首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In the Bengal Delta Plain (BDP) the primary arsenic sourcing appears to be different from the global scenario. Here, the Terminal Pleistocene–Holocene depositional platform, the interactive early Holocene depositional morphology with fluvio-estuarine and marine incursions played a crucial role for arsenic sourcing and enrichment. The lenticular silt-fine sand layer between anoxic clay beds favoured entrapment of dissolved organic carbon with decayed phyto-planktons debris. The Terminal Pleistocene–Holocene transgression and regression processes may have acted as major events in the BDP. Interestingly, at the end of the last glacial maxima, the Pleistocene delta had undergone block movements, wherein some parts of the platform were raised above the level of Holocene deposition. Those blocks were found to be free from arsenic in the groundwater. The sea, during re-emerging inundation (10–7 ka BP), has witnessed a monsoon-induced environment in the BDP with the resultant oscillation of sea level leading to higher upsurge towards the north. This might have resulted in the marine incursion and inundation in pre-existing land depressions. Meanwhile arsenic entrapments through marine incursion as well as enrichment in the presence of organic carbon/DOC and/or Fe/Mn/Al catalytic agents could have developed into localised redox traps. It may be of relevance that due to the repetitive transgressive–regressive phases in Holocene, resulting in periodic exposure and weathering of iron-bearing minerals and consequent iron enrichment in the aquifer system. The iron, thus present, had free charge to host arsenic as a sink. It appears that arsenic, wherever found, would likely be of atypical localised exhaustible phenomenon, both in horizontal and vertical context. It also rationalises the cause of the absence of arsenic in the other nearby Pleistocene platform, which has not come across Holocene interaction and marine incursion, as to the likely limiting condition for the search for arsenic in the BDP or beyond.  相似文献   

2.
Coal samples collected from four different sources in the Jaintia Hills of Meghalaya, northeast India, have been investigated for their sulfur content, mineral matter, and to assess their potential behavior upon beneficiation. These coals contain high sulfur which occurs both in organic and inorganic forms. The organic sulfur content is much higher than the inorganic sulfur. Studies on different size and gravity fractions indicated that the mineral phases are concentrated in higher density fractions (d > 1.8) and in general are fine grained (<50 μm). Data of reflected-light optical microscope and electron probe micro-analysis (EPMA) revealed that minerals in these coals are sulfides-pyrite, marcasite, sphalerite, pentlandite; sulfates-barite, jarosite; oxides-hematite, rutile; hydroxides-gibbsite, goethite; phosphate-monazite; carbonate-calcite, siderite and silicates-quartz, mica, chlorite, and kaolinitic clay. The disulfides of iron occur in two modes — mainly pyrite and occasionally marcasite with wide size ranges and in various forms, such as: framboid, colloidal precipitate, colloform-banded, fine disseminations, discrete grains, dendritic (feathery), recrystallized, nuggets, discoidal, massive, cavity-fracture- and cleat-fillings. Framboidal pyrite has formed primarily due to biological activities of sulfur reducing bacteria in the early stages of coalification. Massive and other varieties have formed at later stages due to coalescence and recrystallization of the earlier formed pyrites. Sulfur isotopic values indicate a biogenic origin for the pyrites. Association of trace metals, such as Ni, and Zn has been recorded in these pyrites. Given the large fractions of organic sulfur present, these coals can be upgraded only partially to reduce the sulfur content by beneficiation.  相似文献   

