首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change impact on precipitation for the Amazon and La Plata basins   总被引:2,自引:0,他引:2  
We analyze the local and remote impacts of climate change on the hydroclimate of the Amazon and La Plata basins of South America (SA) in an ensemble of four 21st century projections (1970–2100, RCP8.5 scenario) with the regional climate model RegCM4 driven by the HadGEM, GFDL and MPI global climate models (GCMs) over the SA CORDEX domain. Two RegCM4 configurations are used, one employing the CLM land surface and the Emanuel convective schemes, and one using the BATS land surface and Grell (over land) convection schemes. First, we find considerable sensitivity of the precipitation change signal to both the driving GCM and the RegCM4 physics schemes (with the latter even greater than the first), highlighting the pronounced uncertainty of regional projections over the region. However, some improvements in the simulation of the annual cycle of precipitation over the Amazon and La Plata basins is found when using RegCM4, and some consistent change signals across the experiments are found. One is a tendency towards an extension of the dry season over central SA deriving from a late onset and an early retreat of the SA monsoon. The second is a dipolar response consisting of reduced precipitation over the broad Amazon and Central Brazil region and increased precipitation over the La Plata basin and central Argentina. An analysis of the relative influence on the change signal of local soil-moisture feedbacks and remote effects of Sea Surface Temperature (SST) over the Niño 3.4 region indicates that the former is prevalent over the Amazon basin while the latter dominates over the La Plata Basin. Also, the soil moisture feedback has a larger role in RegCM4 than in the GCMs.  相似文献   

2.
We analyze changes of four extreme hydroclimatic indices in the RCP8.5 projections of the Phase I CREMA experiment, which includes 21st century projections over 5 CORDEX domains (Africa, Central America, South America, South Asia, Mediterranean) with the ICTP regional model RegCM4 driven by three CMIP5 global models. The indices are: Heat Wave Day Index (HWD), Maximum Consecutive Dry Day index (CDD), fraction of precipitation above the 95th intensity percentile (R95) and Hydroclimatic Intensity index (HY-INT). Comparison with coarse (GPCP) and high (TRMM) resolution daily precipitation data for the present day conditions shows that the precipitation intensity distributions from the GCMs are close to the GPCP data, while the RegCM4 ones are closer to TRMM, illustrating the added value of the increased resolution of the regional model. All global and regional model simulations project predominant increases in HWD, CDD, R95 and HY-INT, implying a regime shift towards more intense, less frequent rain events and increasing risk of heat wave, drought and flood with global warming. However, the magnitudes of the changes are generally larger in the global than the regional models, likely because of the relatively low “climate sensitivity” of the RegCM4, especially when using the CLM land surface scheme. In addition, pronounced regional differences in the change signals are found. The data from these simulations are available for use in impact assessment studies.  相似文献   

3.
The characteristics of tropical cyclones (TCs) over the Central America Coordinated Regional Downscaling Experiment (CORDEX) domain are examined for present and future climate conditions using the regional climate model RegCM4. RegCM4 is first tested in a 22 year (1982–2003) simulation with boundary forcing from the ERA-Interim reanalysis, showing a generally good performance in reproducing the observed TC climatology and over the Atlantic in reproducing the interannual variations of TC counts. Four scenario simulations (1970-2100) are generated using two model configurations and two driving global models (MPI and HadGEM). The simulations employing the Grell convection scheme produce too few TCs, while those using the Emanuel convection scheme reproduce the observed climatology, especially when driven by the MPI global model. The simulation of TCs is thus sensitive to both the model convection scheme and the forcing GCM. Comparison of future and present day TC statistics indicates that the frequency of future TCs decreases over the tropical Atlantic and the East Pacific coastal areas while it increases over the western areas of the East Pacific and the northern areas of the Atlantic. We also find an increase in the frequency of intense TCs and long lasting TCs, along with a northward shift of TC tracks over the Atlantic. Conclusions on the changes in TC activity are not found to be sensitive to the inclusion of SST thresholds in the detection procedure. These findings  相似文献   

