首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and dynamics of the ionosphere and plasmasphere at high solar activity under quiet geomagnetic conditions of June 2–3, 1979, and January 5–6, 1980, over Millstone Hill station and Argentine Islands ionosonde, the locations of which are approximately magnetically conjugate, have been theoretically calculated. The plasma drift velocity, determined by comparing the calculated and measured heights of the F 2 layer maximum (hmF2), and the correction of [N2] and [O2], found in the NRLMSISE-00 model, make it possible to coordinate the electron densities (NmF2) calculated at the hmF2 height and the measured anomalous variations in NmF2 over the Argentine Islands ionosonde as well as the calculated and measured NmF2 and electron temperature at the hmF2 height over Millstone Hill station. It has been shown that, if the interference of the diffusion velocities of O+(4S) and H+ ions is taken into account, the additional heating of plasmaspheric electrons leads to an increase in the flux of O+(4S) ions from the topside ionosphere to lower F 2 layer altitudes, as a result of which an anomalous nighttime increase in NmF2 6, observed on January 6, 1980, over Millstone Hill station, is mainly produced. The second component of the formation of anomalous night-time NmF2 is the plasma drift along the magnetic field caused by the neutral wind, which shifts O+(4S) ions to higher altitudes where the recombination rate of O+(4S) with N2 and O2 is lower and slows down a decrease in NmF2 in the course of time. It has been shown that the influence of electronically excited O+ ions and vibrationally excited N2 and O2 molecules on electron density (N e ) considerably differs under winter and summer conditions. This difference forms significant part of the winter anomaly in N e at heights of the F 2 region and topside ionosphere over Millstone Hill station.  相似文献   

2.
The F-region peak electron densities NmF2 measured during daytime quiet geomagnetic conditions at low solar activity on January 22, 2008, April 8, 1997, July 12, 1986, and October 26, 1995, are compared. Ionospheric parameters are measured by the ionosonde and incoherent scatter radar at Millstone Hill and calculated with the use of a 1D nonstationary ionosphere–plasmasphere model of number densities and temperatures of electrons and ions at middle geomagnetic latitudes. The formation of the semiannual anomaly of the midlatitudinal NmF2 under daytime quiet geomagnetic conditions at low solar activity is studied. The study shows that the semiannual NmF2 anomaly occurs due to the total impact of three main causes: seasonal variations in the velocity of plasma drift along the geomagnetic field due to the corresponding variations in the components of the neutral wind velocity; seasonal variations in the composition and temperature of the neutral atmosphere; and the dependence of the solar zenith angle on a number of the day in the year at the same solar local time.  相似文献   

3.
The variations in the density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift perpendicularly to the magnetic (B) and electric (E) fields in the direction geomagnetic west-geomagnetic east have been studied using the three-dimensional nonstationary theoretical model of electron and ion densities (N e and N i ) and temperatures (T e and T i ) in the low-latitude and midlatitude ionospheric F region and plasmasphere. The method of numerical calculations of N e , N i , T e , and T i , including the advantages of the Lagrangian and Eulerian methods, is used in the model. A dipole approximation of the geomagnetic field (B), taking into account the non-coincidence of the geographic and geomagnetic poles and differences between the positions of the Earth’s and geomagnetic dipole centers, is accepted in the calculations. The calculated NmF2 and altitudes of the F2 layer maximum (hmF2) have been compared with these quantities measured at 16 low-latitude ionospheric sounding stations during the geomagnetically quiet period October 11–12, 1958. This comparison made it possible to correct the input model parameters: the NRLMSISE-00 model [O], the meridional component of the neutral wind velocity according to the HWW90 model, and the meridional component of the equatorial plasma drift due to the electric field specified by the empirical model. It has been indicated that the effect of the zonal E × B plasma drift on NmF2 can be neglected under daytime conditions and changes in NmF2 and hmF2 under the action of this drift are insignificant under nighttime conditions north of 25° and south of ?26° geomagnetic latitude. The effect of the zonal E × B plasma drift on NmF2 and hmF2 is most substantial in the nightside ionosphere approximately from ?20° to 20° geomagnetic latitude, and the neglect of this drift results in an up to 2.4-fold underestimation of NmF2. The found dependence of the effect of the zonal E × B plasma drift on NmF2 and hmF2 on geomagnetic latitude is related to the longitudinal asymmetry of B, asymmetry of the neutral wind about the geomagnetic equator, and changes in the meridional E × B plasma drift at a change in geomagnetic longitude.  相似文献   

