首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
http://dx.doi.org/10.1016/j.gsf.2016.11.007   总被引:1,自引:1,他引:0  
Lunar anorthosite is a major rock of the lunar highlands,which formed as a result of plagioclasefloatation in the lunar magma ocean(LMO).Constraints on the sufficient conditions that resulted in the formation of a thick pure anorthosite(mode of plagioclase 95 vol.%) is a key to reveal the early magmatic evolution of the terrestrial planets.To form the pure lunar anorthosite,plagioclase should have separated from the magma ocean with low crystal fraction.Crystal networks of plagioclase and mafic minerals develop when the crystal fraction in the magma(φ) is higher than ca.40-60 vol.%,which inhibit the formation of pure anorthosite.In contrast,when φ is small,the magma ocean is highly turbulent,and plagioclase is likely to become entrained in the turbulent magma rather than separated from the melt.To determine the necessary conditions in which anorthosite forms from the LMO,this study adopted the energy criterion formulated by Solomatov.The composition of melt,temperature,and pressure when plagioclase crystallizes are constrained by using MELTS/pMELTS to calculate the density and viscosity of the melt.When plagioclase starts to crystallize,the Mg~# of melt becomes 0.59 at 1291 C.The density of the melt is smaller than that of plagioclase for P 2.1 kbar(ca.50 km deep),and the critical diameter of plagioclase to separate from the melt becomes larger than the typical crystal diameter of plagioclase(1.8-3 cm).This suggests that plagioclase is likely entrained in the LMO just after the plagioclase starts to crystallize.When the Mg~# of melt becomes 0.54 at 1263 C,the density of melt becomes larger than that of plagioclase even for 0 kbar.When the Mg~# of melt decreases down to 0.46 at 1218 C,the critical diameter of plagioclase to separate from the melt becomes 1.5-2.5 cm,which is nearly equal to the typical plagioclase of the lunar anorthosite.This suggests that plagioclase could separate from the melt.One of the differences between the Earth and the Moon is the presence of water.If the terrestrial magma ocean was saturated with H_2O,plagioclase could not crystallize,and anorthosite could not form.  相似文献   

2.
元古宙岩体型斜长岩的特征及研究现状   总被引:1,自引:0,他引:1  
斜长岩是指斜长石含量>90%的岩浆岩,可分为6类。其中,岩体型斜长岩仅赋存于前寒武纪变质地体中,形成时代主要为元古宙(2.1~ 0.9 Ga),代表地球演化史上很重要的构造-热事件。岩体呈穹隆状或层状产出,具典型堆晶结构,有含钾长石和斜长石出溶片晶的巨晶斜长石和富铝辉石。巨晶的出溶指示了岩浆由高压至低压的变压结晶过程,体现了斜长岩体深成、浅侵位的特点。关于斜长岩的源区,之前普遍认为源于幔源玄武质岩浆,而近10年来更趋向于源区为下地壳,母岩浆的成分为纹长苏长岩和铁闪长岩等新认识;其成因模式以底侵模式和地壳舌状物熔融模式最具代表性。岩体型斜长岩时空上常与奥长环斑花岗岩共生,构成AMCG(Anorthosite Mangerite Charnockite Granite)岩石组合,被认为属非造山岩浆作用的产物,可能代表大陆裂谷环境。然而,新近一些年龄结果显示,它们形成于造山作用的后期阶段,暗示岩体产出于碰撞后环境。斜长岩体中常赋存有Fe Ti V氧化物矿床,有的富含P及Cu,Ni硫化物等,属典型的岩浆矿床。对此,目前主要有结晶分异过程、早期堆晶过程及不混熔分离3种成因机制解释。由此对今后研究中值得关注的问题提出了一些看法。  相似文献   

