首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Taiwan is a mountainous country, so there is an ever present danger of landslide disasters during the rainy seasons or typhoons. This study aims to develop a fuzzy-rule-based risk assessment model for debris flows and to verify the accuracy of risk assessment so as to help related organizations reduce losses caused by debris flows. The database is comprised of information from actual cases of debris flows that occurred in the Hualien area of Taiwan from 2007 to 2008. The established models can assess the likelihood of the occurrence of debris flows using computed indicators, verify modeling errors, and make comparisons between the existing models for practical applications. In the establishment of a fuzzy-based debris flow risk assessment model, possible for accounting it on the basis of far less information regarding a real system and the information can be of an uncertain, fuzzy or inexact character, the influential factors affecting debris flows include the average terrain slope, catchment area, effective catchment area, accumulated rainfall, rainfall intensity, and geological conditions. The results prove that the risk assessment model systems are quite suitable for debris flow risk assessment, with a resultant ratio of success 96?% and a normalized relative error 4.63?%.  相似文献   

2.
A Climatology Model for Forecasting Typhoon Rainfall in Taiwan   总被引:1,自引:2,他引:1  
The continuous torrential rain associated with a typhoon often caused flood, landslide or debris flow, leading to serious damages to Taiwan. Thus, a usable scheme to forecast rainfall amount during a typhoon period is highly desired. An analysis using hourly rainfall amounts taken at 371 stations during 1989–2001 showed that the topographical lifting of typhoon circulation played an important role in producing heavier rainfall. A climatology model for typhoon rainfall, which considered the topographical lifting and the variations of rain rate with radius was then developed. The model could provide hourly rainfall at any station or any river basin for a given typhoon center. The cumulative rainfall along the forecasted typhoon track was also available. The results showed that the R2 value between the model estimated and the observed cumulative rainfall during the typhoon period for the Dan-Shui (DSH) and Kao-Ping (KPS) River Basins reached 0.70 and 0.81, respectively. The R2 values decreased slightly to 0.69 and 0.73 if individual stations were considered. However, the values decreased significantly to 0.40 and 0.51 for 3-hourly rainfalls, indicating the strong influence of the transient features in producing the heavier rainfall. In addition, the climatology model can only provide the average conditions. The characteristics in individual typhoons should be considered when applying the model in real-time operation. For example, the model could give reasonable cumulative rainfall amount at DSH before Nakri (2002) made landfall on Taiwan, but overestimated the rainfall after Nakri made landfall and weakened with significant reduction in convection.  相似文献   

3.
Among the disasters facing Taiwan, earthquakes and typhoons incur the greatest monetary losses, and landslide disasters inflict the greatest damage in mountainous areas. The nationwide landslide susceptibility map gives an indication of where landslides are likely to occur in the future; however, there is no objective index indicating the location of landslide hotspots. In this study, we used statistical analysis to locate landslide hotspots in catchments in Taiwan. Global and local spatial autocorrelation analysis revealed the existence of landslide clusters between 2003 and 2012 and identified a concentration of landslide hotspots in the eastern part of Central Taiwan. The extreme rainfall brought by typhoon Morakot also led to the formation of new landslide hotspots in Southern Taiwan. This study provides a valuable reference explaining changes in landslide hotspots and identifying areas of high hotspot concentration to facilitate the formulation of strategies to deal with landslide risk.  相似文献   

4.
Taiwan suffers from an average of three or four typhoons annually, and the inundation caused by the heavy precipitation that is associated with typhoons frequently occurs in lowlands and floodplains. Potential inundation maps have been widely used as references to set up non-structural strategies for mitigating flood hazards. However, spatiotemporal rainfall distributions must be addressed to improve the accuracy of inundation forecasting for emergency response operations. This study presents a system for 24-h-ahead early warning of inundation, by coupling the forecasting of typhoon rainfall with the modeling of overland flow. A typhoon rainfall climatology model (TRCM) is introduced to forecast dynamically the spatiotemporal rainfall distribution based on typhoon tracks. The systematic scheme for early warning of inundation based on the spatiotemporal downscaling of rainfall and 2D overland-flow modeling yields not only the extent of inundation, but also the time to maximum inundation depth. The scheme is superior to traditional early warning method referring to the maximum extent and depth of inundation determined from conditional uniform rainfall. Analytical results show that coupling TRCM with an overland-flow model yields satisfactory inundation hydrographs for warning of the extent and peak time of inundation. This study also shows that the accuracy of forecasting spatiotemporal rainfall patterns determines the performance of inundation forecasting, which is critical to emergency response operations.  相似文献   