4.
Analysis of the annual variation of the E-layer critical frequency median foE in the nighttime (22?02 LT) auroral zone by the data of several stations of the Northern Hemisphere has shown the median maximum in winter and minimum in summer, even though the summer contribution of solar radiation to foE is greater. Thus, a new phenomenon was discovered—an foE median winter anomaly in the nighttime auroral zone. Its amplitude (ratio of winter to summer foE figures) can reach 10–15%; however, this anomaly was weakly expressed and statistically insignificant at particular stations located in the auroral zone. The winter anomaly is more distinct for foE avr, the median of the E-layer critical frequency foE caused by the auroral source of atmospheric ionization, i.e., excluding the solar radiation contribution to foE. For foE avr, the amplitude of the winter anomaly can reach 15–20%. Based on the qualitative analysis, it has been found that foE winter anomaly is stipulated by the winter/summer asymmetry of energy flow of accelerated electrons, which induce discrete aurorae in the nighttime auroral zone.  相似文献   

5.
The occurrence probabilities of the first and second anomalous nighttime local maximums in the diurnal variations in the electron density at a maximum of the ionospheric F 2 layer (NmF2) in the region where the crest (hump) of the equatorial anomaly originates in the northern geographic hemisphere have been studied using the data of the stations for vertical sounding of the ionosphere (Paramaribo, Dakar, Quagadougou, Ahmedabad, Delhi, Calcutta, Chongoing, Guangzhou, Taipei, Chung-Li, Okinawa, Yamagawa, Panama, and Bogota) from 1957 to 2004. It has been demonstrated that the anomalous nighttime NmF2 maximums are least frequently formed at ~53° geomagnetic longitude. The calculations have indicated that the studied probabilities are independent of solar activity. Geomagnetic activity weakly affects the rate of occurrence of the first nighttime NmF2 maximum at geomagnetic longitudes of approximately 140° to 358°. At geomagnetic longitudes of approximately 16° to 70° (i.e., in the longitudinal zone of a decreased occurrence frequency of anomalous nighttime maximums), the occurrence probability of the first anomalous nighttime NmF2 maximum under geomagnetically quiet conditions is pronouncedly lower than under geomagnetically disturbed conditions. The dependence of the occurrence probabilities of the first and second anomalous nighttime NmF2 maximums on the month number in a year has been studied.  相似文献   

6.
The change in the dependence of the F2-layer critical frequency on its height hmF2 is considered based on two sources of initial data used earlier by the authors. It is found that the slope k of the foF2 dependence on hmF2 systematically decreases from the earlier (“etalon”) period, 1958–1980, to the later periods of 1988–2010, 1998–2010, and 1998–2014. Since the foF2 value depends on the atomic oxygen concentration in the F region much more strongly than hmF2, the found decrease in k confirms the concept of a decrease in the atomic oxygen concentration in the thermosphere with time previously formulated by the authors.  相似文献   

7.
The variability degree of the F 2-layer height, hmF2, from the 1950s–1960s to the 1990s has been analyzed based on the vertical sounding data for a series of midlatitude ionospheric stations. It has been found that the scatter of the hmF2 values (standard deviation) abruptly increases from the earlier decades to the later ones. This increase is more evident in the spring period of the year and is independent of geomagnetic activity. An increase in the scatter of hmF2 apparently indicates systematic changes (trends) in the thermospheric dynamics, the existence of which was suggested in the recent publications of the authors.  相似文献   

8.
The dependence of the zonal geomagnetic indices (AE, Ap, Kp, Kn, and Dst) on the solar wind parameters (the electric field E y component, dynamic pressure P d and IMF irregularity σB) has been studied for two types of events: magnetic clouds and high-speed streams. Based on the empirical relationships, it has been established that the AE, Ap, Kp, and Kn indices are directly proportional to the E y value at E y < 12 mV m?1 and are inversely proportional to this value at E y > 12 mV m?1 for the first-type events. On the contrary, the dependence of Dst on E y is monotonous nonlinear. A linear dependence of all geomagnetic indices on E y is typical of the second-type events. It has been indicated that the specific features of geoeffectiveness of magnetic clouds and high-speed solar wind streams are caused by the dependence of the electric field potential across the polar cap on the electric field, solar wind dynamic pressure, and IMF fluctuations.  相似文献   