3.
Chemical analyses of high-temperature coal ashes were used to establish the distribution, association and relationship between major inorganic elements such as Si, Al, Ti, Fe, Mn, Mg, Ca, Na, K, P, S and CO2 in a number of New South Wales economic coal seams and to study the composition and character of mineral matter in these coals. The methods used for the evaluation of the data were statistical analysis (univariate and bivariate), ratios, normative mineral composition and variation diagrams.The distribution of major and minor inorganic elements in coal appears to be related to the amount of mineral matter occurring in coal (determined as ash yield) and its mineralogical composition. The quantitative variations in levels of these elements can be classified as in-seam and inter-seam variations. In-seam variations are largely ash yield dependent, i.e. the levels of an element (wt.%) in coal increase along with the increase of its ash content (wt.%). The inter-seam variations are more complex and are related to both ash yield and to the mineralogical composition of mineral matter.The principal components of New South Wales coal ashes are silicon and aluminium. Silicon may be present as silica or combined with aluminium in different proportions to form clay minerals, such as kaolinite, illite, mixed-layer clay minerals, and smectite. Thus, the concentration levels of aluminium in relation to silicon in coal may give an indication about the character of clay minerals present in coal.Ratios and correlation coefficients of element pairs such as Al and Ti, Na and K, and Na and Al were used to determine differences in the chemical composition of high-temperature coal ashes of seams from various stratigraphic positions and provinces. In some seams the nature of associations of these elements is more significant than in others. This is interpreted as being a product of specific environmental conditions controlling the deposition of these seams.The nature of clay mineral content in coal is believed to be a major reason for chemical dissimilarities found between seams of various stratigraphic levels and geographic areas. For example, in some seams kaolinite, in others expandable clay minerals are dominant. The vertical distribution of these minerals has a stratigraphic significance. Within the Upper Permian Newcastle Coal Measures a trend from kaolinite-rich through to expandable minerals-rich and to kaolinite-rich assemblages can be observed from the bottom to the top. These changes are noticeably gradual.All significant variations in the clay mineral assemblages could relate to the long-term changes in the provenance of sedimentary material, weathering conditions in the source area and the rate of subsidence in the place of deposition. These changes are associated with major tectonic events controlling the history of sedimentation within the paralic Sydney and Gunnedah Basins during the Permian.  相似文献   

4.
The concentrations of major and trace inorganic elements in a succession of Permian coals from the Gunnedah Basin, New South Wales, have been determined by X-ray fluorescence techniques applied to both whole-coal and high-temperature ash samples. The results have been evaluated in the light of quantitative data on the minerals in the same coals, determined from X-ray diffraction study of whole-coal samples using a Rietveld-based interpretation program ( ™), to determine relationships of the trace elements in the coals to the mineral species present. Comparison of the chemical composition of the coal ash interpreted from the quantitative mineralogical study to the actual ash composition determined by XRF analysis shows a high degree of consistency, confirming the validity of the XRD interpretations for the Gunnedah Basin materials. Quartz, illite and other minerals of detrital origin dominate the coals in the upper part of the sequence, whereas authigenic kaolinite is abundant in coals from the lower part of the Permian succession. These minerals are all reduced in abundance, however, and pyrite is a dominant constituent, in coals formed under marine influence at several stratigraphic levels. Calcite and dolomite occur as cleat and fracture infillings, mostly in seams near the top and bottom of the sequence. The potassium-bearing minerals in the detrital fraction are associated with significant concentrations of rubidium, and the authigenic kaolinite with relatively high proportions of titanium. Zirconium is also abundant, with associated P and Hf, in the Gunnedah Basin coal seams. Relationships exhibited by Ti, Zr, Nd and Y are consistent with derivation of the original sediment admixed with the seams from an acid volcanic source. Pyrite in the coals is associated with high concentrations of arsenic and minor proportions of thallium; no other element commonly associated with sulphides in coals, however, appears to occur in significant proportions with the pyrite in the sample suite. Small concentrations of Cl present in the coal are inversely related to the pyrite content, and appear to represent ion-exchange components associated with the organic matter. Strontium and barium are strongly associated with the cleat-filling carbonate minerals. Ge and Ga appear to be related to each other and to the coal's organic matter. Cr and V are also related to each other, as are Ce, La, Nd and Pr, but none of these show any relationship to the organic matter or a particular mineral component.  相似文献   