3.
John Longhi   《Lithos》2005,83(3-4):183-198
Calculations of fractional crystallization (FC) and assimilation fractional crystallization (AFC) at 11 kb for a variety of primitive magmatic compositions and a mafic assimilant demonstrate that none of them has a bulk composition suitable to be parental to massif anorthosites. Mafic compositions thought to be parental to massif anorthosites have Mg′ values of 0.6 to 0.4 and form coherent arrays with moderately steep slopes on plots of TiO2, K2O, and P2O5 versus Mg′. The calculated liquid lines of descent (LLD) of basaltic magmas undergoing FC or AFC processes pass through the arrays of anorthosite parent magma compositions with much shallower slopes than the natural arrays, which indicates that the arrays of natural parental magmas were produced by a process other than FC/AFC. Also, by the time most crystallizing basaltic magmas with or without assimilation reach plagioclase saturation, their residual liquids have Mg′ values that are too low to be parental to anorthosites. MORB-like olivine tholeiites and high-aluminum olivine tholeiites (HAOT) from convergent plate margins do reach plagioclase saturation while sufficiently magnesian, but their Wo (Wollastonite) contents are too high such that they reach plagioclase saturation coexisting only with augite and do not reach orthopyroxene saturation (if at all) until Mg′ is too low. Calculations show it is not possible to produce a high-Al melt from typical mantle peridotites that has sufficient TiO2 to make andesine-type anorthosite.

Calculation of partial melting for an average mafic crustal composition at 11 kbar provides a much closer match to the array of natural parental compositions in terms of minor element concentrations and proportions of mineral components. However, accounting for the entire array requires a more magnesian source composition. Such compositions exist in several crustal xenolith localities. Similar results were obtained using the bulk composition of the Stillwater Complex, which is used as a model mafic source (here the premise is that overdense crustal intrusions might sink back into the mantle). As with the terrain composition, this particular layered intrusion composition is not sufficiently magnesian, however, the fit improves when mixtures of early and late stage portions of the complex (i.e., the denser portions) were run as potential source regions.  相似文献   


4.
Two of the most well-preserved igneous bodies in the early Preeambrian White Sea complex— the Severnyy and Yuzhnyy massifs on Pezhostrov Island—have been studied in order to gain a better understanding of ultramafic-mafic magmatism in the Belomorian tectonic block. These massifs represent portions of a single, differentiated pluton, ranging in composition from lherzolite to gabbronorite to anorthosite.

Mineral-chemical and trace-element compositions of chill margins from this pluton were used to model the differentiation in this ancient magma chamber. Major-element compositions of minerals suggest that plagioclase in these rocks is not in equilibrium with the mafic minerals. This possibly is the result of suspension of less dense, early-formed plagioclase in more dense, early residual liquids. Later, as the liquid density decreased because of precipitation of mafic phases, plagioclase began to precipitate. We speculate that the liquid density did not decrease to a point where plagioclase would settle, until after 15 to 30% crystallization of the parent magma. However, this early-formed plagioclase would not have been in chemical equilibrium with the later-forming mafic silicates. Toward the end of crystallization in the chamber, plagioclase precipitated in equilibrium with the mafic minerals. Trace-element modeling indicates that the rocks that form the pluton originally were precipitated as liquid-dominated cumulates.

The trace-element and mineral-chemical compositions of the parent liquid (s) of the Pezhostrov pluton were enriched in the LILE (Sr, Rb, Ba, La) and depleted in the HFSE (Zr, Ti, Y) relative to present-day MORB. These magmas are suggested to be roughly boninitic in composition, and are similar to those parental to other mafic plutons of similar age worldwide, including the Stillwater intrusion, Montana, USA. Thus, this character of magmatism may represent an important episode of mantle melting worldwide during the late Archean and early Proterozoic.  相似文献   