4.
Present and future climatologies in the phase I CREMA experiment   总被引:1,自引:0,他引:1  
We provide an overall assessment of the surface air temperature and precipitation present day (1976–2005) and future (2070–2099) ensemble climatologies in the Phase I CREMA experiment. This consists of simulations performed with different configurations (physics schemes) of the ICTP regional model RegCM4 over five CORDEX domains (Africa, Mediterranean, Central America, South America, South Asia), driven by different combinations of three global climate models (GCMs) and two greenhouse gas (GHG) representative concentration pathways (RCP8.5 and RCP4.5). The biases (1976–2005) in the driving and nested model ensembles compared to observations show a high degree of spatial variability and, when comparing GCMs and RegCM4, similar magnitudes and more similarity for precipitation than for temperature. The large scale patterns of change (2070–2099 minus 1976–2005) are broadly consistent across the GCM and RegCM4 ensembles and with previous analyses of GCM projections, indicating that the GCMs selected in the CREMA experiment are representative of the more general behavior of current GCMs. The RegCM4, however, shows a lower climate sensitivity (reduced warming) than the driving GCMs, especially when using the CLM land surface scheme. While the broad patterns of precipitation change are consistent across the GCM and RegCM4 ensembles, greater differences are found at sub-regional scales over the various domains, evidently tied to the representation of local processes. This paper serves to provide a reference view of the behavior of the CREMA ensemble, while more detailed and process-based analysis of individual domains is left to companion papers of this special issue.  相似文献   

5.

This study assesses the hydroclimatic response to global warming over East Asia from multi-model ensemble regional projections. Four different regional climate models (RCMs), namely, WRF, HadGEM3-RA, RegCM4, and GRIMs, are used for dynamical downscaling of the Hadley Centre Global Environmental Model version 2–Atmosphere and Ocean (HadGEM2-AO) global projections forced by the representative concentration pathway (RCP4.5 and RCP8.5) scenarios. Annual mean precipitation, hydroclimatic intensity index (HY-INT), and wet and dry extreme indices are analyzed to identify the robust behavior of hydroclimatic change in response to enhanced emission scenarios using high-resolution (12.5 km) and long-term (1981–2100) daily precipitation. Ensemble projections exhibit increased hydroclimatic intensity across the entire domain and under both the RCP scenarios. However, a geographical pattern with predominantly intensified HY-INT does not fully emerge in the mean precipitation change because HY-INT is tied to the changes in the precipitation characteristics rather than to those in the precipitation amount. All projections show an enhancement of high intensity precipitation and a reduction of weak intensity precipitation, which lead to a possible shift in hydroclimatic regime prone to an increase of both wet and dry extremes. In general, projections forced by the RCP8.5 scenario tend to produce a much stronger response than do those by the RCP4.5 scenario. However, the temperature increase under the RCP4.5 scenario is sufficiently large to induce significant changes in hydroclimatic intensity, despite the relatively uncertain change in mean precipitation. Likewise, the forced responses of HY-INT and the two extreme indices are more robust than that of mean precipitation, in terms of the statistical significance and model agreement.

  相似文献   

6.
CORDEX-East Asia, a branch of the coordinated regional climate downscaling experiment (CORDEX) initiative, provides high-resolution climate simulations for the domain covering East Asia. This study analyzes temperature data from regional climate models (RCMs) participating in the CORDEX - East Asia region, accounting for the spatial dependence structure of the data. In particular, we assess similarities and dissimilarities of the outputs from two RCMs, HadGEM3-RA and RegCM4, over the region and over time. A Bayesian functional analysis of variance (ANOVA) approach is used to simultaneously model the temperature patterns from the two RCMs for the current and future climate. We exploit nonstationary spatial models to handle the spatial dependence structure of the temperature variable, which depends heavily on latitude and altitude. For a seasonal comparison, we examine changes in the winter temperature in addition to the summer temperature data. We find that the temperature increase projected by RegCM4 tends to be smaller than the projection of HadGEM3-RA for summers, and that the future warming projected by HadGEM3-RA tends to be weaker for winters. Also, the results show that there will be a warming of 1-3°C over the region in 45 years. More specifically, the warming pattern clearly depends on the latitude, with greater temperature increases in higher latitude areas, which implies that warming may be more severe in the northern part of the domain.  相似文献   