5.
In accordance with the set of species-defining chemical elements in minerals, n-component systems (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) for all mineral species (4952) known to 2014 inclusive were distinguished. Seventy chemical elements have been established to be species-defining, which are distributed by mineral systems as follows: 1 (29), 2 (62), 3 (68), 4 (61), 5 (61), 6 (55), 7 (49), 8 (38), 9 (28), and 10 (19). The number of mineral species in which certain chemical elements are species-defining has been specified. Oxygen (4041), hydrogen (2755), silicon (1448), calcium (1139), sulfur (1025), aluminum (960), iron (917), sodium (914), copper (616), phosphorous (580), arsenic (575), and magnesium (550) are the leading elements in minerals in the Earth’s crust. It has been found that the most species-defining elements are normally distributed by mineral systems. The distributions of mineral species in various systems from the Khibiny and Lovozero, Kola Peninsula, Russia; and Mont Saint-Hilaire, Quebec, Canada peralkaline plutons were compared and the characters of species-defining element distribution in these localities were compared. Si, Na, K, C, F, Ti, Ce, Zr, Nb, Sr, and Th are “excess” species-defining elements in minerals from the plutons compared to the total number of mineral species, whereas S, Cu, Pb, Cl, B, Te, Ag, Ni, and Be are “scarce” elements.  相似文献   

6.
煤中砷的赋存状态   总被引:22,自引:0,他引:22  
砷是煤中常见的有害微量元素,由于其丰度较低,定量研究其赋存状态一直很困难。近年来,采用逐级化学提取实验方法对煤中不同赋存状态的砷进行了定量研究,综合分析这些研究可得出以下结论:①煤中砷的赋存状态包括硫化物态砷、有机态砷、砷酸盐态砷、硅酸盐态砷、水溶态和可交换态砷。总体上,硫化物态砷>有机态砷>砷酸盐态砷>硅酸盐态砷>水溶态和可交换态砷,但在不同的煤样品中,也表现出较大的差异性。②一般而言,煤中大部分砷存在于含砷黄铁矿中,含砷黄铁矿中的砷含量与黄铁矿的成因或类型有关。煤中的砷酸盐态砷主要与铁氧化物和氢氧化物共生;硅酸盐态砷主要进入粘土矿物晶格。③在砷含量较低的煤样品中,有机态砷含量较高,其中在褐煤和低煤级烟煤中,可提取出与腐殖酸和富里酸结合的砷。当前还难以确认有机态砷的化学结构。④贵州特高砷煤中砷的赋存状态较为复杂,在某些样品中与氧结合的有机态砷为主要的赋存状态。  相似文献   

7.
The Shengli River-Changshe Mountain oil shale zone, located in the North Qiangtang depression, northern Tibet plateau, represents a potentially large marine oil shale resource in China. Twenty-eight samples including oil shale, micritic limestone and marl were collected from the Shengli River area to determine the contents and distribution patterns of rare earth elements (REEs) in marine oil shale. Oil shale samples from the Shengli River area have high ash yield (61.86–67.48%) and TOC content (8.02–13.67%) with low total sulfur (St,d) content (0.76–1.39%) and intermediate shale oil content (3.60–16.30%). The total rare earth element (ΣREE) content in oil shale samples is notably depleted (46.79–67.90 μg/g), approximately one third of the mean value of the North American Shale Composite (NASC), and lower than that of world-wide black shales and Chinese coals, but higher than that of world-wide coals and micritic limestone samples (29.21 μg/g) from the Shengli River area. The oil shale samples from the Shengli River area exhibit shale-like Chondrite or NASC-normalized REE patterns similar to those of micritic limestone and marl samples from this area, indicating that REEs of these different lithological samples may have been derived from a similar terrigenous source.REE contents of oil shale samples are highly positive correlated with ash yield and show a positive correlation with Fe and a weakly positive correlation with organic sulfur, and the vertical variations of REEs mainly follow those of Si, Al, K and Ti. All these facts indicate that the REE contents in oil shale seams are mainly controlled by clay minerals and, to a lesser extent, by pyrite, as well as partly associated with oil shale organic constituents. Rare earth elements in the Shengli River oil shale have originated from two sources: a felsic volcanic rock source and a clastic or/and limestone source.  相似文献   