5.
Nelsonite and Fe–Ti oxides ore are common in Proterozoic massif-type anorthosites and layered intrusions. Their geneses have long been controversial, with existing hypotheses including liquid immiscibility between Si-rich and Fe–Ti–P-rich melts and gravitational fractionation among apatite, magnetite, ilmenite and silicates. In this paper, we report detailed field geology and mineral geochemical studies of the nelsonite and Fe–Ti oxides ore from the Damiao anorthosite complex, NE China. Geological observations indicate that the nelsonite and Fe–Ti oxides ore occur as irregularly inclined stratiform-like or lensoid or veins, and are in sharp contact with the anorthosite and gabbronorite. The widespread veins and lenses structure of the Damiao nelsonite and Fe–Ti oxides ore in the anorthosite indicates their immiscibility-derived origin. The apatite in the nelsonite and gabbronorite shows evolution trends different from that in the gabbronorite in the diagrams of Sr versus REEs and Eu/Eu*, suggesting that petrogenesis of the nelsonite and gabbronorite is different from the gabbronorite. Compared with the gabbronorite, the nelsonite and Fe–Ti oxides ore have magnetite high in Cr, plagioclase high in Sr and low in An, and apatite high in Sr, low in REEs with negative Eu anomaly. The evidence permits us to propose that the Damiao Fe–Ti oxides ore/nelsonite and gabbronorite were derived from different parental magmas. The gabbronorite was formed by solidification of the interstitial ferrodioritic magma in the anorthosite, which was the residual magma after extensive plagioclase and pyroxene crystallization and was carried upward by the plagioclase crystal mesh. In contrast, the Fe–Ti oxides ore and nelsonites and mangerite were produced by crystallization of the Fe–Ti–P-rich and SiO2-rich magmas, respectively, due to the liquid immiscibility that occurred when the highly evolved ferrodioritic magma mixed with newly replenished magmas. The variation from Fe–Ti oxides ore to nelsonite and gabbro-nelsonite upwards (as apatite content increases with height) in the steeply inclined Fe–Ti oxides orebodies suggest that gravity fractionation may have played important roles during the crystallization of the Fe–Ti–P-rich magma.  相似文献   

6.
斜长岩体中Fe-Ti-P矿床的特征与成因   总被引:3,自引:0,他引:3       下载免费PDF全文
岩体型斜长岩为由90%以上斜长石组成的岩浆岩,具变压结晶的特点,仅形成于元古宙(2.1~0.9Ga),常赋存有Fe-Ti-P矿床。Fe-Ti-P矿体既呈整合层状也呈透镜状和席状等不规则形式产出;矿石类型有块状和侵染状,前者矿石矿物含量>70%,后者矿石矿物含量为20%~70%;矿物组成上,不同矿床稍有差别:部分矿床的Fe-Ti氧化物以钛磁铁矿为主、钛铁矿次之,而其他矿床则以赤钛铁矿为主、磁铁矿次之。一些矿床磷灰石含量较高,出现仅由Fe-Ti氧化物和磷灰石组成的铁钛磷灰岩。研究表明,Fe-Ti-P矿床由富Fe、Ti的岩浆演化形成,其母岩浆是在深部岩浆房中大量结晶斜长石后的残余岩浆。部分学者认为不同矿石经正常的结晶分异作用并堆晶形成,但该机制很难解释呈不规则状产出的矿石;其他学者则认为不混熔作用对矿石的富集(尤其是脉状、席状的铁钛磷灰岩)有重要作用,但该机制缺乏岩相学和地球化学方面的证据。河北大庙Fe-Ti-P矿体呈透镜状、席状等不连续地分布于斜长岩中,矿体不发育明显岩浆分层,但仍出现不同矿石的相带。依据详细的岩相学、矿体中矿物含量和成分的变化规律以及全岩地球化学特征,我们判断大庙矿床中不同矿石为堆晶矿物和晶隙流体的混合产物,它们由铁闪长质岩浆经结晶分异和堆晶作用形成,与不混熔作用关系不大。矿体不规则状产出的特点可能与岩浆动力分异作用有关,并伴随有小范围的亚固相迁移。  相似文献   

7.
D. de Waard  E. P. Wheeler 《Lithos》1971,4(4):367-380
Two rock series are distinguished in the Nain anorthosite massif: the anorthosite-adamellite suite, occupying most of the massif, and the troctolite-syenite suite, which occurs in layered intrusions. Field relations show that troctolitic rocks intrude anorthositic rocks, but are intruded by adamellitic rocks.

