首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-crystal structure determinations at pressure have shown that the structural response of synthetic (Mg0.6Fe0.4)SiO3 orthopyroxene to compression is the same as that previously observed in MgSiO3 orthoenstatite. At pressure below ~4?GPa there is no significant compression of the SiO4 tetrahedra, while above ~4?GPa the tetrahedra decrease in volume as a result of Si?O bond shortening. A study of the compressional behaviour of synthetic FeSiO3 orthoferrosilite also shows the same behaviour below 4?GPa, but studies at higher pressures are precluded due to the transformation of the sample to the higher density C2/c high-clinoferrosilite polymorph. A further single-crystal study to 6?GPa of a Ca2+-containing natural orthopyroxene shows that chemical substitution of, primarily, Al3+ and Ca2+ into the structure of orthopyroxene inhibits the initial rapid compression of the M2?O3 bonds observed in the synthetic samples, and no significant tetrahedral compression is observed in this sample. Raman data collected from synthetic MgSiO3 orthoenstatite show that there is a change in the rate of change of frequency with pressure, δν/δP, between 3.5 and 6.0?GPa, but no changes in the number of observed bands. These observations indicate a non-symmetry-breaking change in the properties of the orthoenstatite, which is associated with the change in compression mechanism observed using X-ray diffraction techniques at this pressure.  相似文献   

2.
We measured the lattice thermal conductivities of Fe0.98O wüstite and iron-rich (Mg,Fe)O magnesiowüstite using the pulsed light heating thermoreflectance technique with a diamond anvil cell up to 61 GPa at 300 K. We found that the thermal conductivity of wüstite does not show a monotonic increase as a function of pressure, contrary to that of MgO periclase. Rocksalt (B1) to rhombohedral B1 transition is likely to induce an abnormal pressure response in the conductivity of wüstite. Our results also show that magnesiowüstite has a lower conductivity than that of MgO and FeO endmembers due to a strong iron impurity effect, which is well reproduced by a model considering phonon-impurity scattering in a binary solid solution.  相似文献   

3.
Four synthetic endmember olivines (Mg,Mn, Fe,Co)2SiO4 with space group Pbnm were loaded together in one diamond cell mount. Their unit-cell parameters were determined by single crystal X-ray diffraction to 10 GPa. The linear compressibilities βa, βb, βc were 1.53, 2.90, 2.32; 1.45, 3.48, 1.98; 1.35, 3.29, 1.76; and 1.25, 2.82, 2.01×10−3 GPa−1 for Mg2SiO4, Mn2SiO4, Fe2SiO4 and Co2SiO4, respectively. The b axis is the most compressible direction in all crystals studied. Bulk modulus KT0 and its first pressure derivative were simultaneously determined for Mg2SiO4, Fe2SiO4 and Co2SiO4 crystals respectively by fitting volume data to a third order Birch-Murnaghan equation of state. They are 127(4) and 4.2(8), 136(3) and 4.1(7), and 144(2) and 4.1(5). The KT0 and could not simultaneously be determined unambiguously for Mn2SiO4. Direct comparisons of unit-cell volumes at high pressure among pairs of olivines reveal anomalous compression behavior of the Mg2SiO4 crystal regarding the bulk modulus-volume relationship. This behavior, however, could not be observed in the transition metal olivines (Mn,Fe,Co)2SiO4. The distinct electronic configurations of Mg2+ and the transition metal cations Mn2+, Fe2+, and Co2+ result in the different compression behaviors of Mg2SiO4 and (Mn,Fe,Co)2SiO4. Received: 14 April 1997 / Revised, accepted: 29 July 1997  相似文献   