8.
Upper Cretaceous phosphorite beds of the Duwi Formation, Upper Egypt, are intercalated with limestone, sandy limestone, marl, calcareous shales, and calcareous sandstone. Calcareous intercalations were subjected to field and detailed petrographic, mineralogical and geochemical investigations in order to constrain their rock composition and origin. Mineralogically, dolomite, calcite, quartz, francolite and feldspars are the non-clay minerals. Smectite, kaolinite and illite represent the clay minerals. Major and trace elements can be classified as the detrital and carbonate fractions based on their sources. The detrital fraction includes the elements that are derived from detrital sources, mainly clay minerals and quartz, such as Si, Al, Fe, Ti, K, Ba, V, Ni, Co, Cr, Zn, Cu, Zr, and Mo. The carbonate fraction includes the elements that are derived from carbonates, maily calcite and dolomite, such as Ca, Mg and Sr. Dolomite occurs as being dense, uniform, mosaic, very fine-to-fine, non-ferroan, and non-stoichiometrical, suggesting its early diagenetic formation in a near-shore oxidizing shallow marine environment. The close association and positive correlation between dolomite and smectite indicates the role of clay minerals in the formation of dolomite as a source of Mg^2+ -rich solutions. Calcareous rocks were deposited in marine, oxidizing and weakly alkaline conditions, marking a semi-arid climatic period. The calcareous/argillaceous alternations are due to oscillations in clay/carbonate ratio.  相似文献   

9.
Previous studies have shown that the Pewee coal, which outcrops in the Wartburg Basin in northeast Tennessee (U.S.A.), formed in an upper delta-plain (limnic) environment and had not been subject to marine conditions. Most elemental concentrations decrease upwards, from the base to the top of the coal; however in some locations, several elements show significant increases in concentration at the very top of the coal. Correlation coefficients for elements within the coal and to a lesser degree, the sediments, reflect typical clay minerals. The major mineral phases identified were kaolinite, illite, chlorite, siderite and quartz.Although minor lateral variations in chemical and maceral composition occur, the Pewee coal is relatively homogeneous within the study area. Elements which tend to be soluble in low-pH solutions (especially Ca) may have reacted with fluids coming from the peat and have been transported away from the coal-sediment contact. Chlorite is absent in the coal, perhaps due to its solubility in an acid environment. With these few exceptions, there is little direct evidence that diagenetic processes influenced the movement of elements from the coal into the sediment, or vice versa.The decrease in elemental concentrations upward in the Pewee coal is thought to result from a gradual decrease in the amount of detritus being brought into the Pewee swamp. The increase in abundance of detritus at the top of the coal in some locations suggests a sudden change in environmental conditions, perhaps as the result of the establishment of a new distributary system.  相似文献   

10.
 Adsorption/desorption and oxidation/reduction of arsenic at clay surfaces are very important to the natural attenuation of arsenic in the subsurface environment. Although numerous studies have concluded that iron oxides have high affinities for the adsorption of As(V), very little experimental work has addressed the arsenic attenuation capacities of different clay minerals and aging process affecting the transformation of arsenic. The abundance of clay minerals in a variety of geochemical environments and their influence on adsorption of contaminants suggests a need for more experimental work to characterize the adsorption desorption, and oxidation of arsenic on clay minerals. In this investigation three types of clay mineral were studied: the 1 : 1 layer clays [halloysite (IN), sedimentary M-kaolinite, and weathered EPK-kaolinite]; the 2 : 1 layer clays [illite (MT) and illite/montmorillonite (MT)]; the 2 :>: 1 layer clay [chlorite (CA)]. The halloysite and the chlorite had much greater As(V) adsorption (25–35 folds) than the other clay minerals. The clay minerals had lower As(III) adsorption than As(V) adsorption, and the adsorption was affected by pH. Desorption of arsenic from the clay minerals was significantly influenced by the aging process. The quantities of extractable As(III) and As(V) decreased with increasing aging time. The results demonstrated that oxidation of As(III) to As(V) occurred on the clay surfaces, whereas reduction of As(V) to As(III) was not found in any of the clay minerals studied. The oxidation of As(III) was affected by the types of clay and aging time. Received: 22 March 1999 · Accepted: 15 April 1999  相似文献   