5.
温州地处浙江东南沿海,降雨充沛。台风等极端气候灾害引起的强降雨次数繁多,并可能引发地区周边泥石流等地质灾害。收集相关地区、时段的气象、水文资料,并对研究区降雨数据进行处理,在野外实地调查、遥感解译的基础上,根据研究区地质灾害调查结果,总结群发性坡面泥石流特征,分析其形成的地质环境条件。针对致灾因子降雨量与温州地区群发性泥石流灾害的因果关系,获取坡面泥石流发生周期内的各时段降雨量,并利用相关性分析确定最大1h、3h雨强为研究变量,在二维坐标平面上投影近百个案例点,拟合得出临界雨量方程,并根据泥石流发生与否划分区域计算超越概率和误报概率,得出温州地区泥石流爆发前期雨强满足"两倍关系"的经验结论,寻求解决温州地区实际泥石流地质灾害预警问题的可行性。  相似文献   

6.
Vulnerability assessment of rainfall-induced debris flows in Taiwan   总被引:1,自引:0,他引:1  
A GIS-based decision support system, which incorporates local topographic and rainfall effects on debris flow vulnerability is developed. Rainfall at a scale compatible with the digital elevation model resolution is obtained using a neural network with a wind-induced topographic effect and rainfall derived from satellite rain estimates and an adaptive inverse distance weight method (WTNN). The technique is tested using data collected during the passage of typhoon Tori-Ji on July 2001 over central Taiwan. Numerous debris flows triggered by the typhoon were used as control for the study. Our results show that the WTNN technique outperforms other interpolation techniques including adaptive inversed distance weight (AIDW), simple kriging (SK), co-kriging, and multiple linear regression using gauge, and topographic parameters. Multiple remotely-sensed, fuzzy-based debris-flow susceptibility parameters are used to describe the characteristics of watersheds. Non-linear, multi-variant regressions using the WTNN derived rainfall and topography factors are derived using self-organizing maps (SOM) for the debris flow vulnerability assessment. An index of vulnerability representing the degrees of hazard is implemented in a GIS-based decision support system by which a decision maker can assess debris flow vulnerability.  相似文献   

7.
This study looks at 102 typhoons that passed nearby or traversed Taiwan from 1995 to 2011 and their potential association with ordinary earthquakes. The study found an overall association of 63.75?%. Interestingly, prior to the September 21, 1999, M w ?=?7.6 Chi-Chi earthquake, only 4 of 24 typhoons (16.67?%) were potentially associated with the earthquakes. This figure increased substantially after the Chi-Chi earthquake to 78 typhoons being possibly associated with earthquakes (78.21?%). From the results of the chi-square test, both correlations between the typhoons and their possible triggered earthquakes before and after Chi-Chi earthquake have significant difference. The results are discussed in terms of changes in crustal conditions after the Chi-Chi earthquake and potential mechanisms, for example, heavy rainfall and atmospheric pressure causing the ordinary earthquakes. The atmospheric pressure effect predominates over the rainfall effect during the typhoon time period by statistical multivariate approach. However, to test rainfall effect is a non-neglected mechanism; seven small earthquakes without typhoon occurring near a region experiencing heavy rainfall and earthquake activity related to accumulated rainfall values from January 1995 to July 2012 are examined.  相似文献   