9.
Formation mechanism of the spring–autumn asymmetry of the F2-layer peak electron number density of the midlatitudinal ionosphere, NmF2, under daytime quiet geomagnetic conditions at low solar activity are studied. We used the ionospheric parameters measured by the ionosonde and incoherent scatter radar at Millstone Hill on March 3, 2007, March 29, 2007, September 12, 2007, and September 18, 1984. The altitudinal profiles of the electron density and temperature were calculated for the studied conditions using a one-dimensional, nonstationary, ionosphere–plasmasphere theoretical model for middle geomagnetic latitudes. The study has shown that there are two main factors contributing to the formation of the observed spring–autumn asymmetry of NmF2: first, the spring–autumn variations of the plasma drift along the geomagnetic field due to the corresponding variations in the components of the neutral wind velocity, and, second, the difference between the composition of the neutral atmosphere under the spring and autumn conditions at the same values of the universal time and the ionospheric F2-layer peak altitude. The seasonal variations of the rate of O+(4S) ion production, which are associated with chemical reactions with the participation of the electronically excited ions of atomic oxygen, does not significantly affect the studied NmF2 asymmetry. The difference in the degree of influence of O+(4S) ion reactions with vibrationally excited N2 and O2 on NmF2 under spring and autumn conditions does not significantly change the spring–autumn asymmetry of NmF2.  相似文献   

10.
Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6?≤?M L ?≤?4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c(f)?=?Q 0 f α . The result was Q 0?=?396?±?29 and α?=?0.72?±?0.04 for a lapse time of 1.9*(t s???t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0?=?391?±?130 and α?=?0.60?±?0.16, which agrees well with the coda Q c result.  相似文献   

11.
On the basis of the ion chemistry theoretical model, the impact of a powerful solar flare on variations in the ion composition and electron density in the D region of the polar ionosphere is considered. Good agreemnt between the model profiles of the electron density N e (h) and the experimental data obtained during the flare by the partial reflection method is found. It is shown that the decrease in the effective recombination coefficient observed during disturbances is explained by the depletion of the relative content of the rapidly recombining complex ion clusters.  相似文献   

12.
Six species of more than 20-year-old desert woody plants in the oasis-desert ecotone were selected for study. The results showed that: (1) in different growing seasons δ13C values of assimilating organ varied between -14%. and -16%. for Haloxylon ammodendron (HA),-14%. - -15%. for Calligonum mongolicum (CM) and -25%. - -28%. for Caragana korshinskii (CK), Nitraria sphaerocarpa (NS) and Hedysarum scoparium (HS). (2) The net photosynthetic rate (Pn) of HA and CM was significantly higher than those of the other species. With the decrease in Pn for the six species, their intercellular CO2 concentration increased, but stomatal limitation value decreased under the intensive light. At the same time, the photochemical efficiency of PS II dropped to different degrees. (3) The CO2 enrichment experiment demonstrated that, Pn of HA and CM increased to different extent under 450 μmol/mol, but their Pn reduced or approximated to the current condition under 650 μmol/mol. Under 450 μmol/mol the efficiency for solar energy utilization of CK and HS significantly reduced and under 650 μmol/mol their respiration rate exceeded photosynthesis rate. It can be concluded that HA and CM have some function of pathway for C4 but the other three species have the function for C3. The decline in their Pn is mainly caused by non-stomatal factors. HA, CM, CK and HS exhibited photoinhibition, which disappeared in a short time. This is a kind of positive readjustment to adapting to the desert environment. HA and CM can adapt to the high CO2 environment, but CK and HS cannot. With the rise in atmospheric CO2 concentration and climate warming, the latter two species in the oasis-desert ecotone may be gradually degraded or even disappear.  相似文献   

13.
Month-to-month changes in the statistical characteristics of the ionospheric E layer peak electron density NmE at medium and low geomagnetic latitudes under daytime geomagnetically quiet conditions are investigated. Critical frequencies of the ionospheric E layer measured by the middle latitude ionosonde Boulder and low latitude ionosondes Huancayo and Jicamarca at low solar activity from 1957 to 2015 have been used in the conducted statistical analysis. The mathematical expectation of NmE, standard deviation of NmE from the expectation of NmE, and NmE variation coefficient have been calculated for each month of the year. The months of the formation of extrema of these statistical parameters of NmE were found.  相似文献   