7.
The performance of the Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA) in simulating the West African monsoon (WAM) is investigated. We focus on performance for monsoon onset timing and for rainfall totals over the June–July–August (JJA) season and on the model’s representation of the underlying dynamical processes. Experiments are driven by the ERA-Interim reanalysis and follow the CORDEX experimental protocol. Simulations with the HadGEM3 global model, which shares a common physical formulation with HadGEM3-RA, are used to gain insight into the causes of HadGEM3-RA simulation errors. It is found that HadGEM3-RA simulations of monsoon onset timing are realistic, with an error in mean onset date of two pentads. However, the model has a dry bias over the Sahel during JJA of 15–20 %. Analysis suggests that this is related to errors in the positioning of the Saharan heat low, which is too far south in HadGEM3-RA and associated with an insufficient northward reach of the south-westerly low-level monsoon flow and weaker moisture convergence over the Sahel. Despite these biases HadGEM3-RA’s representation of the general rainfall distribution during the WAM appears superior to that of ERA-Interim when using Global Precipitation Climatology Project or Tropical Rain Measurement Mission data as reference. This suggests that the associated dynamical features seen in HadGEM3-RA can complement the physical picture available from ERA-Interim. This approach is supported by the fact that the global HadGEM3 model generates realistic simulations of the WAM without the benefit of pseudo-observational forcing at the lateral boundaries; suggesting that the physical formulation shared with HadGEM3-RA, is able to represent the driving processes. HadGEM3-RA simulations confirm previous findings that the main rainfall peak near 10°N during June–August is maintained by a region of mid-tropospheric ascent located, latitudinally, between the cores of the African Easterly Jet and Tropical Easterly Jet that intensifies around the time of onset. This region of ascent is weaker and located further south near 5°N in the driving ERA-Interim reanalysis, for reasons that may be related to the coarser resolution or the physics of the underlying model, and this is consistent with a less realistic latitudinal rainfall profile than found in the HadGEM3-RA simulations.  相似文献   

8.
Interannual variability over South America (SA) is mainly controlled by the El Niño-Southern Oscillation (ENSO) phenomenon. This study investigates the ENSO precipitation signal during austral spring (September–October–November-SON) over SA. Three global circulation models-GCMs-(MPI, GFDL and HadGEM2) are used for RegCM4 (Regional Climate Model version 4) downscaling of the present (1975–2005) near-future (2020–2050) and far-future (2070–2098) climates using two greenhouse gas stabilization scenarios (RCP4.5 and RCP8.5). For the present climate, only HadGEM2 simulates a frequency of El Niño (EN) and La Niña (LN) years similar to the observations. In terms of ENSO frequency changes, only in the far-future RCP8.5 climate there is greater agreement among GCMs, indicating an increase (decrease) of EN (LN) years. In the present climate, validation indicates that only the RegCM4 ensemble mean provides acceptable precipitation biases (smaller than ±20 %) in the two investigated regions. In this period, the GCMs and RegCM4 agree on the relationship between ENSO and precipitation in SA, i.e., both are able to capture the observed regions of positive/negative rainfall anomalies during EN years, with RegCM4 improving on the GCMs’ signal over southeastern SA. For the near and far future climates, in general, the projections indicate an increase (decrease) of precipitation over southeastern SA (northern-northeastern SA). However, the relationship between ENSO and rainfall in most of RegCM4 and GCM members is weaker in the near and far future climates than in the present day climate. This is likely connected with the GCMs’ projection of the more intense ENSO signal displaced to the central basin of Pacific Ocean in the far future compared to present climate.  相似文献   