8.
余姚市地处浙东沿海,受2013年23号强台风“菲特”影响,遭受百年一遇强降雨,农村山区地质灾害频发,因灾损失达200×10^8元以上。通过对余姚159处地质灾害的调查和统计分析,余姚市地质灾害类型主要为崩塌、滑坡和泥石流,滑坡占本次地质灾害总数的64.2%,主要为小型浅表土质滑坡,中型泥石流2处。地质灾害的发生与降雨、地形地貌、松散层厚度以及人类活动等多个方面因素有关,其中松散层厚度和人类工程活动影响最为明显。文中提出了相关的预防措施,通过加强防灾避灾宣传,严格审批农村切坡建房,对重要地段的适当回避等,防治并举,以减轻同类地质灾害的影响。  相似文献   

9.
Taiwan is located in an area affected by Northwest Pacific typhoons, which are also one of the most important sources of rainfall to the island. Unfortunately, the abundant rainfall brought by typhoons frequently produces hazards. In recent years, typhoons and floods have caused serious damage, especially Typhoon Morakot in 2009. In this study, a probabilistic model is developed based on historical events which can be used to assess flood risk in Taiwan. There are 4 separate modules in this model, including a rainfall event module, a hydraulic module, a vulnerability module, and a financial loss module. Local data obtained from the Taiwan government are used to construct this model. Historical rainfall data for typhoon and flood events that have occurred since 1960, obtained from the Central Weather Bureau, are used for computing the maximum daily rainfall for each basin. In addition, the latest flood maps from the Water Resources Agency are collected to assess the probable inundation depth. A case study using the local data is carried out. Assessment is made to predict possible economic loss from different financial perspectives such as the total loss, insured loss, and loss exceeding probabilities. The assessment results can be used as a reference for making effective flood risk management strategies in Taiwan.  相似文献   

10.
Failures Associated with the 2004 Mindulle Typhoon in Taiwan   总被引:2,自引:0,他引:2  
On July 2, 2004, a 2000-km southwest air current following the Mindulle Typhoon caused serious damages to infrastructures in Taiwan. The disaster resulted in extensive geological and structural failures, mainly as a result of debris flow. Some of the sites were subjected to types of repeated failures compared to previous typhoons. Some structural failures were attributed to geotechnical failures. It is decided to document and identify causes for some of these major failures triggered by typhoons. The case history showed significant implications to future disaster prevention and management works. New challenges were posed in geotechnical engineering design in encountering rainfall-induced failures.  相似文献   

11.
Debris flows are more frequent in central Taiwan, because of its mountainous geography. For example, many debris flows were induced by Typhoon Herb in 1996. The Chi-Chi earthquake with a magnitude of 7.3, which took place in 1999 in central Taiwan, induced many landslides in this region. Some landslides turned into debris flows when Typhoon Toraji struck Taiwan in 2001. This study investigates the characteristics of the gullies where debris flows have occurred for a comparison. Aerial photos of these regions dated in 1997 (before the earthquake) and 2001 (after the earthquake) are used to identify the occurrence of gully-type debris flows. A Geographic Information System (GIS) is applied to acquire hydrological and geomorphic characteristics: stream gradient, stream length, catchment gradient, catchment area, form factor, and geology unit of these gullies. These characteristics in different study regions are presented in a statistical approach. The study of how strong ground motion affects the debris flows occurrence is conducted. The characteristics of the debris flow gullies triggered by typhoons before and after the Chi-Chi earthquake are quantitatively compared. The analysis results show that a significant transformation in the characteristics was induced by the Chi-Chi earthquake. In general, the transformation points out a lower hydrological and geomorphic threshold to trigger debris flows after the Chi-Chi earthquake. The susceptibility of rock units to strong ground motion is also examined. The analysis of debris flow density and accumulated rainfall in regions of different ground motion also reveal that the rainfall threshold decreases after the Chi-Chi earthquake.  相似文献   