The following evolutionary model is suggested for the Nain massif. Fractional crystallization in a parental magma resulted in a density-stratified magma mass in which plagioclase crystals accumulated by suspension at a level where the density of crystal and liquid matched. Thus, a plagioclase cumulate formed, which was underlain by heavier troctolitic magma and overlain by lighter acidic magma. Settling of the plagioclase mass caused local intrusion of troctolitic magma, which differentiated in members of the troctolite-syenite suite. Subsequent disturbance of the magma chamber distorted the solidified portion, and caused local intrusive relationships between it and the acidic rest magma, which further differentiated in members of the adamellite series.  相似文献   


8.
The Sept Iles layered intrusion (Quebec, Canada) is dominated by a basal Layered Series made up of troctolites and gabbros, and by anorthosites occurring (1) at the roof of the magma chamber (100-500 m-thick) and (2) as cm- to m-size blocks in gabbros of the Layered Series. Anorthosite rocks are made up of plagioclase, with minor clinopyroxene, olivine and Fe-Ti oxide minerals. Plagioclase displays a very restricted range of compositions for major elements (An68-An60), trace elements (Sr: 1023-1071 ppm; Ba: 132-172 ppm) and Sr isotopic ratios (87Sr/86Sri: 0.70356-0.70379). This compositional range is identical to that observed in troctolites, the most primitive cumulates of the Layered Series, whereas plagioclase in layered gabbros is more evolved (An60-An38). The origin of Sept Iles anorthosites has been investigated by calculating the density of plagioclase and that of the evolving melts. The density of the FeO-rich tholeiitic basalt parent magma first increased from 2.70 to 2.75 g/cm3 during early fractionation of troctolites and then decreased continuously to 2.16 g/cm3 with fractionation of Fe-Ti oxide-bearing gabbros. Plagioclase (An69-An60) was initially positively buoyant and partly accumulated at the top of the magma chamber to form the roof anorthosite. With further differentiation, plagioclase (<An60) became negatively buoyant and anorthosite stopped forming. Blocks of anorthosite (autoliths) even fell downward to the basal cumulate pile. The presence of positively buoyant plagioclase in basal troctolites is explained by the low efficiency of plagioclase flotation due to crystallization at the floor and/or minor plagioclase nucleation within the main magma body. Dense mafic minerals of the roof anorthosite are shown to have crystallized from the interstitial liquid.The processes related to floating and sinking of plagioclase in a large and shallow layered intrusion serve as a proxy to refine the crystallization model of the lunar magma ocean and explain the vertically stratified structure of the lunar crust, with (gabbro-)noritic rocks at the base and anorthositic rocks at the top. We propose that the lunar crust mainly crystallized bottom-up. This basal crystallization formed a mafic lower crust that might have a geochemical signature similar to the magnesian-suite without KREEP contamination, while flotation of some plagioclase grains produced ferroan anorthosites in the upper crust.  相似文献   

9.
One of the most puzzling features of the UG1 chromitite layers in the famous exposures at Dwars River, Eastern Bushveld Complex, is the bifurcation, i.e. convergence and divergence of layers along strike that isolate lenses of anorthosite. The bifurcations have been variously interpreted as resulting from: (1) the intermittent accumulation of plagioclase on the chamber floor as lenses, terminated by crystallization of continuous chromitite layers (the depositional model); (2) late-stage injections of chromite mush or chromite-saturated melt along anastomosing fractures that dismembered semi-consolidated plagioclase cumulates (the intrusive model); (3) post-depositional deformation of alternating plagioclase and chromite cumulates, resulting in local amalgamation of chromitite layers and anorthosite lenses that wedge out laterally (the deformational model). None of these hypotheses account satisfactorily for the following field observations: (a) wavy and scalloped contacts between anorthosite and chromitite layers; (b) abrupt lateral terminations of thin anorthosite layers within chromitite; (c) in situ anorthosite inclusions with highly irregular contacts and delicate wispy tails within chromitite; many of these inclusions are contiguous with footwall and hanging wall cumulates; (d) transported anorthosite fragments enclosed by chromitite; (e) disrupted anorthosite and chromitite layers overlain by planar chromitite; (f) protrusions of chromitite into underlying anorthosite; (g) merging of chromitite layers around anorthosite domes. We propose a novel hypothesis that envisages basal flows of new dense and superheated magma that resulted in intense thermo-chemical erosion of the temporary floor of the chamber. The melting and dissolution of anorthosite was patchy and commonly inhibited by chromitite layers, resulting in lens-like remnants of anorthosite resting on continuous layers of chromitite. On cooling, the magma crystallized chromite on the irregular chamber floor, draping the remnants of anorthosite and merging with pre-existing chromitite layers excavated by erosion. With further cooling, the magma crystallized chromite-bearing anorthosite. Emplacement of multiple pulses of magma led to repetition of this sequence of events, resulting in a complex package of anorthosite lenses and bifurcating chromitite layers. This hypothesis is the most satisfactory explanation for most of the features of this enigmatic igneous layering in the Bushveld Complex.  相似文献   