9.
The regional climate model (RegCM3) from the Abdus Salam International Centre for Theoretical Physics has been used to simulate the Indian summer monsoon for three different monsoon seasons such as deficit (1987), excess (1988) and normal (1989). Sensitivity to various cumulus parameterization and closure schemes of RegCM3 driven by the National Centre for Medium Range Weather Forecasting global spectral model products has been tested. The model integration of the nested RegCM3 is conducted using 90 and 30-km horizontal resolutions for outer and inner domains, respectively. The India Meteorological Department gridded rainfall (1° × 1°) and National Centre for Environment Prediction (NCEP)–Department of Energy (DOE) reanalysis-2 of 2.5° × 2.5° horizontal resolution data has been used for verification. The RegCM3 forced by NCEP–DOE reanalysis-2 data simulates monsoon seasons of 1987 and 1988 reasonably well, but the monsoon season of 1989 is not represented well in the model simulations. The RegCM3 runs driven by the global model are able to bring out seasonal mean rainfall and circulations well with the use of the Grell and Anthes–Kuo cumulus scheme at 90-km resolution. While the rainfall intensity and distribution is brought out well with the Anthes–Kuo scheme, upper air circulation features are brought out better by the Grell scheme. The simulated rainfall distribution is better with RegCM3 using the MIT-Emanuel cumulus scheme for 30-km resolution. Several statistical analyses, such as correlation coefficient, root mean square error, equitable threat score, confirm that the performance of MIT-Emanuel scheme at 30-km resolution is better in simulating all-India summer monsoon rainfall. The RegCM3 simulated rainfall amount is more and closer to observations than that from the global model. The RegCM3 has corrected its driven GCM in terms of rainfall distribution and magnitude over some parts of India during extreme years. This study brings out several weaknesses of the RegCM model which are documented in this paper.  相似文献   

10.
We present an assessment of the CMIP5 global model simulations over a subset of CORDEX domains used in the Phase I CREMA (CORDEX RegCM hyper-MAtrix) experiment (Africa, HYMEX-MED (Mediterranean), South America, Central America and West Asia). Three variants of the transformed Mielke measure are used to assess (1) the model skill in simulating surface temperature and precipitation historical climatology, (2) the degree of surface temperature and precipitation change occurring under greenhouse gas forcing, and (3) the consistency of a model’s projected change with that of the Multi Model Ensemble (MME) mean. The majority of models exhibit varying degrees of skill depending on the region and season; however, a few models are identified as performing well globally. We find that resolution improves the model skill in most regional and seasonal cases, especially for temperature. Models with the highest and lowest climate sensitivity, as well as those whose change most resembles the ensemble mean are also discussed. Although the higher resolution models perform better, we find that resolution does not have a statistically significant impact on the models’ response to GHG forcing, indicating that model biases do not play a primary role in affecting the model response to GHG forcing. We also assess the three selected models for the CREMA Phase I experiment (HADGEM2ES, MPI-ESMMR and GFDL-ESM2M) and find that they are characterized by a relatively good level of performance, a range of high to low climate sensitivities and a good consistency with the MME changes, thereby providing a reasonably representative sample of the CMIP5 ensemble.  相似文献   

11.
Tropical rainforest plays an important role in the global carbon cycle, accounting for a large part of global net primary productivity and contributing to CO2 sequestration. The objective of this work is to simulate potential changes in the rainforest biome in Central America subject to anthropogenic climate change under two emissions scenarios, RCP4.5 and RCP8.5. The use of a dynamic vegetation model and climate change scenarios is an approach to investigate, assess or anticipate how biomes respond to climate change. In this work, the Inland dynamic vegetation model was driven by the Eta regional climate model simulations. These simulations accept boundary conditions from HadGEM2-ES runs in the two emissions scenarios. The possible consequences of regional climate change on vegetation properties, such as biomass, net primary production and changes in forest extent and distribution, were investigated. The Inland model projections show reductions in tropical forest cover in both scenarios. The reduction of tropical forest cover is greater in RCP8.5. The Inland model projects biomass increases where tropical forest remains due to the CO2 fertilization effect. The future distribution of predominant vegetation shows that some areas of tropical rainforest in Central America are replaced by savannah and grassland in RCP4.5. Inland projections under both RCP4.5 and RCP8.5 show a net primary productivity reduction trend due to significant tropical forest reduction, temperature increase, precipitation reduction and dry spell increments, despite the biomass increases in some areas of Costa Rica and Panama. This study may provide guidance to adaptation studies of climate change impacts on the tropical rainforests in Central America.  相似文献   