4.
Recent high-pressure studies have shown that an electronic spin transition of iron in ferropericlase, an expected major phase of Earth’s lower mantle, results in changes in its properties, including density, incompressibility, radiative thermal conductivity, electrical conductivity, and sound velocities. To understand the rheology of ferropericlase across the spin transition, we have used in situ radial X-ray diffraction techniques to examine ferropericlase, (Mg0.83,Fe0.17)O, deformed non-hydrostatically in a diamond cell up to 81 GPa at room temperature. Compared with recent quasi-hydrostatic studies, the range of the spin transition is shifted by approximately 20 GPa as a result of the presence of large differential stress in the sample. We also observed a reduction in incompressibility and in the unit cell volume of 3% across the spin transition. Our radial X-ray diffraction results show that the {0 0 1} texture is the dominant lattice preferred orientation in ferropericlase across the spin transition and in the low-spin state. Viscoplastic self-consistent polycrystal plasticity simulations suggest that this preferred orientation pattern is produced by {1 1 0}<1–10> slip. Analyzing our radial X-ray diffraction patterns using lattice strain theory, we evaluated the lattice d-spacings of ferropericlase and Mo as a function of the ψ angle between the compression direction and the diffracting plane normal. These analyses give the ratio between the uniaxial stress component (t) and the shear modulus (G) under constant stress condition, which represents a proxy for the supported differential stress and elastic strength. This ratio in the mixed-spin and low-spin states is lower than what is expected from previous studies of high-spin ferropericlase, indicating that the spin transition results in a reduced differential stress and elastic strength along with the volume reduction. The influence of the spin transition on the differential stress and strength of ferropericlase is expected to be less dominant across the wide spin transition zone at high pressure–temperature conditions relevant to the lower mantle.  相似文献   

5.
A mica whose structural formula: (K1.76Na0.31)(Fe2.22Mn1.29Mg0.99Ti0.28Al0.240.98) ·(Si7.33Al0.67)O20.26(F2.16OH1.58) closely approximates that of tetrasilicic potassium mica K2(M 5 2+ )Si8O20(OH,F)4 where M2+ represents Mg2+, Fe2+, Mn2+, ..., has been discovered in the matrix of a peralkaline rhyolite (comendite) of the Mont-Dore massif (France). These micas had been obtained previously by synthesis only. In the groundmass of the rock, the micaceous phase is accompanied by a manganoan arfvedsonite, pyrophanite, magnetite, apatite, sphene, zircon and fluorite. The crystallographic properties of the mica are typically that of a tetrasilicic mica, with d 060 = 1.533Å and space group C2/m. There is a regular decrease of d 060 (parameter b) with the ionic radius of the octahedral cation in synthetic micas containing Fe2+, Co2+, Mg2+, Ni2+. The purely Mn2+ end-member could not be synthesised; its instability is discussed on the basis of structural considerations. The conditions of crystallization of the micaceous phase are estimated to be 760 ° C, 800 bars with a f o 2=10–14.7 bar. This mica has crystallized from a residual liquid, with high activity of silica and low activity of alumina, whose origin is discussed. The name MONT-DORITE is proposed for this natural tetrasilicic mica having Fe/Fe+Mg >1/2 and Fe/Fe+Mn >1/2. This name is from the stratovolcano Mont-Dore.  相似文献   

6.
The lattice parameter of magnesiowüstite (Mg0.6Fe0.4)O has been measured up to a pressure of 30 GPa and a temperature of 800 K, using an external heated diamond anvil cell and diffraction using X-rays from a synchrotron source. The experiments were conducted under quasi-hydrostatic condition, using neon as a pressure transmitting medium. The experimental P-V-T data were fitted to a thermal-pressure model with the isothermal bulk modulus at room temperature K T0 = 157 GPa, (?K TO /?P) T =4, (?K T /?T) P =-2.7(3) × 10-2 GPa/K, (?K T /?T) v =-0.2(2) × 10-2 GPa/K and the Anderson-Grüneisen parameter δ T =4.3(5) above the Debye temperature. The data were also fitted to the Mie-Grüneisen thermal equation of state. The least-squares fit yields the Debye temperature θ DO = 500(20) K, the Grüneisen parameter γ 0=1.50(5), and the volume dependence q=1.1(5). Both thermal-pressure models give consistent P-V-T relations for magnesiowüstite to 140 GPa and 4000 K. The P-V-T relations for magnesiowüstite were also calculate by using a modified high-temperature Birch-Murnaghan equation of state with a δ t of 4.3. The results are consistent with those calculated by using the thermal-pressure model and the Mie-Grüneisen relation to 140 GPa and 3000 K.  相似文献   