11.
峨口铁矿中硫化物的特征与成因研究   总被引:1,自引:0,他引:1  
徐勇  乔葆 《世界地质》1996,15(3):37-40
硫是铁矿中的有害元素。峨口铁矿中硫主要以磁黄铁矿和黄铁矿两种形式存在。本区硫化物有三个形成期次。第五期为变质作用形成的星点状硫化物;第二期为变质后热液阶段形成的脉状硫化物;第三期为后期热液阶段形成的裂隙充填式硫化物。  相似文献   

12.
Pakistan is rich in coal resources, which amount to around 186 billion tons. The Paleocene Padhrar and Darra Adam Khel coalfields are located in the Central Salt Range Punjab Province and the Khyber Pakhtunkhwa Province, Pakistan, respectively. Padhrar coal has not been studied in detail and the Darra Adam Khel coalfields are newly-discovered, so no research has been done, due to security considerations. In this study, an attempt has been made to study the geochemical and mineralogical characteristics of the Padhrar and Darra Adam Khel coals, in order to learn about the coal quality, element enrichment mechanism, sedimentary medium conditions and potentially valuable elements for coal utilization. The Padhrar and Darra Adam Khel coals are low to medium ash, low moisture content, high in volatiles and high total sulfur coal. The vitrinite reflectance in Darra Adam Khel coal is higher than in Padhrar coal, indicating either a greater burial depth or the effects of Himalayan tectonism. The vitrinite content is dominant in the Padhrar and Darra Adam Khel coals, followed by inertinite and liptinite, the major minerals including quartz, clay minerals, calcite and pyrite. The trace elements Ni, As, Be Zn, Ge, Mo, Ta, W, Co and Nb, Sn, Hf, Ta, Pb, Th, Cd, In, Be, V, Cr, Zr, Ag, Li, W and Co are concentrated in some of the Padhrar and Darra Adam Khel coal samples, respectively. The Padhrar coal shows positive Ce, Eu and Gd anomalies, with most of the Darra Adam Khel coal showing negative Ce, Eu and positive Gd anomalies with high LREE. The Al2O3/TiO2 values indicate that the sediment source of the Padhrar and Darra Adam Khel coals is mostly related to intermediate igneous rocks. The Sr/Ba, SiO2 + Al2O3, Fe2O3 + CaO + MgO/SiO2 + Al2O3 and high sulfur content in the Padhrar and Darra Adam Khel coals indicate epithermal and marine water influence with a tidal flat, coal-forming environment and a deltaic coal-forming environment, respectively.  相似文献   

13.
印度尼西亚是我国最大的煤炭进口国,本文应用电感耦合等离子体质谱、原子荧光光谱、直接测汞仪等技术分析了上海口岸31批进口印度尼西亚煤炭中的12种微量元素,结合数理统计方法研究该类煤炭中微量元素的赋存形态。结果表明,进口印尼煤炭中含有高汞煤、三级含砷煤,As、Hg的平均富集系数大于1,其迁移风险值得关注;Be、Cu、Mo、Cd、Sn、Pb含量均低于中国煤和世界煤炭的平均水平,体现出印尼煤炭低灰分的品质特征。12种微量元素和相关项目(灰分和全硫)可划分为3类:第一类归纳为黏土矿物吸附类,包括As、Be、Cr、Co、Ni、Cu、Mo、Cd、Sn、Pb、灰分;第二类归纳为硫铁矿类,包括Hg、全硫;第三类归纳为碳酸盐矿物类,包括Ba。本文研究结果对于指导进口煤炭开发、利用过程中的环境评价和洁净化处理具有一定的参考价值。  相似文献   