12.
Regional climate models (RCMs) participating in the Coordinated Regional Downscaling Experiment (CORDEX) have been widely used for providing detailed climate change information for specific regions under different emissions scenarios. This study assesses the effects of three common bias correction methods and two multi-model averaging methods in calibrating historical (1980?2005) temperature simulations over East Asia. Future (2006?49) temperature trends under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios are projected based on the optimal bias correction and ensemble averaging method. Results show the following: (1) The driving global climate model and RCMs can capture the spatial pattern of annual average temperature but with cold biases over most regions, especially in the Tibetan Plateau region. (2) All bias correction methods can significantly reduce the simulation biases. The quantile mapping method outperforms other bias correction methods in all RCMs, with a maximum relative decrease in root-mean-square error for five RCMs reaching 59.8% (HadGEM3-RA), 63.2% (MM5), 51.3% (RegCM), 80.7% (YSU-RCM) and 62.0% (WRF). (3) The Bayesian model averaging (BMA) method outperforms the simple multi-model averaging (SMA) method in narrowing the uncertainty of bias-corrected results. For the spatial correlation coefficient, the improvement rate of the BMA method ranges from 2% to 31% over the 10 subregions, when compared with individual RCMs. (4) For temperature projections, the warming is significant, ranging from 1.2°C to 3.5°C across the whole domain under the RCP8.5 scenario. (5) The quantile mapping method reduces the uncertainty over all subregions by between 66% and 94%.  相似文献   

13.
RegCM3 CORDEX东亚试验模拟和预估的中国夏季温度变化   总被引:1,自引:1,他引:0  
按照CORDEX (COordinated Regional Downscaling Experiment) 计划试验设计要求,利用中国科学院大气物理研究所全球模式FGOALS-g2的数据驱动区域气候模式RegCM3,针对1986~2005年历史气候和2010~2065年RCP8.5排放情景下气候预估,对东亚地区进行了50 km动力降尺度模拟。首先评估了RegCM3模式及驱动模式FGOALS-g2对1986~2005年夏季中国地表气温和极端高温事件的模拟能力,然后比较了两个模式在RCP8.5排放情景下对中国夏季地表气温和极端高温事件预估的变化,重点分析了动力降尺度结果的优势。结果表明,两个模式均能合理再现夏季中国地表气温和极端高温事件的大尺度气候态特征。相对于全球模式,区域模式由于水平分辨率较高,能在刻画地表气温分布的细节上体现出优势。在RCP8.5排放情景下,两个模式预估的三个地表气温指标均显著升高,到21世纪中期 (2046~2065年),两个模式预估的全国平均地表气温增幅相当,气温日较差变化均较小。在FGOALS-g2模式预估中,到21世纪中期,三个地表气温指标的增幅相当,气温日较差没有明显变化,东北和青藏高原的地表气温增幅最大。在RegCM3模式预估中,到21世纪中期,中国大部分地区日最高气温 (Tmax) 增幅大于日最低气温 (Tmin) 增幅,气温日较差增加;而在青藏高原西部,Tmax的增幅较Tmin偏低,气温日较差减小。在RCP8.5排放情景下,两个模式预估的极端高温事件到21世纪中期也显著增加,RegCM3模式预估的极端高温事件全国平均增幅略高于FGOALS-g2模式的预估。在两个模式的预估中,日最高气温最大值 (TXx)、暖昼指数 (TX90p) 和持续暖期指数 (WSDI) 变化的空间分布特征与Tmax相似;和当代相比TX90p增加了60%以上,而WSDI增加了一倍以上。  相似文献   

14.
Following the CORDEX experimental protocol, climate simulations and climate-change projections for Africa were made with the new fifth-generation Canadian Regional Climate Model (CRCM5). The model was driven by two Global Climate Models (GCMs), one developed by the Max-Planck-Institut für Meteorologie and the other by the Canadian Centre for Climate Modelling and Analysis, for the period 1950–2100 under the RCP4.5 emission scenario. The performance of the CRCM5 simulations for current climate is discussed first and compared also with a reanalysis-driven CRCM5 simulation. It is shown that errors in lateral boundary conditions and sea-surface temperature from the GCMs have deleterious consequences on the skill of the CRCM5 at reproducing specific regional climate features such as the West African Monsoon and the annual cycle of precipitation. For other aspects of the African climate however the regional model is able to add value compared to the simulations of the driving GCMs. Climate-change projections for periods until the end of this century are also analysed. All models project a warming throughout the twenty-first century, although the details of the climate changes differ notably between model projections, especially for precipitation changes. It is shown that the climate changes projected by CRCM5 often differ noticeably from those of the driving GCMs.  相似文献   