10.
The San Gabriel anorthosite is an andesine-type anorthosite and has been investigated in order to test a model which postulates that the parental magmas of such anorthosites are andesite. Plagioclase in the anorthosites ranges from An55 (mol per cent) to An35 with a mode at An49, in the diorites from An52 to An24 (mode An36), and in the monzonites/ quartz-monzonites from An27 to An9 (mode An21). No hiatus occurs in the compositional spectrum, suggesting that the sequence is derived from a common parent, with anorthosite accumulating first and quartz-monzonite last. The parent magma is constrained by having plagioclase of about An55 on the liquidus, and by producing an oversaturated residual liquid. The sequence is in accord with published experimental observations on the fractional crystallization of a synthetic quartz-diorite (andesite), and is compatible with a model for the differentiation of andesine-type anorthosites from andesitic magmas.  相似文献   

11.
We report in situ Sr isotope data for plagioclase of the Bushveld Complex. We found disequilibrium Sr isotopic compositions on several scales, (1) between cores and rims of plagioclase grains in the Merensky pyroxenite, the Bastard anorthosite, and the UG1 unit and its noritic footwall, (2) between cores of different plagioclase grains within thin sections of anorthosite and pyroxenite of the Merensky unit, the footwall anorthosite of the Merensky reef and the footwall norite of the UG1 chromitite. The data are consistent with a model of co-accumulation of cumulus plagioclase grains that had crystallized from different magmas, followed by late-stage overgrowth of the cumulus grains in a residual liquid derived from a different level of the compacting cumulate pile. We propose that the rocks formed through slumping of semi-consolidated crystal slurries at the top of the Critical Zone during subsidence of the center of the intrusion. Slumping led to sorting of crystals based on density differences, resulting in a layered interval of pyroxenites, norites and anorthosites.  相似文献   

12.
Intermediate-composition plagioclase (An40–60) is typicallyless dense than the relatively evolved basaltic magmas fromwhich it crystallizes and the crystallization of plagioclaseproduces a dense residual liquid, thus plagioclase should havea tendency to float in these magmatic systems. There is, however,little direct evidence for plagioclase flotation cumulates eitherin layered intrusions or in Proterozoic anorthosite complexes.The layered series of the Poe Mountain anorthosite, southeastWyoming, contains numerous anorthosite–leucogabbro blocksthat constrain density relations during differentiation. Allblocks are more mafic than their hosting anorthositic cumulates,their plagioclase compositions are more calcic, and each blockis in strong Sr isotopic disequilibrium with its host cumulate.Associated structures—disrupted and deformed layering—indicatethat (1) a floor was present during crystallization and thatplagioclase was accumulating and/or crystallizing on the floor,(2) compositional layering and plagioclase lamination formeddirectly at the magma–crystal pile interface, and (3)the upper portions of the crystal pile contained significantamounts of interstitial melt. Liquid densities are calculatedfor proposed high-Al olivine gabbroic parental magmas and Fe-enrichedferrodioritic and monzodioritic residual magmas of the anorthositestaking into account pressure, oxygen fugacity, P2O5, estimatedvolatile contents, and variable temperatures of crystallization.For all reasonable conditions, calculated block densities aregreater than those of the associated melt. The liquid densities,however, are greater than those for An40–60 plagioclase,which cannot have settled to the floor. Plagioclase must eitherhave been carried to the floor in relatively dense packets ofcooled liquid plus crystals or have crystallized in situ. Asloping floor, possibly produced by diapiric ascent of relativelylight plagioclase-rich cumulates, is required to allow for drainingand removal of the dense interstitial liquid produced in thecrystal pile and may be a characteristic feature during thecrystallization of many Proterozoic anorthosites and layeredintrusions. KEY WORDS: magma; density; Proterozoic anorthosites; blocks; plagioclase  相似文献   