7.
The orthopyroxene crystal structure can be viewed as the stacking of alternating tetrahedral and octahedral layers parallel to the (100) plane. Easy glide occurs in the (100) plane at the level of the octahedral layer to prevent breakage of the strong Si-O bonds. Dislocations with c and b Burgers vectors have been activated in (100) by room temperature indentation in an orthoenstatite gem quality single crystal. Investigations in transmission electron microscopy show that the b dislocations (b?9 Å) are not dissociated while the c's (c=5.24 Å) are dissociated into four partials. This result is interpreted by considering the oxygen sublattice as a distorted FCC one. The four c partials are thus Shockley partials bounding three stacking faults. For the two outer ones, synchroshear of the cations is necessary to keep unchanged their sixfold coordination; the oxygen sublattice is locally transformed into a HCP lattice. This accounts for the observed low splitting (?100 Å) of these faults as compared to the median one (?500 Å) which does not affect the oxygen sublattice and does not require cation synchroshear. In a Fe rich orthopyroxene (eulite), semi coherent exsolution lamellae have been studied. Either only c edge dislocations or both b and c edge dislocations occur in the phase boundaries depending upon the thickness of the lamellae. Only the c dislocations are dissociated. From the observed spacing between these mismatch dislocations a crude estimate of the exsolution temperature is proposed T ex ? 700° C.  相似文献   

8.
9.
Preiswerkite and Na-(Mg,Fe)-margarite are two unusual micas very rare in Nature. They have been observed together in two eclogite occurrences (La Compointrie, France; Liset, Norway) as retrogression products in coronae or symplectites around kyanite. The chemical compositions and some physical properties of these micas are presented. The possible solid solutions and the conditions of stability are discussed. The preiswerkites display slight solid solution towards phengitic muscovite and Na-phlogopite. On the other hand, there is negligible solid solution towards more aluminous compositions; AlIV ≤ 4 appears to be a composition limit for natural (K,Na)-micas. The margarites have an unusual Na-(Mg,Fe)-rich composition. They can be considered as a solid solution of about 2/3 mol% of margarite and 1/3 mol% of the theoretical end-member Na2(Mg,Fe)1AlVI 4[Si4AlIV 4]O20(OH)4 (“Mica L”), with a possible substitution towards paragonite. The Marg2/3 Mica L1/3 composition (i.e. NaCa2(Mg,Fe)0.5 AlVI 6 [Si6AlIV 6]O30(OH)6) might represent a particularly stable crystallographic configuration and could be considered as a true end-member. Many “sodian” margarites described in the literature are, in fact, complex solid solutions between margarite, paragonite and Marg2/3 Mica L1/3. The rarity of these micas is not related to extreme or unusual P-T conditions. They seem to be related to unusual chemical compositions, appearing in H2O-saturated Na-Al-rich Si-poor systems, principally, if not only, at greenschist- or amphibolite-facies P-T conditions. Moreover, they are subject to crystallographic constraints whereby the high proportion of Al-tetrahedra create considerable distortion which prevents the entry of K into the interlayer site, thus necessitating Na (preiswerkite or ephesite) or Ca (margarite or clintonite) instead. Received: 21 April 1998 / Accepted: 25 January 1999  相似文献   

10.
The theory of sublattice solid solution model and optimization methods have been described for modelling the geochemically important multicomponentmultisite silicate solid solution systems. Some new X-ray Mg-Fe2+ site occupancy data along with some selection from the existing data on heated orthopyroxene in the temperature range 600 to 1000° C have been used in thermodynamic modelling of the orthopyroxene (Mg, Fe)2Si2O6 solid solution using the sublattice solution model. The optimized interaction energy solution parameters are:
  相似文献   