15.
The skill of a regional climate model (RegCM4) in capturing the mean patterns, interannual variability and extreme statistics of daily-scale temperature and precipitation events over Mexico is assessed through a comparison of observations and a 27-year long simulation driven by reanalyses of observations covering the Central America CORDEX domain. The analysis also includes the simulation of tropical cyclones. It is found that RegCM4 reproduces adequately the mean spatial patterns of seasonal precipitation and temperature, along with the associated interannual variability characteristics. The main model bias is an overestimation of precipitation in mountainous regions. The 5 and 95 percentiles of daily temperature, as well as the maximum dry spell length are realistically simulated. The simulated distribution of precipitation events as well as the 95 percentile of precipitation shows a wet bias in topographically complex regions. Based on a simple detection method, the model produces realistic tropical cyclone distributions even at its relatively coarse resolution (dx = 50 km), although the number of cyclone days is underestimated over the Pacific and somewhat overestimated over the Atlantic and Caribbean basins. Overall, it is assessed that the performance of RegCM4 over Mexico is of sufficient quality to study not only mean precipitation and temperature patterns, but also higher order climate statistics.  相似文献   

16.
In this study, the regional climate of the Korean Peninsula (KP) was dynamically downscaled using a high-resolution regional climate model (RCM) forced by multi- representative concentration pathways (RCP) scenarios of HadGEM2-AO, and changes in summer precipitation were investigated. Through the evaluation of the present climate, the RCM reasonably reproduced long-term climatology of summer precipitation over the KP, and captured the sub-seasonal evolution of Changma rain-band. In future projections, all RCP experiments using different RCP radiative forcings (i.e., RCP2.6, RCP4.5, RCP6.0, and RCP8.5 runs) simulated an increased summer precipitation over the KP. However, there were some differences in changing rates of summer precipitation among the RCP experiments. Future increases in summer precipitation were affected by future changes in moisture convergence and surface evaporation. Changing ranges in moisture convergences among RCP experiments were significantly larger than those in surface evaporation. This indicates that the uncertainty of changes in summer precipitation is related to the projection of the monsoon circulation, which determines the moisture convergence field through horizontal advection. Changes in the sub-seasonal evolution of Changma rain-band were inconsistent among RCP experiments. However, all experiments showed that Changma rain-band was enhanced during late June to early July, but it was weakened after mid-July due to the expansion of the western North Pacific subtropical high. These results indicate that precipitation intensity related to Changma rain-band will be increased, but its duration will be reduced in the future.  相似文献   

17.
鉴于热带气旋(TC)对我国沿海地区的影响,研究全球变暖背景下未来登陆我国TC活动的变化,对于我国沿海地区的防灾减灾具有重要意义。基于CMIP5中全球气候模式HadGEM2-ES数据,文中利用区域气候模式RegCM4开展了历史时期和3种情景(RCP2.6、RCP4.5和RCP8.5)下未来东亚区域气候的动力降尺度模拟,检验了模式对历史登陆我国TC活动及其相关大尺度环境场的模拟能力,并预估了3种情景下2030—2039年、2050—2059年和2089—2098年,登陆我国TC的路径、强度和频率的变化特征。结果表明:模式能合理地再现东亚区域历史时期(1986—2005年)大气环流场的空间结构以及登陆我国TC的特征;在3种情景下未来登陆我国TC的平均强度和数量均有不同程度的增加,尤其是台风及以上级别TC的总数明显增加,其中RCP8.5情景最突出,到21世纪末期(2089—2098年)登陆我国TC的平均强度、台风及以上级别TC总数的年平均值较历史时期将分别增加7.56%和1.05个;不同情景下未来登陆我国TC的路径均有不同程度的北移趋势,且全球升温的幅度越大,北移趋势越明显,这可能与未来中国近海显著变暖和垂直风切变减弱有关。未来我国沿海地区尤其是中高纬度很可能将面临日益严峻的TC灾害风险,亟需尽快开展防灾减灾及对策研究。  相似文献   