12.
泥石流灾害是我国东南地区引起群死群伤的主要自然灾害,目前对其发育规律和区域预报的研究程度还较低.基于浙江省小流域泥石流地质灾害调查评价成果数据,开展沟谷泥石流发育特征和时空分布规律研究,研究表明,浙江省泥石流发生时期集中在台汛期和梅汛期,其中台汛期发生的泥石流占总数的70.1%,梅汛期占27.4%,可见台风诱因显著;泥石流在浙江省三大降雨区,即台风雨主控区、梅雨主控区和梅台雨兼容区的空间分布具有明显差异性,总体上东南沿海一带台风雨控制区分布密度要大于西部和北部地区,而梅汛期发生泥石流则比较明显集中在西部地区.在此基础上,分别求取了梅汛期和台汛期的浙江省东南地层区和杨子地层区引发泥石流的降雨阈值;选择泥石流易发程度区划图、24h预报雨量和前期有效降雨量3个因子,以小流域作为评价单元,基于可拓理论方法,构建了泥石流危险性区域预报模型.采用灾害强度R值和危险性等级面积百分比累加-泥石流频度百分比累加曲线两种方法,以2004年“云娜”台风期间和2006年6月份梅雨期发生的泥石流灾害样本开展模型合理性检验,证明预测结果合理.   相似文献   

13.
The wet and dry seasons are distinctive in Taiwan as the amount of precipitation in wet seasons accounts for over three-fourth of the total rainfall. And the water-resources management relies pretty much on the rainfall brought in by typhoons as it accounts for a significant portion of the precipitation during wet seasons. Furthermore, as the storage of reservoirs is limited due to topographical factors, the management of typhoon rainfall has always been an important issue in Taiwan. The technique of decision-tree analysis is applied in this article to determine the optimal reservoir release in advance upon the issuance of a typhoon warning by the Central Weather Bureau (CWB), and the proposed methodology may provide solution to the trade-off judgment of reservoir operations between flood control and water supply according to economic efficiency. In this article, the economic loss functions of flooding damage and water-supply shortage are assumed in linear and nonlinear conditions, and the respective expected optimal releases based on the predicted precipitation as issued by CWB are derived. The proposed methodology has been applied to the Shihmen Reservoir System, and the capabilities of the model as an aid to real-time decision-making as well as the evaluation of the economic worth of forecasts is presented.  相似文献   

14.
Typhoon Morakot brought extreme rainfall and initiated numerous landslides and debris flows in southern Taiwan in August of 2009. The purpose of this study is to identify the extreme rainfall-induced landslide frequency-area distribution in the Laonong River Basin in southern Taiwan and debris flow-initiated conditions under rainfall. Results of the analysis show that debris flows were initiated under high cumulative rainfall and long rainfall duration or high rainfall intensity. The relationship of mean rainfall intensity and duration threshold could reflect debris flow initiation characteristics under high rainfall intensity in short rainfall duration conditions. The relationship of cumulative rainfall and duration threshold could reflect debris flow initiation characteristics under high cumulative rainfall in long rainfall duration. Defining rainfall events by estimating rainfall parameters with different methodologies could reveal variations among intermittent rainfall events for the benefit of issuing debris flow warnings. The exponent of landslide frequency-area distribution induced by Typhoon Morakot is lower than that induced by the Chi-Chi earthquake. The lower exponent of landslide frequency-area distribution can be attributed to the transportation and deposition areas of debris flow that are included in the landslide area. Climate change induced high rainfall intensity and long duration of precipitation, for example, Typhoon Morakot brought increased frequency of debris flow and created difficulty in issuing warnings from rainfall monitoring.  相似文献   

15.
By means of an onsite investigation, the largest debris flow in Taiwan's history is analyzed in this paper. A heavy rainfall of 1,748 mm/day occurred during typhoon Herb in the Hoser area at the end of July 1996. Aerial photographic assessment and observations of geological and geomorphological features have contributed to our understanding of this massive destruction. Mechanisms of the hazardous debris flow are explored and discussed. Data revealed that the rock discontinuities were a major factor in the voluminous loose materials in the debris flows. The heavy and rapid rainfall instantly transported massive amounts of debris flow materials into the center, and then quickly funneled them to the lower parts of gullies. The heavy slurry became an effective cutting device to erode the side walls and move large quantities of the debris materials to the end of the gullies.  相似文献   