11.
We present results of dehydration melting experiments [3–15kbar, 810–950C f(O2) QFM (quartz-fayalite-magetite)and Ni-NiO] on two Fe-rich mixtures of biotite (37%), plagioclaseAn38 (27%), quartz (34%) and ilmenite (2%), which differ onlyin their biotite compositions (mg-number 23 and 0.4). Dehydrationmelting of metagreywackes of constant modal composition generatesa wide range of melt fractions, melt compositions and residualassemblages, through the combined effects of pressure, Fe/Mgratio and f(O2). Crystallization of garnet is the chief controlon melting behavior, and is limited by two reactions: (1) thebreakdown of garnet + quartz to orthopyroxene + plagioclaseat low P, and (2) the oxidation of garnet to magnetite + anorthite+ quartz (enstatite), which is sensitive to both f(O2) andP. Because of these reactions, melting of Mg-rich metagreywackesis rather insensitive to f(O2) but strongly sensitive to P;the converse is true for Fe-rich metagreywackes. Garnet crystallizationrequires that plagioclase break down incongruently, liberatingalbite. This increases the Na2O content of the melts and enhancesmelt production. Thus, melting of metagreywacke in a reducingdeep-crustal environment (with garnet stable) would producemore, and more sodic, melt than would garnet-absent meltingof the same source material in a relatively oxidizing, shallow-crustalenvironment. KEY WORDS: anatexis; metasediments; gneisses; granites; garnet *Corresponding author. Telephone: 706-542-2394; fax: 706-542-2425; e-mail: alpatino{at}uga.cc.uga.edu  相似文献   

12.
13.
A new mineral of the neptunite group, magnesioneptunite KNa2Li(Mg,Fe)2Ti2Si8O24, a Mg-dominant analogue of neptunite and manganoneptunite, has been found in the Upper Chegem caldera near Mount Lakargi, Kabardino-Balkaria, the North Caucasus, Russia in a xenolith of altered sandstone located between skarnified carbonate xenoliths and ignimbrite. Magnesioneptunite occurs as nearly isometric grains and aggregates up to 0.1 mm in size in the cores of some grains of a Mg-rich variety of neptunite with Mg/(Fe + Mn) = 0.7?1.0. The chemical composition of magnesioneptunite with a maximum Mg content is as follows, wt %: 3.63 K2O, 8.21 Na2O, 1.73 Li2O, 6.47 MgO, 0.04 MnO, 5.87 FeO, 0.07 Al2O3, 18.73 TiO2, 56.88 SiO2, 99.62 in total. The empirical formula is (K0.67Na0.32Ca0.01)Σ1.00Na2.06Li1.00 · (Mg1.39Fe 0.71 2+ )Σ2.10(Si7.90Al0.01)Σ7.91O24. Grains of magnesioneptunite are dark brown to red-brown, translucent, with vitreous luster. D calc = 3.15 g/cm3, and the Mohs hardness is 5–6. Cleavage parallel to the (110) is perfect. The new mineral is optically biaxial, positive, α = 1.697(2), β = 1.708 (3), γ = 1.725(3), 2V meas = 45(15)°. The mineral is associated with quartz, alkali feldspar, rutile, aegirine, and neptunite. Magnesioneptunite and the Mg-rich variety of neptunite were formed as products of ilmenite alteration. Magnesioneptunite is monoclinic, C2/c; unit-cell parameters: a = 16.327(7), b = 12.4788(4), c = 9.9666(4) Å, β = 115.6519(5)°, V = 1830.5(1) Å3, Z = 4. The type specimen is deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow.  相似文献   