18.
Multi-decadal high resolution simulations over the CORDEX East Asia domain were performed with the regional climate model RegCM3 nested within the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2). Two sets of simulations were conducted at the resolution of 50 km, one for present day (1980–2005) and another for near-future climate (2015–40) under the Representative Concentration Pathways 8.5 (RCP8.5) scenario. Results show that RegCM3 adds value with respect to FGOALS-g2 in simulating the spatial patterns of summer total and extreme precipitation over China for present day climate. The major deficiency is that RegCM3 underestimates both total and extreme precipitation over the Yangtze River valley. The potential changes in total and extreme precipitation over China in summer under the RCP8.5 scenario were analyzed. Both RegCM3 and FGOALS-g2 results show that total and extreme precipitation tend to increase over northeastern China and the Tibetan Plateau, but tend to decrease over southeastern China. In both RegCM3 and FGOALS-g2, the change in extreme precipitation is weaker than that for total precipitation. RegCM3 projects much stronger amplitude of total and extreme precipitation changes and provides more regional-scale features than FGOALS-g2. A large uncertainty is found over the Yangtze River valley, where RegCM3 and FGOALS-g2 project opposite signs in terms of precipitation changes. The projected change of vertically integrated water vapor flux convergence generally follows the changes in total and extreme precipitation in both RegCM3 and FGOALS-g2, while the amplitude of change is stronger in RegCM3. Results suggest that the spatial pattern of projected precipitation changes may be more affected by the changes in water vapor flux convergence, rather than moisture content itself.  相似文献   

19.
王恺曦  姜大膀  华维 《大气科学》2020,44(6):1203-1212
本文使用三个全球气候模式驱动下的高分辨率区域气候模式RegCM4的试验数据,首先评估了RegCM4对参考时段(1986~2005年)中国干燥度指数(AI)的模拟能力,而后根据典型浓度路径中等排放(RCP4.5)情景下RegCM4试验对中国未来干湿变化进行了预估研究。结果表明,RegCM4能够合理模拟中国区域AI的空间分布。两种潜在蒸散发计算方法得到的参考时段AI在空间分布和数值上存在一定差异,尤其是在中国西部高海拔地区和北方地区。在三个全球气候模式驱动场作用下的RegCM4预估试验中,21世纪中期(2046~2065年)和末期(2081~2098年)中国区域平均AI较参考时段分别减小2%~4%和2%~5%,其中西北中部变湿,其他地区均变干。不同地区未来干湿变化的主要影响因素存在差异,西北中部降水变化为主导因素,其他地区主要受控于升温所引起的潜在蒸散发变化。  相似文献   

20.
We present climate responses of Representative Concentration Pathways (RCPs) using the coupled climate model HadGEM2-AO for the Coupled Model Intercomparison Project phase 5 (CMIP5). The RCPs are selected as standard scenarios for the IPCC Fifth Assessment Report and these scenarios include time paths for emissions and concentrations of greenhouse gas and aerosols and land-use/land cover. The global average warming and precipitation increases for the last 20 years of the 21st century relative to the period 1986-2005 are +1.1°C/+2.1% for RCP2.6, +2.4°C/+4.0% for RCP4.5, +2.5°C/+3.3% for RCP6.0 and +4.1°C/+4.6% for RCP8.5, respectively. The climate response on RCP 2.6 scenario meets the UN Copenhagen Accord to limit global warming within two degrees at the end of 21st century, the mitigation effect is about 3°C between RCP2.6 and RCP8.5. The projected precipitation changes over the 21st century are expected to increase in tropical regions and at high latitudes, and decrease in subtropical regions associated with projected poleward expansions of the Hadley cell. Total soil moisture change is projected to decrease in northern hemisphere high latitudes and increase in central Africa and Asia whereas near-surface soil moisture tends to decrease in most areas according to the warming and evaporation increase. The trend and magnitude of future climate extremes are also projected to increase in proportion to radiative forcing of RCPs. For RCP 8.5, at the end of the summer season the Arctic is projected to be free of sea ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号