16.
泥石流是我国山区常见的地质灾害,为了定量研究泥石流灾害致灾因子的敏感性并确定各个致灾因子的权重大小,本文通过野外调查、数理统计法和层次分析法对龙溪河流域泥石流灾害的主要致灾因子进行定性规律分析和定量权重计算。结果表明:(1)泥石流灾害的发生与致灾因子的敏感性区间主要定性表现为:流域面积小于1 km2以内、高差在200~400 m范围内、距断层距离为0~2 km、山坡坡度30°~50°、岩性为砂岩、纵比降在400‰~600‰等,其泥石流发生与致灾因子具有相关性,且相关性较好;(2)选取了泥石流灾害致灾因子中的历史因子、地形因子、地质因子和降雨因子等4个一级因子以及流域面积、高程、相对高差、纵坡比、地层岩性等14个二级因子建立层次分析模型和计算判断矩阵,定量计算权重值得出降雨,流域面积,地层岩性,纵比降等四个因子对泥石流发生的敏感性最强。这一结论具有普遍性,可对该区域泥石流的易发性,危险性,风险性评价提供一定的数据参考意义。  相似文献   

17.
Typhoons are one of the major natural hazards occurring frequently in Shanghai. The comprehensive assessment of drought relief by typhoon has become a major concern of scientists and government agencies in Shanghai, China. In this article, with the support of remote sensing data and the available data from local meteorological stations, the regional drought relief was investigated and the change of drought intensity was quantified by the typhoon “Saomai” between 5 and 8 August 2005. The precipitation anomaly calculated on the basis of recorded rainfall was adopted to analyze drought condition changes before and after the typhoon. Then, vegetation supply water index (VSWI) and normalized difference vegetation index (NDVI) were used to monitor the drought relief due to the consecutive shortage of summer rainfall. Impact of typhoon on drought was compared by VSWI before and after typhoon Saomei. The results showed that the typhoon alleviated the drought of the vegetation by more than 70 %, based on the spatial and temporal distribution of precipitation, the ground temperature, relative humidity, high temperature, NDVI from Shanghai area. The result shows that MODIS remote sensing data are a useful quantitative monitoring tool in drought relief by local typhoons. More strategies are necessary to be adopted for prevention and mitigation of meteorological disaster in Shanghai in recent years.  相似文献   

18.
柴艳  祁颖辉 《地下水》2011,33(3):165+176-165,176
河北省太行山区是河北省泥石流灾害的主要发生区,该区泥石流在空间上主要分布在太行山东麓的中低山区域,其分布与暴雨等值线的中心部位基本吻合;在时间分布上主要发生在每年7月20日至8月10日之间的强暴雨时期。泥石流的暴发受到降雨因素和地质因素的双重影响,由于降雨为第一主控因子,在地质地貌条件充许的前提下,决定着泥石流是否能在暴雨中被激发。  相似文献   

19.
西北太平洋热带风暴活动及其影响   总被引:1,自引:0,他引:1       下载免费PDF全文
在翔实资料统计的基础上,分析了西北太平洋热带风暴的一般特征、活动阶段、源地及活动区、强度、寿命等,讨论了热带风暴致灾的主要因素,介绍了在我国登陆台风的年际变化、年内变化、登陆地区分布以及历史上几次强台风的登陆及灾害损失情况.  相似文献   

20.
Simulation of a slope failure induced by rainfall infiltration   总被引:3,自引:0,他引:3  
On 1 November 2000, Typhoon Xangsane brought heavy rainfall that caused serious disasters in many areas of northern Taiwan. A slope located at the upstream of the Shanher Stream in Taipei County failed and induced a debris flow. To investigate the environmental influencing factors that caused the slope failure and the debris flow disaster, laboratory tests and slope stability analysis were performed. A series of tests were conducted to obtain the mechanical and hydraulic properties of the soil under unsaturated and saturated conditions. Then, limit equilibrium method and numerical analysis simulating the process of infiltration were utilized to explore the slope stability, the stress variation, and the pore-water pressure in the soil during rainwater infiltration. The results of the stability analysis show that the rainfall intensity–time history is the most significant influence factor, and the analyzed failure zone and the predicted time when the slope failed are comparable to the field observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号