14.
The compression of cordierite (Mg, Fe)2Al4Si5O18·n (H2O, CO2; Na+, K+) has been studied up to 30 kbar (25° C) by volumetric measurements with a piston cylinder apparatus and by X-ray measurements with a diamond-anvil cell. Natural cordierite of intermediate Mg-Fe composition and synthetic Mg-cordierite served as samples. Two discontinuities at 2.2±0.3 and 9.0±0.6 kbar which are correlated with very small volume changes (0.3?0.05%) have been found. The X-ray data indicate, however, no symmetry change of the crystal structure. The two discontinuities are interpreted as phase transitions. The two discontinuities establish three pressure dependent phases referred to as low-pressure (LP)-, first high-pressure (HP1)- and second high-pressure (HP2)-phase. The gross compressibility of cordierite decreases from 1.1 Mbar?1 at low pressure to 0.7 Mbar?1 at 30 kbar for the intermediate Mg-Fe cordierite, and to 0.4 Mbar?1 for Mg-cordierite. Depending on the pressure transmitting medium used in the two different compression techniques, two kinds of compression behavior are observed for cordierite. The measurements with the piston cylinder apparatus where lead is used as quasihydrostatic pressure medium indicate normal compression properties. The X-ray data, however, obtained with the diamond anvil cell where a methanol-ethanol mixture provides hydrostatic pressure conditions yield, e.g. for the HP1-phase a dramatic decrease in compressibility to almost zero. IR-spectra from samples of augmenting experiments with methanol, deuteromethanol and D2O as pressure media indicate that pressure media of which the molecule size is comparable with the dimensions of the cordierite channels may be incorporated in the structure. This suggests that under such hydrostatic conditions the compression of cordierite is modified by a structure internal component which is acting via the channel system.  相似文献   

15.
The magnetic behaviour and Curie temperatures (T C ) of spinelloids and spinels in the Fe3O4–Fe2SiO4 and Fe3O4–(Mg,Fe)2SiO4 systems have been determined from magnetic susceptibility (k) measurements in the temperature range –192 to 700 °C. Spinelloid II is ferrimagnetic at room temperature and the k measurements display a characteristic asymmetric hump before reaching a T C at 190 °C. Spinelloid V from the Mg-free system is paramagnetic at room temperature and hysteresis loops at various low temperatures indicate a ferri- to superparamagnetic transition before reaching the T C . The T C shows a non-linear variation with composition between –50 and –183 °C with decreasing magnetite component (X Fe3O4). The substitution of Mg in spinelloid V further decreases T C . Spinelloid III is paramagnetic over nearly the total temperature range. Ferrimagnetic models for spinelloid II and spinelloid V are proposed. The T C of Fe3O4–Fe2SiO4 spinel solid solutions gradually decrease with increasing Si content. Spinel is ferrimagnetic at least to a composition of X Fe3O4=0.20, constraining a ferrimagnetic to antiferromagnetic transition to occur at a composition of X Fe3O4<0.20. A contribution of the studied ferrimagnetic phases for crustal anomalies on the Earth can be excluded because they lose their magnetization at relatively low temperatures. However, their relevance for magnetic anomalies on other planets (Mars?), where these high-pressure Fe-rich minerals could survive their exhumation or were formed by impacts, has to be considered.  相似文献   

16.
Electronic absorption spectra have been measured at room temperature and pressure for polycrystalline samples of (Mg, Fe)SiO3 silicate perovskites synthesized by multi-anvil device. One strong near-infrared band at about 7000 cm-1 and several weak bands in the visible region were found. The near-infrared band at 7000 cm-1 is assigned to a spin-allowed transition of Fe2+ at the 8–12 coordinated site in perovskite. However, definite assignments of the weak bands in the visible region are difficult because of their low intensities and the scattering effect at the gain boundaries. Crystal field calculations for Fe2+ at different sites in perovskite have been carried out based on the crystal structure data. The results agree with the assignment of Fe2+ to the 8–12 coordinated site in perovskite. Crystal field stabilization energy of Fe2+ with coordination number of 8 in perovskite is 3332 cm-1 which is small compared to the octahedral site of magnesiowüstite (4320 cm-1), another important lower-mantle mineral.  相似文献   