14.
Coal combustion is an important atmospheric pollution source in most Chinese cities, so systematic studies on sulfur and nitrogen in Chinese coals are needed. The sulfur contents in Chinese coals average 0.9 ± 1.0%, indicating that most Chinese coals are low in sulfur. A nearly constant mean δ34S value is observed in low sulfur (TS < 1) Chinese coals of different ages (D, P1, T3 and J3). High sulfur Chinese coals (OS > 0.8%), often found at late Carboniferous (C3) and late Permian (P2) in southern China, had two main sulfur sources (original plant sulfur and secondary sulfur). The wide variety of δ34S values of Chinese coals (−15‰ to +50‰) is a result of a complex sulfur origin. The δ15N values of Chinese coals ranged from −6‰ to +4‰, showing a lack of correlation with coal ages, whereas nitrogen contents are higher in Paleozoic coals than in Mesozoic coals. This may be related to their original precursor plant species: high nitrogen pteridophytes for the Paleozoic coals and low nitrogen gymnosperms for the Mesozoic coals. Different to δ34S values, Chinese coals showed higher δ15N values in marine environments than in freshwater environments.  相似文献   

15.
中国煤中硫的地球化学研究   总被引:16,自引:0,他引:16  
燃烧过程中,煤中硫会以硫氧化物等形式释放出来,污染大气以至形成酸雨,对环境造成极大的影响。本文在对中国煤中硫全面分析的基础上.总结并分析了中国煤中硫在不同地区、不同煤层和不同形成环境中的含量与分布规律,阐述煤中硫形成的地质成因和影响因素.以及育机硫、无机硫和元素硫的赋存状态.概述了煤利用过程中硫的转化机理及其对环境的影响.提出了对煤中硫的研究趋势和今后研究方向与热点问题。  相似文献   

16.
黔西南高砷煤的分布及地球化学特征研究   总被引:20,自引:3,他引:20  
根据野外地质特征结合中子活化成分分析结果,探讨了黔西南高砷煤的分布特征、影响因素和某些地球化学特征。高砷煤严格受构造(褶皱和断层)、地层(二叠系龙潭组)、沉积相(海陆交互相)的控制,分布于平行北斜长轴的断层两侧,愈靠近断层面砷的含量愈高。砷在煤中的分布极不均匀,即使同一煤层变化也极大。在时空关系与元素组合上高砷煤与区内卡林型金矿密切相关。  相似文献   

17.
Geochemical and environmental magnetic studies were carried out to identify the effect of iron oxyhydroxides on arsenic mobilization in high arsenic aquifer system. Using high arsenic sediment samples from two boreholes, specifically drilled for this study, chemical composition and magnetic properties including magnetic susceptibility, saturation remnant magnetization, and isothermal remnant magnetization were measured. Results of correlation analysis of element contents show that arsenic and iron are closely associated with each other (r 2 = 0.40, α = 0.05, n = 21). In contrast, the correlation of phosphorus with iron (r = 0.11, α = 0.05, n = 21) and arsenic (r 2 = 0.18, α = 0.05, n = 21) was poor, which might result from competitive adsorption of phosphorus and arsenic on the surface of Fe-oxyhydroxides. The high correlation coefficients between arsenic contents and magnetic parameters suggest that the ferrimagnetic minerals including maghemite and hematite are the dominant carrier of arsenic in aquifer sediments. The results of sequential extraction experiments also revealed the association of arsenic with reducible iron oxides, such as maghemite and hematite in aquifer sediments. Therefore, under reducing conditions, reductive dissolution and desorption of arsenic from Fe-oxyhydroxides into the aqueous phase should be the dominant geochemical processes for its enrichment in groundwater at Datong. An erratum to this article can be found at  相似文献   