13.
Systematic variations of the mineral chemistry of ferroan anorthosite 60025, which is probably a mixture of closely related materials, suggest that lunar anorthosites formed by strong fractional crystallization and near-perfect adcumulate growth, without trapping liquid. The parent liquid for the most primitive samples was saturated with olivine, plagioclase, pigeonite, and chromite, and evolved to one saturated with plagioclase, pigeonite, high-Ca pyroxene, and ilmenite. The parent liquid also had a very low Na2O content, and combined with strong fractional crystallization this explains the steep trend of anorthosites on an Mg1 (atomic 100 × Mg/(Mg + Fe)) v. An diagram. The mineral and chemical data for other anorthosites are consistent with such a model. Near-perfect adcumulation can occur if growth takes place at the crystal-liquid interface without the physical accumulation of crystals grown elsewhere, and is encouraged by the shifts in phase boundaries with pressure.Anorthosites are probably the remnants of a crust floating on, and crystallizing at the surface of, a magma ocean originally of bulk Moon composition. Mineralogical and trace element data suggest that the parental liquid for the most primitive anorthosites had previously crystallized no plagioclase and some but perhaps very little pyroxene. Hence the bulk Moon appears to be similar to that proposed by Ringwood (1976) but to have even lower alkalis, a subchondritic CaAl ratio, and REE abundances and patterns close to chondritic. The mare basalt sources are not directly complementary to the feldspathic crust, because experimental and trace element data indicate that they are too magnesian and contain too much high-Ca pyroxene. Other crustal rocks, such as the Mg-suite samples, are not closely related to anorthosites; in addition to their chemical differences they have a different crystallization sequence: ol → plag → px, in contrast with the ol → px → plag inferred for anorthosite parental liquid evolution.  相似文献   

14.
The Grubergebirge anorthosite, a Late Neoproterozoic massif-type anorthosite, was emplaced into Late Mesoproterozoic-aged metamorphosed orthogneisses and supracrustal rocks in the Wohlthat Mountains. Mineralogically and chemically, the marginal rocks to the anorthosite massif classify as ferromonzodiorite and ferromonzonite. Variations in trace and rare earth element abundances and normalized patterns between the anorthosite and associated marginal ferromonzodiorite (and minor ferromonzonite) and distinct differences between the ferromonzodiorite and ferromonzonite have been observed. Whereas the magmas from which the anorthosite crystallized have been slightly contaminated by incorporating crustal material (now occurring as enclaves), the marginal ferromonzodiorite represent rocks that originated due to mixing (hybridization) of injected primitive ferrodiorite magma(s) with preexisting crustal material, resulting in the hybrid ferromonzodiorite.  相似文献   

15.
The Jinbaoshan ultramafic intrusion is a sheet-like body with a thick wehrlite unit in the center and thin pyroxenite units at the margins. PGE are enriched in several disseminated sulfide zones in the intrusion. Olivine from the intrusion has low Fo and depleted Ni contents compared to olivine from coeval Emeishan picrites. Whole rock major and trace element concentrations suggest that the Jinbaoshan wehrlites originally contained <30% trapped liquid. The total amount of sulfide in the rocks exceeds that which could have been dissolved in the trapped liquid. The Jinbaoshan wehrlites are interpreted to represent residual assemblages formed by dissolution of plagioclase by passing magma. No clear evidence of crustal contamination is indicated by S, Nd and Os isotopes. We envision that sulfide saturation occurred at depth due to olivine and chromite crystallization. Immiscible sulfide droplets were transported to the Jinbaoshan conduit where they accumulated and reacted with magma successively passing through the conduit to achieve high PGE concentrations.  相似文献   