17.
We report application of the flank method using the electron microprobe to a suite of twelve (Mg,Fe)O samples with composition 2–47 wt% Fe and Fe3+/ΣFe = 1 to 11%, where Fe3+/ΣFe was determined independently using Mössbauer spectroscopy on the same grains used for the flank method measurements. A calibration curve of the form Fe2+ = A + B × (ΣFe)2 + C × (Lβ/Lα) was fit to the data and gave excellent agreement between Fe3+/ΣFe calculated from the flank method and Fe3+/ΣFe determined using Mössbauer spectroscopy. We found the method to be sufficiently sensitive to determine meaningful variations in Fe3+/ΣFe for geophysically relevant compositions of (Mg,Fe)O (<25 wt% Fe), and calibration parameters remained constant within experimental uncertainty over the course of the entire study (20 months). Flank method measurements on an inhomogeneous sample of synthetic (Mg,Fe)O showed evidence of diffusion processes resulting from rupture of the capsule during the high-pressure experiment and the possibility to measure Lβ/Lα variations with a spatial resolution of a few microns. We detected the presence of exsolved magnesioferrite in a suite of (Mg,Fe)O single crystals using transmission electron microscopy and Mössbauer spectroscopy. Flank method measurements on the same suite of single crystals showed enhanced Fe3+/ΣFe values, consistent with the presence of magnesioferrite even though the grains were too small to be resolved by conventional electron microprobe measurements.  相似文献   

18.
Single crystals of (Mg, Ni) O with a Ni-concentration gradient from the outer surface to the interior have been reduced so that metallic nickel particles precipitate in the wüstite matrix. The internal reduction morphology is very different from the one observed in reduced homogeneous (Mg, Ni) O single crystals: pores develop and the precipitates grow along preferential crystallographic directions. The addition of iron ions to the inhomogeneous mixed oxide crystals suppresses the porosity. The observations are described and discussed in terms of point defects and transport kinetics.  相似文献   

19.
Magnesium silicate perovskite is the predominant phase in the Earth’s lower mantle, and it is well known that incorporation of iron has a strong effect on its crystal structure and physical properties. To constrain the crystal chemistry of (Mg, Fe)SiO3 perovskite more accurately, we synthesized single crystals of Mg0.946(17)Fe0.056(12)Si0.997(16)O3 perovskite at 26 GPa and 2,073 K using a multianvil press and investigated its crystal structure, oxidation state and iron-site occupancy using single-crystal X-ray diffraction and energy-domain Synchrotron Mössbauer Source spectroscopy. Single-crystal refinements indicate that all iron (Fe2+ and Fe3+) substitutes on the A-site only, where \( {\text{Fe}}^{ 3+ } /\Upsigma {\text{Fe}}\sim 20\,\% \) based on Mössbauer spectroscopy. Charge balance likely occurs through a small number of cation vacancies on either the A- or the B-site. The octahedral tilt angle (Φ) calculated for our sample from the refined atomic coordinates is 20.3°, which is 2° higher than the value calculated from the unit-cell parameters (a = 4.7877 Å, b = 4.9480 Å, c = 6.915 Å) which assumes undistorted octahedra. A compilation of all available single-crystal data (atomic coordinates) for (Mg, Fe)(Si, Al)O3 perovskite from the literature shows a smooth increase of Φ with composition that is independent of the nature of cation substitution (e.g., \( {\text{Mg}}^{ 2+ } - {\text{Fe}}^{ 2+ } \) or \( {\text{Mg}}^{ 2+ } {\text{Si}}^{ 4+ } - {\text{Fe}}^{ 3+ } {\text{Al}}^{ 3+ } \) substitution mechanism), contrary to previous observations based on unit-cell parameter calculations.  相似文献   

20.
Interest in the pyroxenes has increased since the realization that their alteration products could carry a stable remnant magnetization which is possibly related to the earth's magnetic field and would therefore be of great geophysical importance.In the present work, the oxidation of artificial samples of the (Mg,Fe)SiO3 pyroxene series was studied thermogravimetrically at the constant oxygen pressure of air and temperatures up to 1350°C. The resulting alteration products were determined after complete oxidation by a specific technique which is here reported as a new quantitative analytical method. This method could be applied to many other silicate groups, provided that iron is the only transitional element. Using natural samples, the accurate measure of the ratio Fe3+Fe2+ provides a basis for a possible quantitative magnetic analytical method and for a geothermometer. Factors affecting the results, i.e., (a) the volatiles and (b) the contamination of transitional elements other than iron, were recognized but could be eliminated by using specific techniques.A large region of metastable solid solution of hematite (Fe2O3) in the spinel phase was found. The resulting oxides, after complete oxidation and precipitation of the Fe2O3 phase from the metastable spinel phase, were studied by thermogravimetric analysis and X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号