the spinel peridotite field beneaththe magmatic front. The chemical process operating in the mantlewedge requires: (1) various SED–MORB hybrid slab fluidsources; (2) variable amounts of fluid; (3) a common depletedmantle source; (4) different melting parameters to explain across-arcchemical variations. KEY WORDS: arc magma; crustal melt; depleted mantle; NE Japan; Quaternary; slab fluid  相似文献   

19.
《地学前缘(英文版)》2020,11(6):2083-2102
Chromitite bodies hosted in peridotites typical of suboceanic mantle (s.l. ophiolitic) are found in the northern and central part of the Loma Caribe peridotite, in the Cordillera Central of the Dominican Republic. These chromitites are massive pods of small size (less than a few meters across) and veins that intrude both dunite and harzburgite. Compositionally, they are high-Cr chromitites [Cr# ​= ​Cr/(Cr ​+ ​Al) atomic ratio ​= ​0.71–0.83] singularly enriched in TiO2 (up to 1.25 ​wt.%), Fe2O3 (2.77–9.16 ​wt.%) as well as some trace elements (Ga, V, Co, Mn, and Zn) and PGE (up to 4548 ​ppb in whole-rock). This geochemical signature is unknown for chromitites hosted in oceanic upper mantle but akin to those chromites crystallized from mantle plume derived melts. Noteworthy, the melt estimated to be in equilibrium with such chromite from the Loma Caribe chromitites is similar to basalts derived from different source regions of a heterogeneous Caribbean mantle plume. This mantle plume is responsible for the formation of the Caribbean Large Igneous Province (CLIP). Dolerite dykes with back-arc basin basalt (BABB) and enriched mid-ocean ridge basalt (E-MORB) affinities commonly intrude the Loma Caribe peridotite, and are interpreted as evidence of the impact that the Caribbean plume had in the off-axis magmatism of the back-arc basin, developed after the Caribbean island-arc extension in the Late Cretaceous. We propose a model in which chromitites were formed in the shallow portion of the back-arc mantle as a result of the metasomatic reaction between the supra-subduction zone (SSZ) peridotites and upwelling plume-related melts.  相似文献   

20.
Volcanic suites from Wawa greenstone belts in the southern Superior Province comprise an association of typical late Archean arc volcanic rocks including adakites, magnesian andesites (MA), niobium-enriched basalts (NEB), and ‘normal’ tholeiitic to calc-alkaline basalts to rhyolites. The adakites represent melts from subducted oceanic crust and all other suites were derived from the mantle wedge above the subducting oceanic lithosphere. The magnesian andesites are interpreted to be the product of hybridization of adakite melts with arc mantle wedge peridotite. The initial ?Hf values of the ∼2.7 Ga Wawa adakites (+3.5 to +5.2), magnesian andesites (+2.6 to +5.1), niobium-enriched basalts (+4.4 to +6.6), and ‘normal’ tholeiitic to calc-alkaline arc basalts (+5.3 to +6.4) are consistent with long-term depleted mantle sources. The niobium-enriched basalts and ‘normal’ arc basalts have more depleted ?Hf values than the adakites and magnesian andesites. The initial ?Nd values in the magnesian andesites (+0.4 to +2.0), niobium-enriched basalts (+1.4 to +2.4), and ‘normal’ arc tholeiitic to calc-alkaline basalts (+1.6 to +2.9) overlap with, but extend to lower values than, the slab-derived adakites (+2.3 to +2.8). The lower initial ?Nd values in the mantle-wedge-derived suites, particularly in the magnesian andesites, are attributed to recycling of an Nd-enriched component with lower ?Nd to the mantle wedge. As a group, the slab-derived adakites plot closest to the 2.7 Ga depleted mantle value in ?Nd versus ?Hf space, additionally suggesting that the Nd-enriched component in the mantle wedge did not originate from the 2.7 Ga slab-derived melts. Accordingly, we suggest that the enriched component had been added to the mantle wedge at variable proportions by recycling of older continental material. This recycling process may have occurred as early as 50-70 Ma before the initiation of the 2.7 Ga subduction zone. The selective enrichment of Nd in the sources of the Superior Province magmas can be explained by experimental studies and geochemical observations in modern subduction systems, indicating that light rare earth elements (e.g., La, Ce, Sm, Nd) are more soluble than high field strength elements (e.g., Zr, Hf, Nb, Ta) in aqueous fluids that are derived from subducted slabs. As a corollary, we suggest that the recycled Nd-enriched component was added to the mantle source of the Wawa arc magmas by dehydration of subducted sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号