16.
The dynamical behaviour of basaltic magma chambers is fundamentally controlled by the changes that occur in the density of magma as it crystallizes. In this paper the term fractionation density is introduced and defined as the ratio of the gram formula weight to molar volume of the chemical components in the liquid phase that are being removed by fractional crystallization. Removal of olivine and pyroxene, whose values of fractionation density are larger than the density of the magma, causes the density of residual liquid to decrease. Removal of plagioclase, with fractionation density less than the magma density, can cause the density of residual liquid to increase. During the progressive differentiation of basaltic magma, density decreases during fractionation of olivine, olivine-pyroxene, and pyroxene assemblages. When plagioclase joins these mafic phases magma density can sometimes increase leading to a density minimum. Calculations of melt density changes during fractionation show that compositional effects on density are usually greater than associated thermal effects.In the closed-system evolution of basaltic magma, several stages of distinctive fluid dynamical behaviour can be recognised that depend on the density changes which accompany crystallization, as well as on the geometry of the chamber. In an early stage of the evolution, where olivine and/or pyroxenes are the fractionating phases, compositional stratification can occur due to side-wall crystallization and replenishment by new magma, with the most differentiated magma tending to accumulate at the roof of the chamber. When plagioclase becomes a fractionating phase a zone of well-mixed magma with a composition close to the density minimum of the system can form in the chamber. The growth of a zone of constant composition destroys the stratification in the chamber. A chamber of well-mixed magma is maintained while further differentiation occurs, unless the walls of the chamber slope inwards, in which case dense boundary layer flows can lead to stable stratification of cool, differentiated magma at the floor of the chamber.In a basaltic magma chamber replenished by primitive magma, the new magma ponds at the base and evolves until it reaches the same density and composition as overlying magma. Successive cycles of replenishment of primitive magma can also form compositional zonation if successive cycles occur before internal thermal equilibrium is reached in a chamber. In a chamber containing well-mixed, plagioclase — saturated magma, the primitive magma can be either denser or lighter than the resident magma. In the first case, the new magma ponds at the base and fractionates until it reaches the same density as the evolved magma. Mixing then occurs between magmas of different temperatures and compositions. In the second case a turbulent plume is generated that causes the new magma to mix immediately with the resident magma.  相似文献   

17.
The petrogenesis of the Fiskenaesset anorthosite body has been investigated using major and trace element data for a large range of rock types from each zone of the complex. The chemistry of these ultramafic to anorthositic cumulates is interpreted in terms of crystal fractionation of a parental, trace element impoverished, tholeiitic magma, involving crystallisation of the cumulus phases olivine, orthopyroxene, clinopyroxene and (dominant) plagioclase feldspar. Amphibole appears not to have been a significant cumulus phase at any stage of crystallisation of the body, the abundant amphibole found in the rocks of the complex being produced by primary intercumulus crystallisation, supplemented by secondary metamorphic recrystallisation. Similarly, magnetite is unlikely to have been a significant early cumulus phase, although, together with chromite, it crystallised as a cumulus phase at high stratigraphic levels in the complex. The metamorphism appears to be largely isochemical, although sub-solidus metamorphic re-equilibration of the REE can be demonstrated on a grain-size scale.The spatial and temporal association between the anorthosite complex and the bordering metavolcanic amphibolites is matched by a strong similarity between the observed trace element chemistry of the amphibolites and the trace element chemistry of calculated successive liquids for the complex. This is taken to suggest a genetic relationship between the evolution of the anorthosite complex and enclosing amphibolites. The presence of trace element impoverished amphibolites (which are not cumulates) with trace element abundances comparable to those of the suggested parental liquid to the anorthosite complex, is used to derive a major element composition for the primary Fiskenasset magma. This composition approximates a moderately aluminous tholeiitic basalt, which may have been generated by hydrous fusion of previously depleted mantle. This primary magma underwent crystal fractionation under low pressure conditions, allowing the development of extensive plagioclase cumulates.The Fiskenaesset anorthosite, and similar bodies, cannot represent a cumulate residue complementary to the enclosing voluminous tonalitic gneisses, which have a calc-alkaline chemistry controlled by high pressure crystal liquid fractionation. Rather, the association between the cumulate layered complex and bordering supracrustal sequence may imply an ancient ocean crust analogue for the development of this component of Archaean high-grade terrains. It is suggested that slices of such Archaean ocean floor may be emplaced laterally into the base of the continental crust during subduction of oceanic lithosphere at Cordilleran type continental margins.  相似文献   