14.
Using model simulations, the morphological picture (revealed earlier) of the disturbances in the F 2 region of the equatorial ionosphere under quiet geomagnetic conditions (Q-disturbances) is interpreted. It is shown that the observed variations in the velocity of the vertical E × B plasma drift, related to the zonal E y component of the electric field, are responsible for the formation of Q-disturbances. The plasma recombination at altitudes of the lower part of the F 2 region and the dependence of the rate of this process on heliogeophysical conditions compose the mechanism of Q-disturbance formation at night. The daytime positive Q-disturbances are caused exclusively by a decrease in the upward E × B drift, and this type of disturbances could be related to the known phenomenon of counter electrojet. Possible causes of formation of the daytime negative Q-disturbances are discussed.  相似文献   

15.
The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l’Hexagone (SI-Hex) covers the period 1962–2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.  相似文献   

16.
We studied the effects of expected end-of-the-century pCO2 (1000 ppm) on the photosynthetic performance of a coastal marine cyanobacterium Synechococcus sp. PCC7002 during the lag, exponential, and stationary growth phases. Elevated pCO2 significantly stimulated growth, and enhanced the maximum cell density during the stationary phase. Under ambient pCO2 conditions, the lag phase lasted for 6 days, while elevated pCO2 shortened the lag phase to two days and extended the exponential phase by four days. The elevated pCO2 increased photosynthesis levels during the lag and exponential phases, but reduced them during the stationary phase. Moreover, the elevated pCO2 reduced the saturated growth light (Ik) and increased the light utilization efficiency (α) during the exponential and stationary phases, and elevated the phycobilisome:chlorophyll a (Chl a) ratio. Furthermore, the elevated pCO2 reduced the particulate organic carbon (POC):Chl a and particulate organic nitrogen (PON):Chl a ratios during the lag and stationary phases, but enhanced them during the exponential phase. Overall, Synechococcus showed differential physiological responses to elevated pCO2 during different growth phases, thus providing insight into previous studies that focused on only the exponential phase, which may have biased the results relative to the effects of elevated pCO2 in ecology or aquaculture.  相似文献   

17.
We propose a method that employs the squared displacement integral (ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s  ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.  相似文献   

18.
The Aki-Utsu method of Gutenberg-Richter (G-R) b value estimation is often misapplied so that estimations not using the G-R histogram are often meaningless because they are not based on adequate samples. We propose a method to estimate the likelihood Pr(b?b m , N, M 1, M 2) that an observed b m estimate, based on a sample of N magnitudes within an [M 1????≤?ΔM/2,?M 2?+?ΔM/2) range, where ΔM?=?0.1 is the usual rounding applied to magnitudes, is due to a “true” source b value, b, and use these likelihoods to estimate source b ranges corresponding to various confidence levels. As an example of application of the method, we estimate the b values before and after the occurrence of a 7.4-magnitude earthquake in the Mexican subduction zone, and find a difference of 0.82 between them with 100% confidence that the b values are different.  相似文献   

19.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.The forest was a net sink of atmospheric CO2 and sequestered ?449 g C·m?2 during the study period; ?278 and ?171 gC·m?2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were ?1332, ?1294 g C·m?2. and 1054, 1124 g C·m?2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.  相似文献   

20.
Selecting three half orbits near the epicenter of Pu’er earthquake, we analyzed the Ne data recorded in their revisited orbits during a year before this earthquake, and extracted Ne precursors. The results show that: ① There are significant seasonal variations of ionospheric Ne in night time, which exhibit different shapes respectively in four seasons; ② There are three main shapes of Ne: single-peak, saddle-shaped and even-shaped, all of which may occur in four seasons, but each season with its typical shape relatively; ③ Spatial images of Ne showed high values near the epicenter in 30 days before the earthquake, and there is a good correlation between anomaly and distribution of earthquake in space and time, which reflects that these spatial anomalies were indeed concerned with the earthquake; ④ There shows a certain similarity of the Ne curves among revisited orbits, which can provide background information for distinguishing and identification of seismic anomaly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号