18.
潮水盆地位于内蒙古西南部和甘肃省东部地区,是我国中新生代含煤断陷盆地.采用粉晶X衍射、ICP-MS、ICP-AES 方法,从煤的岩石学、煤化学及煤地球化学的理论出发,对潮水盆地西部煤样进行了煤化学、显微组分、矿物学及地球化学分析.其研究结果表明潮水盆地西部煤以中等水分、低一中灰分和硫质量分数、高挥发分产率为特征,煤级为烟煤—亚烟煤;煤中有机显微组分以镜质组为主,惰性组次之,煤相类型以潮湿森林沼泽相为主,其次为较浅覆水森林沼泽相;煤中的常量矿物以石英和高岭石为主,部分样品中含有黄铁矿、方解石、菱铁矿和少量的微斜长石;煤中除Sr、B和Cs质量分数相对较高外,其他微量元素质量分数普遍较低.Cr、Ga、Pb、Li、Cu、Ge、V、Sc、Be、W、Th和As,以及Ti和Nb主要与硅铝酸盐矿物有好的亲和性;B和Sr可能主要以碳酸盐矿物的形式存在;S和Mo可能主要以硫化物矿物的形式存在;另外,Ti、Zr、Nb和Ta有好的相关性,可能与重矿物有关.  相似文献   

19.
Geochemistry and origin of elements in some UK coals   总被引:3,自引:0,他引:3  
Twenty-four UK coals ranging in rank with 4.6%–37.6% volatile matter were analysed for 46 major and trace elements. The samples were obtained from the UK Coal Bank and are representative of the major UK coal fields. The major element distributions are interpreted in terms of the mineralogical variations—quartz and kaolinite are largely responsible for the Si and Al, carbonates for Ca and Mg and pyrite for Fe. Also exerting an influence in some samples are siderite, Al-phosphate minerals and illite. Based on statistical relationships with the major elements, Rb, Cr, Th, Ce, Zr, Y, Ga, La, Ta, Nb and V are thought to be mainly present in the clay minerals, and As, Mo, Sb, Tl, Se and Bi and Pb are probably present in pyrite. Strontium and Ba are concentrated in a restricted number of samples related to the phosphate minerals. Germanium is the only element for which a major organic association can be demonstrated. Elements with an indirect association with the organic matter are Na, Cl, and Br in porefluids and possibly Te. The ash content is controlled mainly by the detrital input and the trace elements related to the ash content are therefore those elements associated with the clay minerals. Variations with rank would appear to be mainly related to the moisture content (porefluids). The trace elements associated with the quartz and clay minerals are thought to be dominantly detrital in origin. The non-detrital elements, essentially those contained in pyrite, are thought to have been incorporated in the depositional environment from waters with enhanced salinities through seawater ingress, hence there are positive relationships between S and trace element concentrations.  相似文献   

20.
甲烷厌氧氧化作用(AOM)在调控全球甲烷收支平衡以及缓解因甲烷引起的温室效应等方面扮演着十分重要的角色,成为近些年来海洋生物地球化学领域的研究热点之一.一般而言,海洋沉积物孔隙水硫酸盐还原主要是通过2种反应途径来完成,即氧化有机质途径和AOM途径.长期以来,与有机质氧化途径相关的硫酸盐还原作用研究已有充分展示,而由AOM驱动的硫酸盐还原及其对自生硫化铁形成与埋藏的重要贡献却被严重低估.侧重从生物地球化学、同位素地球化学等角度,综述近些年来不同环境条件下海洋沉积物AOM作用发生的地球化学证据和AOM对沉积物孔隙水硫酸盐消耗比例的贡献大小及其调控因素.AOM过程产生的H2S会与沉积物中活性铁结合形成自生铁硫化物.与沉积物浅表层条件相比,AOM过程固定的自生铁硫化物不容易发生再氧化,更利于在沉积物中埋藏保存起来.AOM与海洋沉积物硫酸盐还原作用相偶联,由AOM驱动的硫酸盐还原过程对海底自生铁硫化物形成与埋藏的重要贡献不容忽视.该综述有助加深对海洋沉积物AOM作用的认识及其对硫循环的全面理解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号