18.
The Lac St-Jean anorthosite massif underlies an area of over 20,000 km2 and has been emplaced into migmatitic gneisses of the central granulite terrain of the Grenville Province of the Canadian shield. Field data and petrography in an area straddling the anorthosite-gneiss contact, close to Chicoutimi (Quebec) permits an outline of its tecto-magmatic evolution. Depositional magmatic textures in the massif reveals that it crystallized from a magma in a relatively calm tectonic environment. The absence of fusion in pelitic gneisses at the contact proves that the crystallization did not take place at the level presently exposed. The parallelism of subvertical foliation in the enveloping gneisses and the anorthosite indicates that both were deformed together. It is suggested that the deformation results from a diapiric ascent of the anorthosite massif after its consolidation at depth. The depth of consolidation of the anorthosite is estimated at 25–30 km from subsolidus reaction between plagioclase and olivine. The diapiric ascent is further substantiated by the fact that three sets of mafic dykes of different ages, intrusive into the anorthosite, have a mineralogy which indicates successively decreasing P, T conditions of emplacement from granulite fades to amphibolite facies. An evolution of the basement gneisses and the anorthosite is proposed as a working hypothesis; it relies on the fact that metabasite dyke swarms in the basement gneisses represent a period of major crustal extension and could be used as a stratigraphic subdivision of the Grenville Province.  相似文献   

19.
The Chilas Complex in the Kohistan Terrane, Pakistan, is a huge basic intrusion, about 300 km long and up to 40 km wide, which is regarded as tilted island-arc type crust. It has been interpreted as the magma chamber root zone of the Kohistan Island Arc. The Chilas Complex is composed mainly of gabbronorite (main facies) and several masses of ultramafic–mafic–anorthosite (UMA) association. The UMA association consists mainly of olivine-dominant cumulate (dunite, wehrlite, lherzolite) and plagioclase-dominant cumulate (troctolite, olivine gabbro, gabbronorite, anorthosite), with minor amount of pyroxene-dominant cumulate (clinopyroxenite, websterite).The major element geochemistry of the gabbronorite (main facies) and rocks of the UMA association, plotted on Harker diagrams, are explained by a cumulate and a non-cumulate model, respectively. Namely, the UMA association is explained as variable crystal cumulates from a primary magma and the gabbronorite of the main facies is explained as due to the fractionation of the residual melt. Chemical variations of major, trace and rare earth elements for the gabbronorite of the main facies in the Chilas Complex are explained by fractional crystallization and accumulation of plagioclase, orthopyroxene and clinopyroxene from the residual melt of the primary magma.  相似文献   

20.
Olivine- and pyroxene-bearing Fe-enriched dioritic rocks inthe 1434 Ma Laramie anorthosite complex are interpreted to representvariably fractionated and contaminated magmas residual afterthe crystallization of anorthosite. Geochemical characteristicsof this suite include the following: high contents of TiO2,, and P2O5; high incompatibletrace element contents; rare earth element patterns with a largerange of Eu anomalies; and isotopic compositions that reflectthe geographic location of individual samples, with ISr increasingand Nd decreasing from south to north. After extraction fromanorthosite, fractionation of ferrodioritic residual magmasresulted in secondary residual monzodioritic melts and complementaryoxide-rich ferrodiorite cumulates. Geographic trends in isotopiccomposition reflect an increasing Archean crustal componentfrom south to north. Dioritic dikes and cumulates with isotopiccompositions similar to associated anorthosites were derivedlocally. Large isotopic discrepancies between some dioritesand their hosting anorthosites reflect preferential contaminationof residual magma during ascent and emplacement of mantle-derivedplagioclase-rich diapirs, followed by subsequent extractionand isolation of Fe-enriched interstitial melt. Strong isotopiccontrasts between anorthosite and associated Fe-enriched rocksin anorthosite complexes do not preclude a direct relationshipbetween them and reflect the diversity and complexity of processesduring their petrogenesis. KEY WORDS: anorthosite; ferrodiorite; geochemistry; Laramie anorthosite complex; residual magma *Corresponding author: Present address: Ceramic Science and Technology, Mail Stop K762, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. Phone: (505) 665-3934. Fax: (505) 665-3935. E-mail: jeremy{at}lanl.gov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号